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Low-dose oral cholecalciferol is associated
with higher numbers of Helios+ and total
Tregs than oral calcitriol in renal allograft
recipients: an observational study
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Abstract

Background: Regulatory T cells (Tregs) are a cornerstone of graft acceptance. High numbers of Tregs are associated
with better long-term graft survival. Recently, Vitamin D was suggested as an immunomodulator, in addition to its
classical role in calcium metabolism. Vitamin D modulates Tregs and might, thereby, promote graft acceptance and
long-term graft survival.

Methods: One hundred twenty-three renal allograft recipients attending either Heidelberg nephrology or Giessen
internal medicine clinic were enrolled in this cross- sectional study. Sixteen healthy controls were studied in addition.
Sixty-nine patients were receiving no vitamin D, 38 calcitriol, and 16 cholecalciferol supplementations. We evaluated
whether there was a difference in the absolute numbers of Helios+, Helios−, CTLA-4+, IFNg+, and total Tregs among the
patient groups.

Results: Cholecalciferol supplementation was associated with higher absolute numbers of Helios+, CTLA-4+, and total
Tregs than calcitriol (p < 0.001, p = 0.004, p = 0.001 respectively). Helios+ Tregs were also higher in cholecalciferol than no
vitamin D supplementation patients (p = 0.001), whereas CTLA-4+ and total Tregs were similar in both groups (p =NS).
Helios+, Helios−, CTLA-4+, IFNg+, and total Tregs were similar in the cholecalciferol and healthy control groups (p=NS).

Conclusion: Our findings indicate that cholecalciferol, even when administered at low dosages, has a stabilizing
effect on Tregs (particularly the Helios + subset), in contrast to calcitriol which showed neither a stabilizing nor
a proliferation-inducing effect on the same cell population.
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Background
T regulatory cells (Tregs) represent a subset of professional
cells with powerful immunosuppressive activity. They
modulate the immune responses, abrogate autoimmune
diseases, and maintain self-tolerance. High numbers of
Tregs in peripheral blood of renal transplant recipients
were shown to be associated with long-term renal
graft survival [1]. Generally, Tregs express the surface

markers CD4+ CD25+ Foxp3+ CD127 low/- and can be
divided into three distinct subtypes according to their
origin: Thymus-derived Tregs (tTregs), peripherally
induced Tregs (pTregs), and in vitro-induced Tregs
(iTregs) [2]. tTregs originate in the thymus and usually ex-
press Helios; a member of the Ikaros family transcription
factor. pTregs are induced in the periphery upon exposure
to antigens in the absence of inflammatory cytokines.
pTregs are antigen specific, express unstable Foxp3, and
are often Helios negative [3–5]. The exact function of
Helios remains unclear, however, Getnet et al. showed that
Helios enhanced Foxp3 expression [6]. Whether Helios+

and Helios− Tregs have similar suppressive capacity is
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uncertain. Whereas Himmel et al. reported that both types
had comparable immunosuppressive capacity, [4] Elkord et
al. demonstrated that Helios+ Tregs possessed more sup-
pressive capacity in vitro [7]. Zabransky et al. reported that
the in vitro suppressive function of Tregs correlated with
the absolute numbers of Helios+ cells. [8] Accordingly, it
seems likely that Helios+ Tregs represent a highly suppres-
sive Treg subset. Recently, a new Treg subset, Interferon-
gamma producing Tregs (IFNg+ Tregs), was discovered in
mice and humans [9, 10]. These cells represent the first line
of Tregs and exert a suppressive effect on an initial immune
response. They include tTregs as well as pTregs [11].
Among many other surface receptors, Tregs express
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4),
which is involved in cell-cell inhibition. Accordingly,
CTLA-4 maintains the suppressive capacity of Tregs in
animal models [12].
Beyond its role in calcium homeostasis, vitamin D plays

an important role as an immunomodulator. Through the
interaction of vitamin D with its intracellular receptor
(VDR), and subsequently with the vitamin A/ vitamin A re-
ceptor complex, it enters the nucleus, binds to the vitamin
D response elements (VDRE) of the promoter regions of
different genes, and ultimately modifies the transcription of
more than 900 genes [13]. Thereby, vitamin D can affect,
either directly or indirectly, about 3 % of the human gen-
ome [14–16]. Ardalan et al. showed that when calcitriol
was administered to the donor before renal transplantation,
and was continued in the recipients thereafter, it led to a
significant increase in the number of CD3+CD4+CD25+

cells [17]. A complicating finding is that the resulting
higher incidence of hypercalcemia renders the administra-
tion of large doses of calcitriol potentially toxic. In contrast,
cholecalciferol (vitamin D3) is rather safer when adminis-
tered in large doses [18]. Cholecalciferol, the native form of
vitamin D, undergoes two hydroxylations: the first in the
liver to 25 (OH) D3 (calcidiol), and the second in the kidney
to form calcitriol. While administration of a weekly
large dose of oral cholecalciferol (140,000 IU/month)
for 3 months was reported to significantly increase the
numbers of peripheral Tregs in vivo in healthy individ-
uals and patients with Type 1 diabetes [19, 20], this
was challenged by Smolders et al., who demonstrated
that supplementation with an oral daily dose of
20,000 IU of cholecalciferol for 3 months in relapsing
remitting multiple sclerosis patients did not signifi-
cantly increase the numbers or the suppressive action
of Tregs [21].
Recently, in vitro experiments demonstrated that acti-

