
ON THE APPEARANCE OF PRIMES IN
LINEAR RECURSIVE SEQUENCES

JOHN H. JAROMA

Received 16 August 2004 and in revised form 5 December 2004

Wepresent an application of difference equations to number theory by considering the set
of linear second-order recursive relations,Un+2(

√
R,Q)=√RUn+1−QUn,U0 = 0,U1 = 1,

and Vn+2(
√
R,Q)=√RVn+1−QVn, V0 = 2,V1 =

√
R, where R and Q are relatively prime

integers and n∈ {0,1, . . .}. These equations describe the set of extended Lucas sequences,
or rather, the Lehmer sequences. We add that the rank of apparition of an odd prime p in
a specific Lehmer sequence is the index of the first term that contains p as a divisor. In
this paper, we obtain results that pertain to the rank of apparition of primes of the form
2np± 1. Upon doing so, we will also establish rank of apparition results under more ex-
plicit hypotheses for some notable special cases of the Lehmer sequences. Presently, there
does not exist a closed formula that will produce the rank of apparition of an arbitrary
prime in any of the aforementioned sequences.

1. Introduction

Linear recursive equations such as the family of second-order extended Lucas sequences
described above have attracted considerable theoretic attention for more than a century.
Among other things, they have played an important role in primality testing. For exam-
ple, the prime character of a number is often a consequence of having maximal rank of
apparition; that is, rank of apparition equal to N ± 1.

The first objective of this paper is to provide a general rank-of-apparition result for
primes of the formN = 2np± 1, where p is a prime. Then, usingmore explicit criteria, we
will determine when such primes have maximal rank of apparition in the specific Lehmer
sequences {Fn} = {Un(1,−1)} = {1,1,2,3, . . .} and {Ln} = {Vn(1,−1)} = {1,3,4,7, . . .}.
Respectively, {Fn} and {Ln} represent the Fibonacci and the Lucas numbers.

2. The Lucas and Lehmer sequences

In [4], Lucas published the first set of papers that provided an in-depth analysis of the
numerical factors of the set of sequences generated by the second-order linear recurrence
relation Xn+2 = PXn+1−QXn, where n∈ {0,1, . . .} [4]. These sequences also attracted the
attention of P. de Fermat, J. Pell, and L. Euler years earlier. Nevertheless, it was Lucas
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who undertook the first systematic study of them. In 1913, Carmichael introduced some
corrections to Lucas’s papers, and also generalized some of the results [1, 2].

We now define the Lucas sequences. Let P and Q be any pair of nonzero relatively
prime integers. Then, the Lucas sequences {Un(P,Q)} and the companion Lucas sequences
{Vn(P,Q)} are recursively given by

Un+2 = PUn+1−QUn, U0 = 0, U1 = 1, n∈ {0,1,2, . . .},
Vn+2 = PVn+1−QVn, V0 = 2, V1 = P, n∈ {0,1,2, . . .}. (2.1)

In [3], Lehmer extended the theory of the Lucas functions to a more general class
of sequences described by replacing the parameter P in (2.1) with

√
R under the as-

sumption that R and Q are relatively prime integers. In particular, the Lehmer sequences
{Un(

√
R,Q)} and the companion Lehmer sequences {Vn(

√
R,Q)} are defined as

Un+2
(√

R,Q
)= √RUn+1−QUn, U0 = 0, U1 = 1, n∈ {0,1, . . .}, (2.2)

Vn+2
(√

R,Q
)= √RVn+1−QVn, V0 = 2, V1 =

√
R, n∈ {0,1, . . .}. (2.3)

We remark that Lehmer’s modification of the Lucas sequences shown in (2.2) and (2.3)
was motivated by the fact that the discriminant P2− 4Q of the characteristic equation of
(2.1) cannot be of the form 4k+2 or 4k+3.

3. Properties of the Lehmer sequences

Throughout the rest of this paper, p will denote an odd prime. In addition, we also adopt
the notation ω(p) and λ(p) to describe, respectively, the rank of apparition of p in {Un}
and in {Vn}. Furthermore, if ω(p) = n, then p is called a primitive prime factor of Un.
Similarly, if λ(p) = n, then p is said to be a primitive prime factor of Vn. Finally, (a/p)
shall denote the Legendre symbol of p and a. We now introduce some divisibility charac-
teristics of the Lehmer sequences [3].

