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Abstract Finding low-cost spanning subgraphs with given degree and connectivity
requirements is a fundamental problem in the area of network design. We consider
the problem of finding d-regular spanning subgraphs (or d-factors) of minimum
weight with connectivity requirements. For the case of k-edge-connectedness, we
present approximation algorithms that achieve constant approximation ratios for all
d ≥ 2 · �k/2�. For the case of k-vertex-connectedness, we achieve constant approxi-
mation ratios for d ≥ 2k−1. Our algorithms also work for arbitrary degree sequences
if the minimum degree is at least 2 · �k/2� (for k-edge-connectivity) or 2k − 1
(for k-vertex-connectivity). To complement our approximation algorithms, we prove
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that the problem with simple connectivity cannot be approximated better than the
traveling salesman problem. In particular, the problem is APX-hard.

Keywords Graph factors · Edge-connectivity · Vertex-connectivity ·
Approximation algorithms

1 Introduction

The traveling salesman problem (Min-TSP) is a basic combinatorial optimization
problem: given a complete graph G = (V , E) with edge weights that satisfy
the triangle inequality, the goal is to find a Hamiltonian cycle of minimum total
weight. Phrased differently, we are looking for a subgraph of G of minimum weight
that is 2-regular, connected, and spanning. While Min-TSP is NP-hard [11, ND22],
omitting the requirement that the subgraph must be connected makes the problem
polynomial-time solvable [21, 27]. In general, d-regular, spanning subgraphs (also
called d-factors) of minimum weight can be found in polynomial time using Tutte’s
reduction [21, 27] to the matching problem. Cheah and Corneil [2] have shown that
deciding whether a given graph G = (V , E) has a d-regular connected spanning sub-
graph is NP-complete for every d ≥ 2, where d = 2 is just the Hamiltonian cycle
problem [11, GT37]. Thus, finding a connected d-factor of minimum weight is also
NP-hard for all d.

The problem of finding connected d-factors of minimum weight is a fundamental
problem in network design, where the usual setting is that there are connectivity and
degree requirements. Then the goal is to find a cheap subgraph that meets the con-
nectivity requirements and the degree bounds. Beyond simple connectedness, higher
connectivity, such as k-vertex-connectivity or k-edge-connectivity, has been consid-
ered in order to increase the reliability of the network. Most variants of such problems
are NP-hard. Because of this, finding good approximation algorithms for such net-
work design problems has been the topic of a significant amount of research [1, 4,
6–10, 14, 16–20].

In this paper, we study the problem of finding low-cost spanning subgraphs with
given degrees that meet connectivity requirements (they should be k-edge-connected
or k-vertex-connected for a given k). Violation of the degree constraint is not allowed.

1.1 Problem Definitions and Preliminaries

1.1.1 Graphs and Connectivity

All graphs in this paper are undirected and simple. Let G = (V , E) be a graph. In
the following, n = |V | is the number of vertices.

For a subset X ⊆ V of vertices, let cutG(X) be the number of edges in G with one
endpoint in X and the other endpoint in X = V \ X. For two disjoint sets X, Y ⊆ V

of vertices, let cutG(X, Y ) be the number of edges in G with one endpoint in X and
the other endpoint in Y .
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Two vertices u, v ∈ V are locally k-edge-connected in G if there are at least
k edge-disjoint paths from u to v in G. Equivalently, u and v are locally k-edge-
connected in G if cutG(X) ≥ k for all X ⊆ V with u ∈ X and v /∈ X. Local k-edge-
connectedness is an equivalence relation as it is symmetric, reflexive, and transitive.
A graphG is k-edge-connected if all pairs of vertices are locally k-edge-connected inG.

Let X ⊆ V . We call X a k-edge-connected component of G if the subgraph
induced by X is k-edge-connected. We call X a locally k-edge-connected component
of G if all u, v ∈ X are locally k-edge-connected in G. Note that every k-edge-
connected component of G is also a locally k-edge-connected component of G, but
the reverse is not true.

A graph G is k-vertex-connected, if the graph induced by the vertices V \ K is
connected for all sets K ⊆ V with |K| ≤ k − 1. Equivalently, for any two non-
adjacent vertices u, v ∈ V , there exist at least k vertex-disjoint paths connecting u

and v in G.
We note that testing if two vertices are locally k-edge-connected, if a graph is

k-edge-connected, or if a graph is k-vertex-connected can be done in polynomial
time. For an overview of connectivity and algorithms for computing connectivity and
connected components, we refer to two surveys [13, 15].

For a vertex v ∈ V , let NG(v) = N(v) = {u ∈ V | {u, v} ∈ E} be the neighbors
of v inG. The graphG is d-regular if |N(v)| = d for all v ∈ V . A d-regular spanning
subgraph of a graph is called a d-factor. Instead of using the same value d for all
vertices, we also consider spanning subgraphs where the degree of each vertex v is
required to be dv (Section 4).

By abusing notation, we identify a set X ⊆ V of vertices with the subgraph
induced by X. Similarly, if the set of vertices is clear from the context, we identify a
set F of edges with the graph (V , F ).