vated T cells express 1α-hydroxylase and have the cap-
acity to convert 25(OH)D3 to 1,25(OH)2D3 in sufficient
concentrations to affect the vitamin D- responsive genes
[22]. Interestingly, the numbers of Foxp3+ Tregs and the
expression of CTLA-4 were increased after stimulation

of CD4+CD25− cells only in the presence of dendritic
cells and 25(OH) D3, in contrast to 1,25(OH)2 D3, which in
supra-physiological concentrations increased the numbers
of Foxp3+ Tregs and expression of CTLA-4, regardless of
the presence of dendritic cells [23]. Thus, in vitro, calcitriol
can induce Tregs without the presence of dendritic cells.
In vivo studies on effects of cholecalciferol and calcitriol

on different subsets of Tregs in renal allograft patients are
scarce. The available publications on in vivo and in vitro
studies do not explicitly show which vitamin D form was
associated with significantly higher numbers of Tregs in
renal allograft patients. In the present study, we were inter-
ested in investigating whether the administration of either
form of vitamin D is associated with a preferential increase
in the numbers of certain subsets of Tregs. From a clinical
perspective, it is important to determine whether supple-
mentation with one form or the other in the usual doses
prescribed for post transplantation calcium homeostasis is
superior regarding an achievement of higher numbers and
better suppressive capacity of Tregs. To the best of our
knowledge, we believe this is the first study to compare the
association of two vitamin D forms with the numbers
of Helios+, Helios−, and CTLA-4+ Tregs in renal allo-
graft recipients.

Methods
Patients
This cross-sectional study was conducted between April
2014 and July 2015. Blood samples were collected from
renal transplant patients attending outpatient clinics at
Heidelberg nephrology and Giessen internal medicine
departments. All the samples were analyzed by the same
operator at the transplantation immunology department
of Heidelberg University. The numbers of Helios+, Helios−,
CTLA-4+, IFNg+, and total Tregs were analyzed in 123
renal transplant patients. As an ancillary part, we analyzed
retrospectively whether the patients were supplemented
with vitamin D forms or not for at least six months before
the time of blood sampling for the T cell subpopulation
studies. Patients who received post-transplant vitamin D
supplementations for shorter than 6 months before blood
sampling were excluded from the study. Fifty-four patients
were supplemented post transplantation with vitamin D
forms, of whom 38 received oral calcitriol and 16 oral
cholecalciferol. Sixty-nine patients were not supple-
mented. The three groups were compared with 16
healthy controls studied in parallel. The healthy con-
trols were lab staff members who were not suffering
from any acute infections or chronic diseases, and were
not taking any medications. The patients were reason-
ably matched regarding gender, age, and follow up time
post renal transplantation (P = NS), however, they dif-
fered from the healthy controls regarding gender and
age (Table 1).
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Throughout this study, Tregs refer to cells with the com-
bination CD4+ CD25+ CD127− Foxp3+, Helios+ Tregs to
cells with the combination CD4+CD25+CD127−Foxp3+Hel-
ios+, IFNg+ Tregs to CD4+CD25+CD127−Foxp3+IFNg+, and
CTLA-4+ Tregs to CD4+ CD25+ CD127− Foxp3+ CD152+

(intracellular).

Vitamin D treatment regimen
Cholecalciferol or calcitriol was supplemented in different
regimens and dosages. Oral calcitriol (Rocaltrol®) was pre-
scribed on a daily basis in 83 %, on alternate days in 11 %,
on a weekly basis in 4 %, and on 5 consecutive days per
week in 2 % of cases. Oral cholecalciferol (Ideos®, Dekristol®,

Table 1 Demographic and baseline characteristics of 139 study patients according to vitamin D- supplementation status and form
(Non-vitamin D, calcitriol, or cholecalciferol)

Controls Non-vitamin D Calcitriol Cholecalciferol P value

No. of subjects 16 69 38 16

Gender (% female) 81 35 29 43 0.003

Age (years) 42 (25.5–53.5) 53 (41.2–62.7) 57 (49–71) 55 (45.5–64) 0.004

Years post transplantation 2.1 (1.3–5.6) 3 (1.7–6.2) 1.5 (1.1–2.4) 0.117

Vitamin D weekly dose

Calcitriol (μg) 1.75 (1.75–3.5)

Cholecalciferol (IU) 7000 (5950–10,000)

No. of rejections 5 1 2 0.275

CMV IgG positive recipients % 52.5 58.1 56.3 0.894

ATG induction (% of patients) 13 17 23 0.568

Serum Creatinine mg/dl 1.5 (1.2–1.9) 1.6 (1.3–2.2) 1.2 (1.1–1.7) 0.155

Maintenance immunosuppresion (% of patients)