Lemma 3.1. Let p � RQ. Then, Up−σε(
√
R,Q)≡ 0(mod p).

Lemma 3.2. p |Un(
√
R,Q) if and only if n= kω.

Lemma 3.3. Suppose that ω(p) is odd. Then Vn(
√
R,Q) is not divisible by p for any value of

n. On the other hand, if ω(p) is even, say 2k, then V(2n+1)k(
√
R,Q) is divisible by p for every

n but no other term of the sequence may contain p as a factor.

Lemma 3.4. Let p � RQ. Then, U(p−σε)/2(
√
R,Q)≡ 0(mod p) if and only if σ = τ.

Lemma 3.5. Let p � RQ. If p | Q. Then p � Un, for all n. If p2 | R, then ω(p) = 2. If p | ∆,
then ω(p)= p.

4. Rank of apparition of a prime of the form 2np± 1 in {Un} and {Vn}
We now introduce the Legendre symbols σ = (R/p),τ = (Q/p), and ε = (∆/p), where ∆=
R− 4Q is the discriminant of the characteristic equation of (2.2) and (2.3). The following
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two theorems pertain to the rank of apparition of a prime of the form 2np± 1 in the
Lehmer sequences. Because of Lemma 3.5, we impose the restriction q � RQ∆.

Theorem 4.1. Let q = 2np− 1 be prime and q � RQ∆. Also, assume that either σ = 1, ε =
−1, τ =−1 or σ =−1, ε = 1, τ = 1.

(1) If n= 1, then ω(q)= 2p and λ(q)= p.
(2) If n > 1 and q |V2n−1 (

√
R,Q), then ω(q)= 2n and λ(q)= 2n−1.

(3) If n > 1 and q � V2n−1 (
√
R,Q), then ω(q)= 2np and λ(q)= 2n−1p.

Proof. In each case, σε = −1. So, by Lemma 3.1, q | U2n p. Furthermore, since σ �= τ, it
follows by Lemma 3.4 that q � U2n−1 p. Hence, by Lemma 3.2, the only possible values for
ω(q) are 2n and 2np.

(1) Let n= 1. Thus, either ω(q)= 2 or ω(q)= 2p. However, by (2.2), we see that U2 =√
RU1 −QU0 =

√
R · 1−Q · 0 = √R. Furthermore, as q2 � R by hypothesis, we conclude

that ω(q)= 2p. Finally, by Lemma 3.3, λ(q)= p.
(2) Let n > 1 and q | V2n−1 . Since q | V2n−1 , then because of Lemma 3.3, we infer that q

is a primitive prime factor of V2n−1 . Hence, λ(q)= 2n−1. Also, by the same lemma, this can
happen only if ω(q)= 2n.

(3) Let n > 1 and q � V2n−1 . Then, λ(q) �= 2n−1. By Lemma 3.3, this means that ω(q) �=
2n. Thus, the only choice for ω(q) is 2np. Therefore, λ(q)= 2n−1p. �

Theorem 4.2. Let q = 2np+1 be prime and q � RQ∆. Also, assume that either σ = 1, ε = 1,
τ =−1 or σ =−1, ε =−1, τ = 1.

(1) If n= 1, then ω(q)= 2p and λ(q)= p.
(2) If n > 1 and q |V2n−1 (

√
R,Q), then ω(q)= 2n and λ(q)= 2n−1.

(3) If n > 1 and q � V2n−1 (
√
R,Q), then ω(q)= 2np and λ(q)= 2n−1p.

Proof. In all three cases, we see that σε = 1. Hence, q | U2n p. In addition, σ �= τ. So, it
follows by Lemma 3.4 that q � U2n−1 p. Thus, the only possible values for ω(q) are 2n and
2np.

(1) Let n= 1. Then, either ω(q)= 2 or ω(q)= 2p. However, from (2.2), U2 =
√
RU1−

QU0 =
√
R · 1−Q · 0=√R. Since q �

√
R by hypothesis, we conclude that ω(q)= 2p and

λ(q)= p.
(2) Let n > 1 and q | V2n−1 (

√
R,Q). Using an argument similar to the one given in the

second part of Theorem 4.1, we have ω(q)= 2n and λ(q)= 2n−1.
(3) Let n > 1 and q � V2n−1 (

√
R,Q). Similarly, by an argument analogous to the one

provided in the third part of Theorem 4.1, it follows that ω(q) = 2np and λ(q)= 2n−1p.
�

5. Explicit results for primes of the form 2np± 1 in {Fn} and {Ln}
In this section, we obtain explicit results for the rank of apparition of a prime of the form
2np± 1 in the sequences of Fibonacci and Lucas numbers. In both sequences, R=−Q = 1
and ∆= R− 4Q= 5.