1.1.2 Problem Definitions

Let G = (V , E) be an undirected, complete graph with non-negative edge weights
w. The edge weights are assumed to satisfy the triangle inequality, i.e., w({u, v}) ≤
w({u, x}) + w({x, v}) for all distinct u, v, x ∈ V . For some set F ⊆ E of edges, we
denote byw(F) = ∑

e∈F w(e) the sum of its edge weights. The weight of a subgraph
is the weight of its edge set.

The problems considered in this paper are the following: as input, we are given
G and w as above. Then Min-dReg-kEdge denotes the problem of finding a k-edge-
connected d-factor of G of minimum weight. Similarly, Min-dReg-kVertex denotes
the problem of finding a k-vertex-connected d-factor of G of minimum weight.

Some of these problems coincide:

• The two problems Min-dReg-1Edge and Min-dReg-1Vertex are identical for all
d since 1-edge-connectedness and 1-vertex-connectedness are simply connect-
edness.

• For k ∈ {1, 2}, the problems Min-2Reg-kEdge and Min-2Reg-kVertex are
identical to the traveling salesman problem (Min-TSP).
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• For even d and k, the problemsMin-dReg-(k − 1)Edge andMin-dReg-kEdge are
identical. For even d, every d-factor can be decomposed into d/2 2-factors. Thus,
the size of every cut is even. Therefore, every d-regular (k − 1)-edge-connected
graph is automatically k-edge connected for even k.

• For k ∈ {1, 2, 3}, the two problems Min-3Reg-kEdge and Min-3Reg-kVertex are
identical since edge- and vertex-connectivity are equal in cubic graphs [28, The-
orem 4.1.11].

We also consider the generalizations of Min-dReg-kEdge and Min-dReg-kVertex
to arbitrary degree sequences: for Min-dGen-kEdge, we are given as additional input
a degree requirement dv ∈ N for every vertex v. The parameter d is a lower bound for
the degree requirements, i.e., we have dv ≥ d for all vertices v. The goal is to compute
a k-edge-connected spanning subgraph in which every vertex v is adjacent to exactly
dv vertices. Min-dGen-kVertex is analogously defined for k-vertex-connectivity. For
the sake of readability, we restrict the presentation of our algorithms in Sections 2
and 3 toMin-dReg-kVertex andMin-dReg-kEdge, and we state the generalized results
for Min-dGen-kVertex and Min-dGen-kEdge only in Section 4.

We use the following notation: OptEk denotes a k-edge-connected subgraph
of minimum weight. OptVk denotes a k-vertex-connected subgraph of minimum
weight. For both, no degree requirements have to be satisfied. OptFd denotes a (not
necessarily connected) d-factor of minimum weight. optEFk

d and OptVFk
d denote

minimum-weight k-edge-connected and k-vertex-connected d-factors, respectively.
We have w(OptFd) ≤ w(optEFk

d) ≤ w(OptVFk
d) since every k-vertex-connected

graph is also k-edge-connected. Both w(optEFk
d) and w(OptVFk

d) are monotonically
increasing in k. Furthermore, w(OptEk) ≤ w(optEFk

d) for every d and w(OptVk) ≤
w(OptVFk

d) for every d.
We denote by MST a minimum-weight spanning tree of G.

1.2 Previous and Related Results

Without the triangle inequality, the problem of computing minimum weight k-vertex-
connected spanning subgraphs can be approximated within a factor of O(log k) [3],
and the problem of computing minimum weight k-edge-connected spanning sub-
graphs can be approximated with in a factor of 2 [16]. However, no approximation at
all seems to be possible without the triangle inequality if we ask for specific degrees.
This follows from the inapproximability of non-metric TSP [29, Section 2.4].

With the triangle inequality, we obtain the same factor of 2 for k-edge-connected
subgraphs of minimum weight without degree requirements [16]. For k-vertex-
connected spanning subgraphs of minimum weight without degree constraints,
Kortsarz and Nutov [17, Theorem 4.2] gave a

(
2 + k−1

n

)
-approximation algorithm.

Min-kReg-kVertex and Min-kReg-kEdge admit constant factor approximations for
all k ≥ 1 [1]. We refer to Tables 1 and 2 for an overview of results on k-vertex-
connected and k-edge-connected d-factors.