Tac/CsA+ MPA/MMF + Steroids 84 72 76 0.272

Tac/CsA+ AZA + Steroids 13 9 12

Tac/CsA+ everolimus/sirolimus + Steroids 3 19 12

C0 MPA (mg/l) 1.9 (1.2–4) 2.6 (1.7–4) 2.5 (1.7–5.2) 0.293

C0 Tac (ng/ml) 6 (5.2–7.8) 6.6 (5.7–7.3) 6.3 (4.8–7.3) 0.839

C0 CycA (ng/ml) 116 (93–128) 140 (117–169) 63a

Time of blood sampling (% of patients)

Summer 25 45 52.6 31.25

Autumn 25 29 21.1 56.25 0.252

Winter 25 13 15.8 6.25

Spring 25 13 10.5 6.25

NK cells/μl 176 (149–239) 141 (75–191) 106 (43–230) 178 (90–296) 0.084

CD8+ T cells/μl 377 (291–556) 310 (200–544) 417 (282–568) 531 (237–568) 0.439

CD4+ T cells/μl 762 (590–990) 677 (373–1043) 524 (357–877) 595 (352–1070) 0.144

Tregs/μl* 5.5 (4.7–8.4) 3.1 (1.6–5.3) 2.2 (1.3–4.3) 4.7 (3–8.5) <0.001

Helios+ Tregs/μl* 2.5 (1.3–4) 0.7 (0.3–1.4) 0.6 (0.3–1.1) 2.2 (1.1–3.8) < 0.001

Helios− Tregs/μl* 3.3 (2.5–4.2) 2.2 (0.9–3.9) 1.4 (0.9–3.1) 2.7 (1.1–4.6) 0.008

IFNg+ Tregs/μl* 0.3 (0.1–0.7) 0.3 (.04–0.3) 0.16 (0.04–0.4) 0.2 (0.1–0.7) 0.026

CTLA-4+ Tregs/μl* 1.5 (1–2.8) 0.4 (0.2–0.9) 0.35 (0–0.9) 1.2 (0.2–3.5) < 0.001

Treg/CD4+ T cells % 0.72 (0.63–0.91) 0.46 (0.3–0.79) 0.42 (0.26–0.89) 0.79 (0.53–1.4) < 0.001

Helios+ /Helios− Tregs 0.72 (0.41–1.1) 0.38 (0.27–0.61) 0.34 (0.21–0.65) 0.65 (0.39–1.4) 0.011

Treg/CD8+ T cells % 1.4 (0.94–2.4) 0.8 (0.4–1.5) 0.7 (0.3–1.1) 1.4 (0.9–1.8) 0.002

Data are presented as median + interquartile range. Asterisks refer to Tregs with the marker combination CD4+ CD25+ CD127− Foxp3+

NK natural killer cells, CMV cytomegalovirus, ATG Anti-thymocyte globulin, Tac tacrolimus, CsA cyclosporine, MPA mycophenolic acid, MMF mycophenolate mofetil,
AZA azathioprine, C0 – trough level
a indicates that only one patient received cyclosporine in this group
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Calcimagon®, or Vigantoletten®) was prescribed in a once-
weekly dose in 70 %, and on a daily basis in 30 % of the
cases. The average prescribed dosages are shown in
Table 1.

Determination of PBL subsets
PBL subsets were determined as described previously
[24, 25]. For analysis of cell surface determinants, PBL
were incubated with fluorochrome-labelled monoclonal
antibodies against CD4 (clone RPA-T4), CD25 (clone
M - A251), CD127 (clone HIL-7R-M21) (all from BD
Biosciences). Intracellular determinants were stained
with fluorochrome-labelled monoclonal antibodies against
Foxp3 (clone 236A/E7), IFNg (clone B27), CD152 (BN13)
and Helios (clone 22 F6) (all BD Biosciences). Briefly, PBL
were incubated with combinations of monoclonal anti-
bodies for 30 min and eight-color fluorescence was
analyzed using a FACSCanto II triple-laser flow cyt-
ometer (BD Biosciences) [24, 25]. When, in addition,
intracellular proteins were studied, cell membranes
were permeabilized using BD Perm/Wash buffer (BD
Biosciences). At least 100,000 events were analyzed in
the initial FSC/SSC dot plot.

Statistical analysis
Data are presented as median + interquartile range or
percentages. Kruskal-Wallis, Fisher’s exact, and Spearman’s
rank tests were applied. Bonferroni correction for multiple
comparisons was performed when indicated.

Results
Table 1 shows the characteristics of transplanted patients
and healthy controls. Although the healthy control group
was significantly different from the patient groups regarding
age and sex, this did not impact our results, as we did not
find a correlation between age or gender and the numbers
of Helios+, Helios−, CTLA-4+, IFNg+, and total Tregs in the
patients (p =NS).