First, in the following category of primes, we identify values for p and n under which
ε = (∆/(2np− 1)) = (5/(2np− 1)) = −1. Shortly thereafter, we consider a second cate-
gory that will allow us to accomplish a similar objective for primes of the form 2np+1.
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Prime Category I.

p ≡ 1(mod5), and either n≡ 2(mod4) or n≡ 3(mod4).

p ≡ 2(mod5), and either n≡ 1(mod4) or n≡ 2(mod4).

p ≡ 3(mod5), and either n≡ 0(mod4) or n≡ 3(mod4).

p ≡ 4(mod5), and either n≡ 0(mod4) or n≡ 1(mod4).

(5.1)

Lemma 5.1. Let q = 2np− 1 be prime. Then, for any p,n belonging to Prime Category I, it
follows that ε = (5/q)=−1.
Proof. Since 5 and q are distinct odd primes, both Legendre symbols (5/q) and (q/5) are
defined.

By Gauss’s reciprocity law,

(
5
q

)(
q

5

)
= (−1)((5−1)/2)·((q−1)/2) = (−1)2(2n−1p−1) = 1. (5.2)

Hence,

(
5
q

)
=
(
q

5

)
. (5.3)

We now prove the first two cases of Lemma 5.1. The remaining two cases follow simi-
larly, and are omitted.

(1) Suppose that p ≡ 1(mod5), and either n≡ 2(mod4) or n≡ 3(mod4).
If n= 4r +2, then

(
5
q

)
=
(
24r+2(5k+1)− 1

5

)
=
(
3
5

)
=−1. (5.4)

If n= 4r +3, then

(
24r+3(5k+1)− 1

5

)
=
(
2
5

)
=−1. (5.5)

(2) Suppose that p ≡ 2(mod5), and either n≡ 1(mod4) or n≡ 2(mod4).
If n= 4r +1, then

(
24r+1(5k+2)− 1

5

)
=
(
3
5

)
=−1. (5.6)

If n= 4r +2, then

(
24r+2(5k+2)− 1

5

)
=
(
2
5

)
=−1. (5.7)

�

We now identify values of p and n for which ε = (∆/(2np+1))= (5/(2np+1))= 1.



John H. Jaroma 149

Prime Category II.

p ≡ 1(mod5) and n≡ 3(mod4).

p ≡ 2(mod5) and n≡ 2(mod4).

p ≡ 3(mod5) and n≡ 0(mod4).

p ≡ 4(mod5), and either n≡ 1(mod4) or n≡ 0(mod4).

(5.8)

We demonstrate the first two cases and omit the last two.

Lemma 5.2. Let q = 2np+1 be prime. Then, for any p,n belonging to Prime Category II, it
follows that ε = (5/q)= 1.

Proof. Using Gauss’s reciprocity law, it is easily shown that (5/q)= (q/5). Hence, we have
the following.

(1) If p ≡ 1(mod5) and n≡ 3(mod4), then

(
5
q

)
=
(
24r+3(5k+1)+1

5

)
=
(
4
5

)
= 1. (5.9)

(2) If p ≡ 2(mod5) and n≡ 2(mod4), then

(
24r+2(5k+2)+1

5

)
=
(
4
5

)
= 1. (5.10)

�

Before we establish more explicit criteria for the rank of apparition of p in either {Fn}
or {Ln}, the next two propositions are needed.
Lemma 5.3. Let q = 2np− 1 be prime. If n= 1, then τ = (−1/q)= 1. Otherwise, τ =−1.
Proof. Observe that

(
Q

q

)
=
(−1

q

)
≡ (−1)(q−1)/2 ≡ (−1)2n−1p−1(modq). (5.11)

First, let n= 1. Then, since p− 1 is even, it follows that τ = (−1/q)≡ 1. On the other
hand, if n > 1, then 2n−1p− 1 is odd. Therefore, τ = (−1/q)=−1. �

Lemma 5.4. Let q = 2np+1 be prime. If n= 1, then τ = (Q/q)= (−1/q)=−1. Otherwise,
τ = 1.