Fukunaga and Nagamochi [8] considered the problem of finding a minimum-
weight k-edge-connected spanning subgraph with given degree requirements. Differ-
ent from the problem that we consider, they allow multiple edges between vertices.
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Table 1 Overview of approximation ratios for Min-dReg-kVertex

k d ratio reference

∈ {1, 2} = 2 1.5 same as problem as Min-TSP [29, Section 2.4]

∈ {1, 2, 3} = 3 same as Min-dReg-kEdge

= 1 arbitrary same as Min-dReg-1Edge

≥ 2 = k 2 + k−1
n

+ 1
k

Chan et al. [1]

≥ 2 = 2k − 1 5 + 2k−2
n

+ 2
k

Theorem 2.2

≥ 2 ≥ 2k 5 + 2k−2
n

Corollary 2.3

This considerably simplifies the problem as one does not have to take care to avoid
multiple edges when constructing the approximate solution. For this relaxed variant
of the problem, they obtain approximation ratios of 2.5 for even k and 2.5 + 1.5

k
for

odd k if the minimum degree requirement is at least 2. We remark that, although an
optimal solution with multiple edges cannot be heavier than an optimal solution with-
out multiple edges, an approximation algorithm for the variant with multiple edges
does not imply an approximation algorithm for the variant without multiple edges
and vice versa.

In many cases of algorithms for network design with degree constraints, only
bounds on the degrees are given or some violation of the degree requirements is
allowed to simplify the problem. Fekete et al. [7] devised an approximation algo-
rithm for the bounded-degree spanning tree problem. Given lower and upper bounds
for the degree of every vertex, spanning trees can be computed that violate every
degree constraint by at most 1 and whose weight is no more than the weight of an
optimal solution [26]. Often, network design problems are considered as bicriteria
problems, where the goal is to simultaneously minimize the total costs and the vio-
lation of the degree requirements [9, 10, 18–20]. In contrast, our goal is to meet the
degree requirements exactly.

Recently [23], Min-dReg-1Edge has been considered for the case that d grows
with the number n of vertices. It turns out that the problem becomes simpler for large
enough d, admitting a PTAS for d ≥ n/c for any constant c.

Table 2 Overview of approximation ratios for Min-dReg-kEdge

k d ratio reference

= 2 = 2 1.5 same problem as Min-TSP [29, Section 2.4]

≥ 3 = k 2 + 1
k

Chan et al. [1]

= 1 odd 3 Theorem 3.23

≥ 2 ≥ k, even 2.5 Theorem 3.23

≥ 2 ≥ k + 1, odd 4 − 3
k

Theorem 3.23

Cases of odd k and even d are omitted as discussed in Section 1.1.2
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1.3 Our Contribution

We devise polynomial-time approximation algorithms for Min-dReg-kVertex
(Section 2) and for Min-dReg-kEdge (Section 3). Our algorithms can be generalized
to arbitrary degree sequences, as long as the minimum degree requirement is at least
2k − 1 for vertex connectivity or at least 2�k/2� for edge connectivity (Section 4).

Roughly, we obtain an approximation ratio of about 5 for Min-dReg-kVertex for
d ≥ 2k−1, an approximation ratio of roughly 4 forMin-dReg-kEdge for odd d ≥ k+
1 and a ratio of 2.5 for Min-dReg-kEdge for even d ≥ k. The precise approximation
ratios are summarized in Tables 1 and 2.

As far as we are aware, there do not exist any approximation results for the
problem of finding subgraphs with exact degree requirements. The only exception
that we are aware of is the work by Fukunaga and Nagamochi [8]. However, they
allow multiple edges in their solutions, which seems to make the problem simpler to
approximate.

The high-level ideas of our algorithms are as follows. For vertex-connectivity, the
idea is to compute a k-vertex-connected k-regular graph and a (possibly not con-
nected) d-factor. We iteratively add edges from the k-vertex-connected graph to the
d-factor while maintaining the degrees until we obtain a k-vertex-connected d-factor.
This works for d ≥ 2k − 1 (Lemma 2.1).

For edge-connectivity, our initial idea was to iteratively increase the connectivity
from k −1 to k by considering the k-edge-connected components of the current solu-
tion and adding edges carefully. However, this does not work as k-edge-connected
components are not guaranteed to exist in (k−1)-edge-connected graphs. Instead, we
introduce k-special components (Definition 3.2). By connecting the k-special com-
ponents carefully, we can increase the edge-connectivity of the graph (Lemma 3.11).
Every increase of the edge-connectivity costs at most a fraction O(1/k) of the weight
of the optimal solution (Lemma 3.18), yielding constant factor approximations for
all k.

Finally, we prove that Min-dReg-1Edge is APX-hard. We extend this result and
the NP-hardness of finding connected d-factors to the case where d grows with the
number n of vertices.

2 Vertex Connectivity

In this section, we consider Min-dReg-kVertex for d ≥ 2k − 1. The basis of the
algorithm (Algorithm 1) is the following: Assume that we have a k-vertex connected
k-factor H and a d-factor F that lacks k-vertex-connectedness. Then we iteratively
add edges from H to F to make F k-vertex-connected as well. More precisely, we
try to add an edge e ∈ H \ F to increase the connectivity of F . To maintain that F is
d-regular, we have to add another edge and remove two edges of F . If, in the course
of this process, we never have to remove an edge of H from F , then the algorithm
terminates with a k-vertex-connected d-regular graph.