Controls vs. transplanted patients not supplemented with
vitamin D
Healthy controls showed higher counts than the
transplanted patients who were not supplemented
with any vitamin D form regarding the numbers of
Helios+ (CD4+CD25+CD127−Foxp3+Helios+), CTLA-4+

(CD4+CD25+CD127−Foxp3+CD152+), and total Tregs
(CD4+CD25+CD127−Foxp3+) (Table 2, Fig. 1). The
numbers of Helios− Tregs (CD4+CD25+CD127−Foxp3+-
Helios-) were also higher in the control group, although the
difference did not remain significant after correcting for
multiple comparisons. IFNg+ Treg (CD4+CD25+CD127
−Foxp3+IFNg+) numbers were similar in the control and
non-vitamin D groups. We conclude that post-transplant

immunosuppressed patients have lower numbers of most
Treg subsets than healthy controls.

Vitamin D effect on Treg subsets

� Calcitriol vs. Controls
Healthy controls had higher numbers of Helios+

(CD4+CD25+CD127−Foxp3+Helios+), Helios−

(CD4+CD25+CD127−Foxp3+Helios-), CTLA-4+

(CD4+CD25+CD127−Foxp3+CD152+) and total
Tregs (CD4+CD25+CD127−Foxp3+) than
calcitriol-treated patients (Table 2, Fig. 1).
The numbers of IFNg+ Tregs (CD4+CD25+CD127
−Foxp3+IFNg+) were similar in the two groups.

� Calcitriol vs. no vitamin D supplementation
Both groups showed similar numbers of Helios+

(CD4+CD25+CD127−Foxp3+Helios+), Helios−

(CD4+CD25+CD127−Foxp3+Helios−), CTLA-4+

(CD4+CD25+CD127−Foxp3+CD152+), IFNg+

(CD4+CD25+CD127−Foxp3+IFNg+), and total
Tregs (CD4+CD25+CD127−Foxp3+) (Table 2,
Fig. 1).

� Cholecalciferol supplementation vs. Controls
Interestingly, cholecalciferol-treated patients showed
similar numbers of Helios+ (CD4+CD25+CD127−Foxp3
+Helios+), Helios− (CD4+CD25+CD127−Foxp3+Helios−),
CTLA-4+ (CD4+CD25+CD127−Foxp3+CD152+), IFNg+

(CD4+CD25+CD127−Foxp3+IFNg+), and total Tregs
(CD4+CD25+CD127−Foxp3+) compared to the control
group (Table 2, Fig. 1).

� Cholecalciferol vs. no vitamin D supplementation
Cholecalciferol supplementation was associated
with higher numbers of Helios+ (CD4+CD25+

CD127−Foxp3+Helios+), CTLA-4+ (CD4+

CD25+CD127−Foxp3+CD152+) and total Tregs
(CD4+CD25+CD127−Foxp3+), although the difference
regarding the latter two variables did not remain
significant after correcting for multiple comparisons
(Table 2, Fig. 1). The numbers of IFNg+

(CD4+CD25+CD127−Foxp3+IFNg+) and Helios−

Tregs (CD4+CD25+CD127−Foxp3+Helios−) were
similar in the cholecalciferol and non-vitamin D
groups. We conclude that cholecalciferol is superior to
no treatment with vitamin D supplementation
regarding the achievement of higher numbers of
Helios+ Tregs (CD4+CD25+CD127−Foxp3+Helios+).

� Calcitriol vs. Cholecalciferol supplementation
Cholecalciferol was associated with two-fold
higher numbers of Helios+ (CD4+CD25+CD127−

Foxp3+Helios+) and total Tregs (CD4+

CD25+CD127−Foxp3+) than calcitriol. CTLA-4+

Treg (CD4+CD25+CD127−Foxp3+CD152+) numbers
were also higher in the cholecalciferol than in the
calcitriol group (Table 2, Fig. 1). We conclude that
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Table 2 Pairwise comparisons of p- values of Helios+, Helios−, CTLA-4+, IFNg+, and Treg differences, in addition to Treg subset ratios
among non-vitamin D, calcitriol and cholecalciferol groups based on Kruskal-Wallis test (n = 139)

Controls Non-vitamin D Calcitriol Cholecalciferol p value

No. of subjects 16 69 38 16

Total Tregs* √ √ 0.108

√ √ 0.001

√ √ <0.001

√ √ 0.016

√ √ <0.001

√ √ 0.326

Helios+ Tregs* √ √ 0.353

√ √ <0.001

√ √ <0.001

√ √ 0.001

√ √ <0.001

√ √ 0.548

Helios− Tregs* √ √ 0.101

√ √ 0.062

√ √ 0.001

√ √ 0.418

√ √ 0.011

√ √ 0.173

CTLA-4+ Tregs* √ √ 0.268

√ √ 0.004

√ √ <0.001

√ √ 0.022

√ √ <0.001

√ √ 0.207

IFNg+ Tregs* √ √ 0.535

√ √ 0.024

√ √ 0.016

√ √ 0.095

√ √ 0.069

√ √ 0.898

Treg/CD4+ T cells √ √ 0.872

√ √ 0.002

√ √ 0.004

√ √ 0.002

√ √ 0.003

√ √ 0.861

Treg/CD8+ T cells √ √ 0.177

√ √ 0.008

√ √ 0.001

√ √ 0.062

√ √ 0.009

√ √ 0.599
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cholecalciferol is superior to calcitriol with respect to
the numbers of Helios+, CTLA-4+, and total Tregs.