Proof. First, we see that

(
Q

q

)
=
(−1

q

)
≡ (−1)(q−1)/2 ≡ (−1)2n−1p(modq). (5.12)

If n = 1, then 2n−1p = p. Thus, τ = (−1/q) = −1. Otherwise, 2n−1p is even, and τ =
(−1/q)= 1. �
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We now state and prove our two main results.

Theorem 5.5. Let q = 2np− 1 be prime. Then, for any p belonging to Prime Category I
such that q � 5, the following is true regarding the rank of apparition of q in {Fn} and {Ln}:

(1) if n= 1, then ω(q)= p and λ(q) does not exist;
(2) if n > 1 and q | L2n−1 , then ω(q)= 2n and λ(q)= 2n−1;
(3) if n > 1 and q � L2n−1 , then ω(q)= 2np and λ(q)= 2n−1p.

Proof. As p belongs to Prime Category I, we have by Lemma 5.1 that ε = (5/q) = −1.
Furthermore, σ = (1/q)= 1.

(1) If n= 1, then q = 2p− 1. Since σε =−1, it follows by Lemma 3.1 that q | F2p. Also,
by Lemma 5.3, we have τ = 1. Hence, σ = τ. Thus, by Lemma 3.4, q | Fp. Furthermore, as
every factor of Fp is primitive, it follows that ω(q)= p. Finally, because ω(q) is odd, then
by Lemma 3.3, q divides no term of {Ln}; that is, the rank of apparition of q in {Ln} does
not exist.

(2) Let n > 1 and q | L2n−1 . Since σε = −1, then by Lemma 3.1, it follows that q |
F2n p. In addition, by Lemma 5.3, we see that τ = −1. Hence, σ �= τ. This implies, using
Lemma 3.4, that q � F2n−1 p. Thus, from Lemma 3.2, the only possible values for ω(q) are
2n and 2np. However, by hypothesis, q | L2n−1 . Therefore, by Lemma 3.3, this can occur
only if ω(q)= 2n and λ(q)= 2n−1.

(3) Let n > 1 and q � L2n−1 . Then, by Lemma 3.1, q | F2n p. However, by Lemma 3.4,
q � F2n−1 p. This implies that either ω(q)= 2n or ω(q)= 2np. Now, by hypothesis, q � L2n−1 .
Thus, since q � L2n−1 , we conclude by Lemma 3.3 that ω(q) �= 2n. Therefore, ω(q) = 2np
and λ(q)= 2n−1p. �

Theorem 5.6. Let p be an odd prime such that q = 2np + 1 is prime. Then, for any p
belonging to Prime Category II such that q � 5, the following is true regarding the rank of
apparition of q in {Fn} and {Ln}:

(1) if n= 1, then ω(q)= 2p and λ(q)= p;
(2) if n > 1 and q | L2n−2 , then ω(q)= 2n−1 and λ(q)= 2n−2.

Proof. Since p belongs to Prime Category II, we see by Lemma 5.2 that ε = (5/q) = 1.
Also, σ = (R/q)= (1/q)= 1.

(1) If n= 1, then q = 2p+1. Now, because σε = 1, Lemma 3.1 tells us that q | F2p. In
addition, by Lemma 5.4, we have τ = −1. So, σ �= τ. Thus, by Lemma 3.4, q � Fp. There-
fore, in light of Lemma 3.2, eitherω(q)= 2 orω(q)= 2p. However, by (2.2), F2 =

√
R= 1.

Hence, q � F2. Therefore, ω(q)= 2p and λ(q)= p.
(2) Let n > 1 and q | L2n−2 . Since σε = 1, by Lemma 3.1, it follows that q | F2n p. Also, by

Lemma 5.4, τ = 1. Hence, σ = τ. This implies by Lemma 3.4 that q | F2n−1 p. Thus, from
Lemma 3.2, it follows that ω(q) is a divisor of 2n−1p. Moreover, by hypothesis, q | L2n−2 .
So, applying Lemma 3.3, we conclude that q can divide no term of {Ln} with index less
than 2n−2. Therefore, λ(q)= 2n−2, which can happen only if ω(q)= 2n−1. �

Remark 5.7. The case n > 1 and q � L2n−2 was not considered. Had it been, we would have
been led to the conclusion that ω(q) �= 2n−1. But by Lemma 3.2, we would not be able to
identify ω(q), since all of the factors of the index 2n−1p not equal to 2 would still remain
as candidates for the rank of apparition of q in {Fn}.
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