In Algorithm 1, the initial d-factor OptFd can be computed in polynomial time
(line 1) by Tutte’s reduction to the matching problem [21, 27]. Kortsarz and Nutov
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showed that we can compute a k-vertex-connected spanning subgraph K whose
total weight is at most a factor of 2 + k−1

n
larger than the weight of a k-vertex-

connected graph of minimum weight (line 2). Chan et al. [1] devised an algorithm
that turns k-vertex-connected graphs K into k-regular k-vertex-connected graphs H

at the expense of an additive w(OptVk)/k.

With this initialization, we iteratively add edges from H to F while maintaining
d-regularity of F . This works as long as d is sufficiently large according to the fol-
lowing lemma. We parametrize the maximum degree of H by � in order to be able to
get a slight improvement for larger d (Corollary 2.3).

Lemma 2.1 Let k, � ≥ 2 and d ≥ k + � − 1. Let G = (V , E) be an undirected
complete graph. Let F be a d-factor of G that is not k-vertex connected, and let H

be a k-vertex connected subgraph of G that has a maximum degree of at most �.
Then there exists an edge e = {u1, u2} ∈ H \ F and vertices v1, v2 ∈ V with

v1 �= v2 with the following properties:

1. The vertices u1 and u2 are not connected via k vertex-disjoint paths in F .
2. {u1, v1}, {u2, v2} ∈ F \ H .
3. {v1, v2} /∈ F .

Proof Since F is not k-vertex-connected, there exists a subset X ⊆ V of vertices
with |X| ≤ k −1 such that the subgraph G̃F of F induced by V \X is not connected.
SinceH is k-vertex-connected, the subgraph G̃H ofH induced by V \X is connected.
This means that there exists an edge e = {u1, u2} in G̃H that connects two different
components of G̃F . In particular, e ∈ H \ F and u1 and u2 are not connected via k

vertex-disjoint paths in F .
Let e11, . . . , e

1
d be the edges of F incident to u1. Since H has a maximum degree

of at most � and the edge e is incident to u1, at most � − 1 of these d edges are
contained in H . Because of this and since d ≥ k + �− 1, at least k of these edges are
not contained in H . Let e11, . . . , e

1
k be k such edges.
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In the same way, let e21, . . . , e
2
k be k edges of F \ H incident to u2.

Let e
j
i = {uj , zj,i}. We call z1,i and z2,i′ connected if z1,i = z2,i′ or if they are

connected with an edge in F . If all endpoints z1,1, . . . , z1,k were connected to all
endpoints z2,1, . . . , z2,k , then this would give us k vertex-disjoint paths from u1 to
u2, contradicting the assumption of the lemma. Thus, there exist e1i = {u1, z1,i} and
e2
i′ = {u2, z2,i′ } such that z1,i and z2,i′ are not connected. We set v1 = z1,i and

v2 = z2,i′ . These vertices have the desired properties.

With this lemma, we can prove the main result of this section.

Theorem 2.2 For k, d ∈ N with k ≥ 2 and d ≥ 2k −1, Algorithm 1 is a polynomial-
time approximation algorithm for Min-dReg-kVertex with an approximation ratio of
5 + 2k−2

n
+ 2

k
.

Proof Because of Lemma 2.1 with � = k, we can always find vertices v1 and v2 as
required in line 6, and such vertices can be found in polynomial time. Since no edge
of H is ever removed from F and every iteration adds one or two edges of H to F ,
the while loop runs through at most |H | iterations. Thus, the overall running-time is
bounded by a polynomial.

Let us analyze the approximation ratio. If we add an edge e ∈ H to F , then we
add in fact e = {u1, u2} and e′ = {v1, v2}. On the other hand, we remove {u1, v1} and
{u2, v2} from F . By the triangle inequality,w(e′) ≤ w(e)+w({u1, v1})+w({u2, v2}).
Thus, if we add e and e′, then the weight of F increases by at most 2w(e). Therefore,
the total weight of R is bounded by w(R) ≤ w(OptFd) + 2w(H).

We have w(OptFd) ≤ w(OptVFk
d). Furthermore, we have w(H) ≤ w(K) +

w(OptVk)/k [1]. Moreover, w(K) ≤ (2 + k−1
n

) · w(OptVk) [17] and w(OptVk) ≤
w(OptVFk

d). Thus,

w(R) ≤ w(OptFd) + 2w(H) ≤ w(OptFd) + 2w(K) + 2

k
· w(OptVk)

≤ w(OptVFk
d) +

(

4 + 2k − 2

n

)

· w(OptVk) + 2

k
· w(OptVk)

≤
(

5 + 2k − 2

n
+ 2

k

)

· OptVFk
d .

Algorithm 1 also works for k = 1, but for this case, there already exist better
approximation algorithms (see Table 1).

With the slightly stronger assumption d ≥ 2k, we can get a slightly better
approximation ratio.

Corollary 2.3 For k, d ∈ N with k ≥ 2 and d ≥ 2k, there exists a polynomial-
time approximation algorithm for Min-dReg-kVertex with an approximation ratio of
5 + 2k−2

n
.
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Proof In line 3 of Algorithm 1, we compute a k-vertex-connected graph H of max-
imum degree k + 1 instead of a k-regular k-vertex-connected graph. According to
Chan et al. [1], this can be done in polynomial time with w(H) ≤ w(K). Now we
use Lemma 2.1 with � = k + 1.