Based on these comparisons, we conclude that chole-
calciferol appears to have a stabilizing effect on Tregs,
particularly the tTreg subset, since the patients in the
cholecalciferol group had similar numbers of Helios+

and total Tregs to healthy controls, and higher Helios+

and total Treg numbers than the calcitriol supplemented
and non-vitamin D patients.

Treg/CD4+ T cell ratio
When Treg subsets (CD4+CD25+CD127−Foxp3+) were
analyzed with respect to total CD4, cholecalciferol-
treated patients showed similar Treg subset percentages
as healthy controls, but higher than calcitriol and non-
vitamin D patients. The result suggests that the proportion
of the Treg subset with respect to the total CD4+ pool was

normal in cholecalciferol-treated patients but decreased
in calcitriol and non-vitamin D patients, implying a
stabilization of Treg subsets by supplementation with
cholecalciferol (Tables 1 and 2).

Helios+/Helios− Tregs
Cholecalciferol-treated patients and healthy controls
showed a relative dominance of Helios+ Treg (CD4+CD25
+CD127−Foxp3+Helios+), whereas calcitriol and non-vita-
min D patients exhibited a preponderance of Helios−

Treg subsets (CD4+CD25+CD127−Foxp3+Helios-)
(Tables 1 and 2). It appears that Helios+ as well as
Helios− Treg absolute counts were reduced in calci-
triol and non-vitamin D patients but were stable in
patients supplemented with cholecalciferol. More-
over, the reduction of Helios+ Treg appeared to be
stronger than the reduction of Helios− Treg.

Table 2 Pairwise comparisons of p- values of Helios+, Helios−, CTLA-4+, IFNg+, and Treg differences, in addition to Treg subset ratios
among non-vitamin D, calcitriol and cholecalciferol groups based on Kruskal-Wallis test (n = 139) (Continued)

Helios+/Helios− Tregs √ √ 0.687

√ √ 0.018

√ √ 0.014

√ √ 0.024

√ √ 0.019

√ √ 0.941

Pairwise comparisons among the four groups. p-values ≤0.008 were considered significant due to Bonferroni correction of α- values for multiple comparisons.
Significant p-values are bold printed. Asterisks refer to Tregs with the marker combination of CD4+ CD25+ CD127− Foxp3+

Fig. 1 Absolute numbers of Treg subsets among the different study groups. Asterisks in the diagram indicate adjusted p values of ≤ 0.005. The
exact p values for the pairwise comparisons are shown in Table 2
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CD8+ T, CD16+CD56+ NK, and CD19+ B cells
There was a tendency of cholecalciferol-treated pa-
tients to have high CD8+ cytotoxic T-lymphocyte and
CD16+CD56+ natural killer cell counts in the absence
of clinical symptoms or indications of infection, suggesting
high immunocompetence of cholecalciferol-treated patients
(Tables 1 and 2). All immunosuppressed patients had ex-
tremely low B-lymphocyte counts.

Higher-dose calcitriol supplementation
We also analyzed whether higher doses of calcitriol
(daily doses ≥ 0.5 μg) were associated with higher num-
bers of Helios+ (CD4+CD25+CD127−Foxp3+Helios+),
Helios− (CD4+CD25+CD127−Foxp3+Helios−), CTLA-4+

(CD4+CD25+CD127−Foxp3+CD152+), and total Tregs
(CD4+CD25+CD127−Foxp3+) than lower doses, perhaps
comparable to those in the cholecalciferol and control
groups of transplanted patients (Table 3). Forty-two per-
cent of the transplanted patients in the calcitriol arm re-
ceived relatively high doses of calcitriol supplementation
at an average weekly dose of 3.5 μg (3.5–7 μg). This
higher-dose calcitriol group was similar to the cholecal-
ciferol and control groups regarding age, sex, follow up
time post transplantation, the percentage that received
anti-thymocyte globulin induction, and maintenance im-
munosuppressive protocols (p = NS) (Data not shown).

� Higher-dose calcitriol vs. no vitamin D
supplementation
Even at higher doses, calcitriol was not superior to no
vitamin D supplementation with respect to the numbers
of Helios+ (CD4+CD25+CD127−Foxp3+Helios+), CTLA-
4+ (CD4+CD25+CD127−Foxp3+CD152+), and total
Tregs (CD4+CD25+CD127−Foxp3+). The numbers of
IFNg+ (CD4+CD25+CD127−Foxp3+IFNg+) and Helios−

Tregs (CD4+CD25+CD127−Foxp3+Helios−) likewise
were similar in the two groups (Tables 3 and 4).

� Higher-dose calcitriol vs. Cholecalciferol
supplementation
The absolute numbers of Helios+, CTLA-4+

(CD4+CD25+CD127−Foxp3+CD152+), and total
Tregs (CD4+CD25+CD127−Foxp3+) were higher
in the cholecalciferol group than in the calcitriol group.
The numbers of IFNg+ (CD4+CD25+CD127−

Foxp3+IFNg+) and Helios− Tregs (CD4+CD25+

CD127−Foxp3+Helios−) were similar in the two groups
(Tables 3 and 4).

Correlation between Helios+ and CTLA-4+ Tregs
We also tested whether there was a correlation
between the absolute numbers of Helios+ Tregs
(CD4+CD25+CD127−Foxp3+Helios+) and the number
of CTLA-4+ Tregs (CD4+CD25+CD127−Foxp3+CD152+).
We observed a moderate correlation in the cholecalciferol
group (r = 0.670, p = 0.003), and the calcitriol group (r =
0.470, p = 0.001), and a weak correlation in the non-vitamin
D group (r = 0.301, p =0.012). The maximum correlation
was observed in healthy controls (r = 0.776, p < 0.001).

Serum creatinine
There was no significant difference in serum creatinine
(mg/dl) among the patient groups (p = 0.155).

Discussion
In this retrospective study of renal allograft recipients,
we tested a possible association between vitamin D sup-
plementation with either cholecalciferol or calcitriol and
the numbers of Tregs. We found that supplementation
with cholecalciferol was associated with higher absolute
numbers of Helios+ Tregs (CD4+CD25+CD127−Foxp3+-
Helios+) than calcitriol or no vitamin D supplementation,
and with higher absolute numbers of total Tregs
(CD4+CD25+CD127−Foxp3+) than with calcitriol sup-
plementation. The absolute numbers of Treg subsets

Table 3 CD4+ and Treg subset counts and ratios of Helios+ and total Treg cell counts in the higher-dose calcitriol group vs.
cholecalciferol and non-vitamin D groups (n = 101)

Non-vitamin D Higher-dose Calcitriol Cholecalciferol P value

No. of subjects 69 16 16

CD4+ T cells/μl 677 (373–1043) 458 (315–879) 595 (352–1070) 0.544

Tregs/μl* 3.1 (1.6–5.3) 2.3 (1.2–4.1) 4.7 (3–8.5) 0.021

Helios+ Tregs/μl* 0.7 (0.3–1.4) 0.4 (0.2–1.6) 2.2 (1.1–3.8) 0.001

Helios− Tregs/μl* 2.2 (0.9–3.9) 1.4 (0.9–3) 2.7 (1.1–4.6) 0.393

IFNg+ Tregs/μl* 0.3 (.04–0.3) 0.16 (0.06–0.4) 0.2 (0.1–0.7) 0.06

CTLA-4+ Tregs/μl* 0.4 (0.2–0.9) 0.25 (0–0.7) 1.2 (0.2–3.5) 0.018

Treg/CD4+ T cells % 0.45 (0.29–0.78) 0.44 (0.25–0.95) 0.84 (0.53–1.4) 0.006

Treg/ CD8+ T cells % 0.84 (0.37–1.5) 0.57 (0.27–1.2) 1.4 (0.9–1.8) 0.058

Helios+/ Helios− Tregs 0.38 (0.27–0.61) 0.28 (0.19–0.97) 0.65 (0.38–1.4) 0.048

Tregs denoted with asterisks have the marker combination CD4+ CD25+ CD127− Foxp3+
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were similar in the cholecalciferol group to healthy
controls. We did not find a significant difference in the
numbers of Helios− (CD4+CD25+CD127−Foxp3+Helios−)
and IFNg+ (CD4+CD25+CD127−Foxp3+IFNg+) Tregs
among the 3 renal allograft patient groups.
We assessed absolute number of cells/μl in addition to

the ratio of Tregs to CD4+ and CD8+ cells. Liu et al. dem-
onstrated that the absolute numbers of Tregs, rather than
the ratios of Tregs to peripheral lymphocytes, was associ-
ated with long-term survival of renal allografts [26].
Interestingly, as shown in Table 1, in our study chole-

calciferol at an average dose of 7000 IU weekly was asso-
ciated with higher numbers of Helios+ and total Tregs
than calcitriol at an average dose of 1.75 μg weekly. In
vivo trials reported cholecalciferol supplementation at
doses of 140,000 IU monthly or 20,000 IU daily, and
0.5 μg of daily calcitriol in another study [17, 20, 21, 27].
The average dose of cholecalciferol supplemented in our
study was thus about 5–20 times lower than the dosages
prescribed in these trials, whereas the average dose of
calcitriol was about 3 times lower than that administered
in a trial conducted by Ardalan et al. [17]. Our results
show that cholecalciferol has an effect on Tregs in trans-
plant patients even at relatively low doses.
Although calcitriol can directly affect T cells in vitro,

the required doses are much higher than the physiological
doses as demonstrated in many studies [16, 28–31]. In
addition, it was demonstrated in healthy persons as well as
uremic patients that the bioavailability of 1, 25(OH)2 D3

was 70 % of the supplemented dose of oral calcitriol [32].