3 Edge-Connectivity

In this section, we present an approximation algorithm for Min-dReg-kEdge for all
combinations of d and k, provided that d ≥ 2�k/2�. This means that the algorithm
works for all d ≥ k with the only exception being the case of odd d = k. It includes
the case of simple connectivity, i.e., the case of k = 1.

The main idea of our algorithm is as follows: We start by computing a d-factor
(without requiring any connectedness). Then we iteratively increase the connectivity
as follows: First, we identify edges that we can safely remove without decreas-
ing the connectivity. Second, we find edges that we can add in order to increase
the connectivity while repairing the d-regularity that we have destroyed in the first
step.

One might be tempted to use the k-edge-connected components of the d-factor in
order to increase the edge-connectivity from k−1 to k. This works for k = 1 and k =
2. However, for larger k, the catch is that there need not be enough k-edge-connected
components, and it is in fact possible to find (k−1)-edge-connected graphs that are d-
regular with d ≥ k that do not contain any non-trivial k-edge-connected component.
To circumvent this problem, we introduce the notion of k-special components, which
have the desired properties.

3.1 Graph-Theoretic Preparation

Different from the rest of the paper, the graphG = (V , E) is not necessarily complete
in this section.

Lemma 3.1 Let k ∈ N, and let G = (V , E) be a graph of minimum degree at least
k. Let X ⊆ V be a non-empty subset of vertices. Then at least one of the following
two properties hold:

• |X| ≥ k + 1.
• cutG(X) ≥ k.

Proof Let � = |X|. Every vertex in X can be adjacent to at most |X|−1 = �−1 other
vertices of X. Since G has a minimum degree of at least k, every vertex of X must
have at least k − �+ 1 neighbors outside of X. This shows cutG(X) ≥ (k − �+ 1) · �.
For � = 1 and � = k, this last expression evaluates to k. Since it is a concave function
of �, we have cutG(X) ≥ k for 1 ≤ � ≤ k.

The following definition of k-special components is crucial for the whole
Section 3. As far as we are aware, this definition has not appeared yet in the literature.
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Definition 3.2 Let k ∈ N, and let G = (V , E) be a graph. We call L ⊆ V a k-special
component in G if cutG(L) ≤ k − 1 and L is locally k-edge connected in G.

For k = 1, the k-special components are the connected components of G. For
k = 2, the k-special components are the leaves of the following graph: we have a
node for every 2-edge-connected component. Two nodes of this graph are connected
if the corresponding 2-edge-connected components are connected via a single edge.
This graph is a tree. The 2-special components of G correspond to the leaves of this
tree.

Let us collect some facts about k-special components.

Lemma 3.3 Let G have a minimum degree of at least k, and let L be a k-special
component in G. Then |L| ≥ k + 1.

Proof This follows immediately from Lemma 3.1 and Definition 3.2.

Lemma 3.4 Let G be a graph. If L is a k-special component, then L is a maximal
locally k-edge-connected component. If L and L′ are k-special, then either L = L′
or L ∩ L′ = ∅.

Proof If L were not maximal, then we would have cutG(L) ≥ k. If L and L′ intersect
but are not identical, then cutG(L) ≥ k or cutG(L′) ≥ k. Hence, if L and L′ intersect,
then they must be identical.

The following lemma is crucial as it proves the existence of k-special components.

Lemma 3.5 Let k ≥ 1. Let G = (V , E) be a (k − 1)-edge-connected graph. Then
every non-empty vertex set X � V either contains a k-special component or satisfies
cutG(X) ≥ k.

Proof Assume to the contrary that there exists a set X with cutG(X) ≤ k − 1 that
does not contain a k-special component. We choose X minimal in the sense such
that no non-empty proper subset Y � X with cutG(Y ) ≤ k − 1 does not contain a
k-special component.

Now consider any Y � X. If Y contains a k-special component L ⊆ Y , then
also X contains a k-special component. We can conclude that cutG(Y ) ≥ k for all
non-empty Y � X.

If X itself is locally k-edge-connected, then X is a k-special component because
cutG(X) ≤ k −1 by assumption. Thus, we can conclude that X is not locally k-edge-
connected. Hence, there exist vertices u, v ∈ X and a set U ⊆ V with u ∈ U and
v ∈ V \ U = U such that cutG(U) ≤ k − 1.

We know that X ∩ U, X ∩ U �= ∅. Furthermore, not both X ∩ U and X ∩ U can
be empty, as X is a proper subset of V . We denote the number of edges between the
four parts of the graph by k1, . . . , k6 according to Fig. 1.