De Sévaux et al. showed that calcitriol supplementation in a
daily dose of 0.25 μg did not improve the serum 25(OH)
D3 level in renal transplant patients [33]. Consistent with
this finding, Marcen et al. demonstrated that calcitriol in a
daily dose of 0.25–0.5 μg failed to improve vitamin D
deficiency in a cohort of renal transplant patients [34].
In contrast, low dose oral cholecalciferol in a weekly
dose of 5000 IU for 15 weeks increased serum 25(OH)
D3 from 18.4 ± 8.2 to 68.6 ± 17.7 nmol/l in a cohort of
34 hemodialysis patients without causing any episode
of hypercalcemia [35]. Moreover, oral cholecalciferol
showed good long-term 25(OH) D3 and 1, 25 (OH)2
D3 bioavailability, even after 3 months of supplemen-
tation with a single dose of 600,000 IU, with a max-
imal effect at one month [36]. Based on these findings,
we speculate that the calcitriol doses supplemented in
our study were much lower than the doses required
for induction of Tregs in patients, in contrast to cho-
lecalciferol, which can improve vitamin D deficiency
even at low doses.
Our study challenges the findings of Ardalan et al., who

reported that calcitriol administered to donors 5 days be-
fore transplantation at a dose of 0.5 μg and continued at
the same dose in the recipients for 1 month after trans-
plantation and thereafter at a dose of 0.25 μg for another
5 months, was associated with a significant increase in the
numbers of CD4+CD25+ cells [17]. This finding is sur-
prising since the doses administered seem too low for
the induction of a significant increase of Tregs in the
light of other studies. The most likely explanation of

Table 4 Pairwise comparisons of p-values of Helios+, CTLA-4, and Treg differences, in addition to Treg subset ratios among
non-vitamin D, calcitriol and cholecalciferol groups based on Kruskal-Wallis test (n = 101)

Non-vitamin D Higher-dose Calcitriol Cholecalciferol P value

No. of subjects 69 16 16

Total Tregs* √ √ 0.349

√ √ 0.009

√ √ 0.016

Helios+ Tregs* √ √ 0.553

√ √ 0.002

√ √ 0.001

CTLA-4+ Tregs* √ √ 0.152

√ √ 0.005

√ √ 0.034

Treg/CD4+ T cells % √ √ 0.951

√ √ 0.012

√ √ 0.002

Helios+/ Helios− Tregs √ √ 0.507

√ √ 0.024

√ √ 0.027

P values ≤ 0.016 were considered significant due to Bonferroni correction of α-values for multiple comparisons. Significant p-values are bold printed. Asterisks refer
to Tregs with the marker combination CD4+ CD25+ CD127− Foxp3+
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the discrepancy is that the Treg cell population of our study
was defined as CD4+ CD25+ Foxp3+ CD127 low/-, whereas
in Ardalan’s trial Tregs were defined only as CD3+CD4
+CD25+ T cells. It was shown that a subpopulation of
Tregs, termed IL-10-Tregs, expressed CD4 and CD25,
whereas these cells lacked the expression of Foxp3 [37].
The marker combination CD4+ CD25+ IL10+ characterizes
a Treg subset termed Tr1 cells. Because only the CD4+ T
cell subset, which expresses the highest level of CD25
(CD25 high), has a suppressive effect, it is likely that the cell
population studied by Ardalan et al. was a mixture of Tr1
cells in addition to both CD4+ CD25+ effector cells and
conventional Tregs [38, 39]. Moreover, serum 1, 25 (OH)2
D3 was not measured before and six months after trans-
plantation. This would have provided an idea about the ef-
fects of the supplemented doses on serum 1, 25 (OH)2 D3.
To test whether the higher doses of calcitriol administered
in Ardalan’s study were responsible for the increase in the
numbers of Tregs, we compared the patients who were
supplemented with comparable or higher doses of calcitriol
as the patients in Ardalan’s trial with the other two groups
of transplanted patients in our study. The higher- dose cal-
citriol group received an average dose of 3.5 μg weekly. We
found that the Tregs were still about two-folds higher in
the cholecalciferol arm. This finding suggests that cholecal-
ciferol is superior to calcitriol even when the latter is pre-
scribed at higher doses.
Although cholecalciferol was associated with higher num-

bers of Helios+ Tregs (CD4+CD25+CD127−Foxp3+Helios+),
we could not detect a significant difference in the numbers
of Helios− Tregs (CD4+CD25+CD127−Foxp3+Helios-)
among cholecalciferol, calcitriol, no vitamin D supple-
mentation, and control groups. Since Helios− Tregs
represent a mixture of tTregs (Bona fide Tregs) and a
majority of Tregs activated when exposed to antigens
(pTregs) [4], we speculate that cholecalciferol might
have affected only the bona fide tTregs rather than
peripherally activated Tregs. We think that even if
cholecalciferol caused an increase in the numbers of
bona fide Helios− Tregs, the increase might have been
too small to be statistically significant, considering
that the majority of Helios− Tregs were pTregs and
that the sample size was small. If this hypothesis proves to
be true, the important question is how such relatively low
doses of cholecalciferol can affect the bona fide Tregs (ei-
ther Helios+ or Helios−) while not affecting the Helios−