We consider three cases. The first case is that X ∩ U = ∅. We only have to deal
with k2, k3, and k5. Among others, we have the constraint k3 + k5 ≥ k since X ∩ U
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Fig. 1 The situation in the proof
of Lemma 3.5. The set X � V

satisfies cutG(X) ≤ k − 1. Since
X is not locally
k-edge-connected, we have
cutG(U) ≤ k − 1. The numbers
k1, . . . , k6 denote the number of
edges between the four parts

is a proper subset of X, which implies cutG(X ∩U) ≥ k. And we have the constraint
k3+k5 ≤ k−1 since cutG(U) ≤ k−1 and X∩U = ∅. These two cannot be satisfied
simultaneously.

The second case is that X ∩ U = ∅. In the same way as in Case 2, we have
k3 + k6 ≥ k and k3 + k6 ≤ k − 1, which cannot be satisfied simultaneously.

The last and general case is that both X ∩ U �= ∅ and X ∩ U �= ∅. Since X ∩ U

and X ∩ U are proper subsets of X, we have cutG(X ∩ U), cutG(X ∩ U) ≥ k. This
translates to k1 + k3 + k5 ≥ k and k2 + k3 + k6 ≥ k.

We have cutG(X) ≤ k −1, which implies k1 + k2 + k5 + k6 ≤ k −1. And we have
cutG(U) ≤ k − 1, we implies k3 + k4 + k5 + k6 ≤ k − 1.

Finally, the graph G is (k−1)-edge-connected. Thus, there are at least k−1 edge-
disjoint paths from X∩U to X∩U . This translates to k4+k5+k6+min(k1, k2, k3) ≥
k − 1. The latter corresponds to three inequalities: ki + k4 + k5 + k6 ≥ k − 1 for
i ∈ {1, 2, 3}.

We have to show that there are no choices for k1, . . . , k6 that satisfy all inequalities
simultaneously. We have

k3 + k4 + k5 + k6 ≥ k − 1 and k3 + k4 + k5 + k6 ≤ k − 1.

Thus, k4 = k − 1 − k3 − k5 − k6. We plug this into ki + k4 + k5 + k6 ≥ k − 1 for
i = 1, 2 and obtain k3 ≤ k1 and k3 ≤ k2.

Adding k1 + k3 + k5 ≥ k and k2 + k3 + k6 ≥ k yields

k1 + k2 + 2k3 + k5 + k6 ≥ 2k.

We have k1 + k2 + k5 + k6 ≤ k − 1. Multiplying this with 2 and combining it with
k3 ≤ k1 and k3 ≤ k2 yields

k1 + k2 + 2k3 + 2k5 + 2k6 ≤ 2k − 2.

By the non-negativity of k5 and k6, we thus must have

k1 + k2 + 2k3 + k5 + k6 ≤ 2k − 2,

which cannot be satisfied simultaneously with the inequality k1+k2+2k3+k5+k6 ≥
2k derived above.

The purpose of the next few lemmas is to show that we can always remove an
edge from a k-special component without decreasing the connectedness of the whole
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graph. In the following, let m = �k/2� + 1. It turns out that the graph induced by a
k-special component contains a locally m-edge-connected component (Lemma 3.7).
The next lemma is useful for this.

Lemma 3.6 Let k ≥ 1, let G = (V , E) be a (k − 1)-edge-connected graph, and let
L ⊆ V be a k-special component of G. Then L is (�k/2
 + 1)-edge-connected.

Proof Consider u, v ∈ L. As u is locally k-edge-connected to v, there are at least
k edge-disjoint paths from u to v. Since L is k-special, we have cutG(L) ≤ k − 1.
Thus, at most � k−1

2 
 of these edge-disjoint paths can leave L. Hence, there are at least
k − � k−1

2 
 = �k/2
 + 1 paths running solely through vertices in L.

Lemma 3.7 Let k ≥ 1, and let m = �k/2� + 1. Let G = (V , E) be a (k − 1)-
edge-connected graph of minimum degree at least 2�k/2�, and let L be a k-special
component of G. Then there exists an X ⊆ L such that X is a locally m-edge-
connected component in L and |X| ≥ k + 1.

Proof For even k, Lemma 3.6 implies that we can choose X = L. We have |X| ≥
k + 1 by Lemma 3.3.

For k = 1, we have m = 2, and G has a minimum degree of 2. The k-special
components are just the connected components of G. Every connected component
in a graph of minimum degree 2 contains a 2-edge-connected component, which
satisfies |X| ≥ 2.

Now let k ≥ 3 be odd. The minimum degree in this case is 2�k/2� = k + 1.
By Lemma 3.6, we know that L is (m − 1)-edge-connected. If L is also m-edge-
connected, then we can choose X = L. We have |X| ≥ k + 1 by Lemma 3.3.

Otherwise, there exists a set Y ⊆ L with cutL(Y ) ≤ m − 1. Lemma 3.5 implies
the existence of an m-special component X ⊆ Y of L. This implies that X is locally
m-edge-connected in L. To finish the proof, we have to show that � = |X| ≥ k + 1.
We have cutL(X) ≤ m − 1 since X is m-special within L.

There are at most
(
�
2

)
edges within X. Since cutG(L) ≤ k−1, the number of edges

that connect X to L \ X is at least

g(�) = (k + 1) · � − 2 ·
(

�

2

)

− (k − 1) = −�2 + (k + 2) · � − k + 1.

This number can be at most m − 1 ≤ k since X is m-special within L. For � = 2, we
obtain−4+2k+4−k+1 = k+1. For � = k, we obtain−k2+k2+2k−k+1 = k+1.
Since g is a concave function of �, we have g(�) ≥ k + 1 for 2 ≤ � ≤ k. We have to
rule out � = 1 to show that � = |X| ≥ k + 1, which finishes the proof.

Assume that |X| = 1, and let X = {x}. The situation is depicted in Fig. 2, where
a denotes the number of edges between X and V \ L, b denotes the number of edges
between L \ X and V \ L , and c denotes the number of edges between X and L \ X.

We have cutG(L) = a + b ≤ k − 1 since L is a k-special component in G. We
have cutL(X) = c ≤ m − 1 since X is an m-special component in L. We have
cutG(X) = a + c ≥ k + 1 because x has a degree of at least k + 1. The first two
inequalities imply a + b + c ≤ k + m − 2. From this and the third one, we obtain
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Fig. 2 The situation in the
proof of Lemma 3.7. We have
X = {x}. The numbers (a), (b),
and (c) denote the number of
edges between X and V \ L,
L\X and V \L, and L\X and X

b ≤ m − 3. Choose any v ∈ L \ X. Since L is a k-special component in G, we have
at least k edge-disjoint paths from x to v in G. At most c ≤ m − 1 of these paths can
run solely through L. Thus, b ≥ k − c ≥ k − m + 1. Together with the previously
derived b ≤ m − 3, we obtain k − m + 1 ≤ m − 3. This is equivalent to k + 4 ≤ 2m,
which does not hold since m = �k/2� + 1 = k+3

2 . We can conclude that |X| = 1 is
impossible.

Given Lemma 3.7, the next lemma follows. The edges {ui, vi} mentioned in this
lemma are the edges that we can safely remove. The resulting graph will remain
(k − 1)-edge-connected (Lemma 3.10). The vertices ui and vi in the next lemma will
be chosen from Xi ⊆ Li , where Xi is a locally m-edge-connected component in Li

as in Lemma 3.7.

Lemma 3.8 Let k ≥ 1, and let m = �k/2� + 1. Let G = (V , E) be a (k − 1)-edge-
connected graph of minimum degree at least 2�k/2�. Let L1, . . . , Ls be the k-special
components of G. Then there exist vertices ui, vi ∈ Li for all i ∈ {1, . . . , s} such that
the following properties are met:

• {ui, vi} ∈ E for all i.
• {ui, vj } /∈ E for all i �= j .
• There exist at least m edge-disjoint paths from ui to vi in the graph induced by

Li for every i.

Proof Consider any i ∈ {1, . . . , s}. According to Lemma 3.7, there exists a locally
m-edge-connected setXi ⊆ Li with |Xi | ≥ k+1. Since |Xi | ≥ k+1 and cutG(Li) ≤
k − 1 (because Li is k-special), there must be a vertex ui ∈ Xi with N(ui) ⊆ Li .

We choose vi to be another vertex in the locally m-edge-connected component
Xi contained in Li such that {ui, vi} ∈ E. If such a vi exists, then there are m

edge-disjoint paths from ui to vi in Li since ui, vi ∈ Xi and Xi is locally m-edge-
connected in Li .

Such vertices vi exist because of the construction of the sets Xi in Lemma 3.7:
Either Xi = Li . Then this follows since N(ui) ⊆ Li = Xi . Or Xi � Li . In this case,
we have cutLi

(Xi) ≤ m − 1 = �k/2� since Xi is an m-special component in Li .
Since ui has at least 2�k/2� neighbors, all of which are in Li , at least one vi ∈ Xi

that is adjacent to ui must exist.

Lemma 3.9 Let G = (V , E) be a (k − 1)-edge-connected graph of minimum degree
at least 2�k/2� with k-special components L1, . . . , Ls . Let u1, . . . , us and v1, . . . , vs

be chosen as in Lemma 3.8. Let Q = {{ui, vi} | 1 ≤ i ≤ s
}
.
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For all i and j with i �= j , there does not exist a set C ⊆ E with |C| ≤ k − 1 such
that ui is disconnected from vi and uj is disconnected from vj in G − Q − C.

Proof Within Li , there are m edge-disjoint paths from ui to vi by Lemma 3.8. After
removing Q from G, there remain at least m − 1 = �k/2� edge-disjoint paths within
Li .

The same holds for Lj with uj and vj . Thus, any set C of edges that simulta-
neously disconnects ui from vi and uj from vj must satisfy |C| ≥ 2 · �k/2� ≥
k.

Lemma 3.10 Let G = (V , E) be a (k − 1)-edge-connected graph of minimum
degree at least 2�k/2� with k-special components L1, . . . , Ls , and let u1, . . . , us and
v1, . . . , vs be chosen as in Lemma 3.8. Let Q = {{ui, vi} | 1 ≤ i ≤ s

}
. Then G − Q

is (k − 1)-edge-connected.