pTregs. This may be attributed to the vitamin D-binding
protein (DBP). A likely explanation is that the Helios− bona
fide tTregs are induced in the thymus where DBP concen-
trations are much lower than in the serum [40, 41]. The
lower concentration of DBP in the thymus renders rela-
tively lower concentrations of cholecalciferol capable of in-
ducing Helios− bona fide tTregs. As Helios− pTregs are
induced in the periphery, where the concentrations of DBP

are much higher, higher concentrations of 25 (OH) D3 may
be required to induce pTregs. T cells express CYP27B1,
which is a 1α-hydroxylase, and have the capacity to convert
25(OH) D3 to 1, 25(OH)2 D3 in sufficient concentrations to
affect the vitamin D-responsive genes [22].
To find out whether the increase in Treg subset num-

bers associated with cholecalciferol supplementation was
real, we compared cholecalciferol patients with healthy
controls. Interestingly, both cholecalciferol groups showed
similar Treg subset numbers, whereas calcitriol and
no vitamin D supplementation groups showed lower
Treg numbers. Accordingly, it appears that cholecalciferol
has a stabilizing effect on Treg (particularly Helios+ subset)
rather than a proliferation-inducing one.
CTLA-4 is a marker associated with the suppressive

capacity of Tregs. Cholecalciferol was associated with
significantly higher numbers of these cells in comparison
to calcitriol and there was a trend of higher numbers also
in the no vitamin D supplementation group, whereas the
numbers were comparable to healthy controls. We
tested the correlation between CTLA-4+ Tregs
(CD4+CD25+CD127−Foxp3+CD152+) and Helios+

Tregs (CD4+CD25+CD127−Foxp3+Helios+) in the
four groups to estimate whether Helios+ Tregs co-express
CTLA-4 and use CTLA-4 for cell-cell contact suppression.
Helios+ Tregs were associated with CTLA-4 in all 4 groups
suggesting that they use CTLA-4 for suppression.
Immunosuppressive drugs have variable effects on

Tregs. Cyclosporine has long been known to inhibit
the activation of T cells through suppression of
calcium-dependent phosphatase calcineurin leading to
suppression of IL-2 synthesis. Melony et al. showed
that calcineurin inhibitors (CNI) led to expansion of
the Treg population in lung allograft recipients [42].
Intriguingly, Ruppert et al. showed that Tregs resisted
apoptosis caused by cyclosporine through expression
of CD44 [43]. Kogina et al. reported that tacrolimus
suppressed T cell receptor-mediated cell division of
conventional T cells (CD4+ T cells), whereas it enhanced
division of Tregs in vitro [44]. In contrast, other studies
showed a harmful effect of CNI on Tregs [45, 46]. In our
study, it is unlikely that calcineurin inhibitors were the
cause of the increased Treg numbers in the cholecalciferol
group as we found no significant difference in CNI pre-
scription among the three patient groups. Mycophenolic
acid is one of the most widely used drugs in solid organ
transplantation. It exerts its function through inhibition of
inosine monophosphate dehydrogenase leading ultimately
to B and T cell suppression. Recently, Scotta et al. showed
that administration of methylprednisolone, tacrolimus and
mycophenolic acid suppressed the viability and prolif-
eration of Tregs. They have also showed that in vivo
administration of sirolimus; an inhibitor of the mech-
anistic target of rapamycin, maintained proliferation
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and survival of adoptively transferred Tregs [47]. A re-
cent in vitro study published by our group showed
variable effects of the immunosuppressive agents on
IFNg+ and total Tregs [48].

Conclusions
It appears that cholecalciferol prevents the decrease of
Treg commonly observed after transplantation and
believed to be a consequence of immunosuppres-
sion. Particularly the decrease of Helios+ tTregs
(CD4+CD25+CD127−Foxp3+Helios+), which usually
inhibit autoreactive T effector cells and thus guard
against autoimmune diseases, appears to be prevented.
Moreover, Helios− pTregs (CD4+CD25+CD127−Foxp3+-
Helios−) are stabilized in cholecalciferol-treated patients. It
might be permissible to speculate that cholecalciferol-
treated patients with high Treg numbers may require lower
doses of immunosuppressive drugs, thereby reducing the
side-effects and cost of immunosuppression.
If vitamin D deficiency proves to be the cause of Treg

deficiency in immunosuppressed patients, and calcitriol
cannot improve this deficiency, cholecalciferol, even when
administered at relatively low doses may be able to reverse
vitamin D deficiency and thereby restore Treg balance.
Since approximately 51 % of transplant recipients have

a vitamin D insufficiency and about 29 % have moderate
to severe vitamin D deficiency and patients with low
dose cholecalciferol supplementation rarely develop hy-
percalcemia [49], the majority of transplant recipients
should be supplemented with cholecalciferol. Further
clinical studies will be necessary to validate our hypoth-
esis and conclusion.
Since our study is cross-sectional, we can only infer an

association between cholecalciferol and increased num-
bers of Helios+, CTLA-4 +, and total Tregs rather than
causality. To prove causality, a randomized prospective
study should be conducted. Most of the renal transplant
patients in the centers from which the patients were re-
cruited are managed with calcitriol supplementation ra-
ther than cholecalciferol. Therefore, we could not enroll
more patients into the latter group.
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