Proof We have to show that cutG−Q(X) ≥ k − 1 for all non-empty X � V . To
do this, we distinguish two cases: In the first case, for every i, either ui, vi ∈ X or
ui, vi /∈ X. In this case, cutG−Q(X) = cutG(X) ≥ k − 1 since no edges between X

and V \ X are removed.
In the second case, there exists an i such that |{ui, vi} ∩ X| = 1. If there are two

or more i with this property, then cutG−Q(X) ≥ k − 1 follows from Lemma 3.9.
Now assume that there is only a single i with |{ui, vi} ∩ X| = 1. Without loss of

generality, we assume that ui ∈ X and vi /∈ X. Since ui and vi are locally k-edge-
connected in G, we have cutG(X) ≥ k. Only the edge {ui, vi} is removed from this
cut, thus cutG−Q(X) ≥ k − 1.

By removing the edges {ui, vi} ∈ Q and adding the edges {ui, vi+1} ∈ S, we con-
struct a k-edge-connected graph from the (k −1)-edge-connected graph G according
to the following lemma.

Lemma 3.11 Let G = (V , E) be a (k − 1)-edge-connected graph of minimum
degree at least 2�k/2� with k-special components L1, . . . , Ls , and let u1, . . . , us and
v1, . . . , vs be chosen as in Lemma 3.8. Let Q = {{ui, vi} | 1 ≤ i ≤ s

}
, and let

S = {{ui, vi+1} | 1 ≤ i ≤ s
}
, where arithmetic is modulo s.

Then the graph G̃ = G − Q + S is k-edge-connected.

Proof We prove the lemma by a series of claims. In the following, arithmetic is
modulo s.

Claim 3.12 For every i, the vertices ui and vi+1 are locally k-edge-connected in G̃.

Proof The graphG−Q is (k−1)-edge-connected and S contains the edge {ui, vi+1}.

Claim 3.13 For all i and j , the vertices ui and uj are locally k-edge-connected in G̃.

Proof Without loss of generality, we assume i < j .



Theory Comput Syst

Assume to the contrary that there is a set C of at most k − 1 edges such that C

disconnects ui from uj . Since G − Q is (k − 1)-edge-connected by Lemma 3.10, we
must have C ∩ S = ∅.

Lemma 3.9 says that if C disconnects ua from va for some a, then it cannot dis-
connect ub from vb for a �= b. Thus, C can disconnect at most one pair ua , va .
Consider the paths from ui to uj via vi+1, ui+1, vi+2, ui+2, . . . , vj−1, uj−1, vj or
via vi, ui−1, vi−1, ui−2, . . . , vj+2, uj+1, vj+1 after adding S. The set S contains all
the connections between u and v vertices in these paths. Since C can disconnect at
most one pair ua, vb by Lemma 3.9, one of these paths must still exist. Thus, ui and
vi are still connected in G̃ after removing at most k − 1 edges.

Claim 3.14 For all i and j , vertices ui , vi , uj , and vj are pairwise locally k-edge-
connected in G̃.

Proof This follows by transitivity of local k-edge-connectedness and Claims 3.12
and 3.13 above.

Claim 3.15 For all i, the vertices in Li are locally k-edge-connected in G̃.

Proof We show that every x ∈ Li is locally k-edge-connected to ui in G̃. Then the
claim follows by transitivity of local k-edge-connectedness.

Let X � V with x ∈ X and ui /∈ X. If vj ∈ X (including the case j = i)
or uj ∈ X for some j �= i, then cut

G̃
(X) ≥ k by Claim 3.14. Thus, the case

u1, . . . , us, v1, . . . , vs /∈ X remains to be considered. Since Li is locally k-edge-
connected in G, we have cutG(X) ≥ k. This cut does not change by removing Q.
Hence, cut

G̃
(X) ≥ k.

Transitivity of local k-edge-connectedness, Claim 3.14, and Claim 3.15 imply that
L = ⋃s

i=1 Li is locally k-edge-connected in G̃. The vertices that are not part of any
k-special component in G remain to be considered.

Consider an arbitrary non-empty X � V . If we can show that cutX(G̃) ≥ k, then
we have completed the proof of this lemma. If X ∩ L �= ∅ and (V \ X) ∩ L �= ∅,
then cut

G̃
(X) ≥ k because L is locally k-edge-connected in G̃. Thus, L ⊆ X or

L ⊆ V \ X. By symmetry, we restrict ourselves to the second case. Then we have
cutG(X) = cut

G̃
(X) because no edge connecting X to V \ X is in Q or S.

If cutG(X) ≤ k − 1, then X contains a k-special component by Lemma 3.5,
contradicting our assumption. Thus, we have cutG(X) ≥ k.

To conclude this section, we remark that the k-special components of a graph can
be found in polynomial-time: local k-edge-connectedness can be tested in polynomial
time. Thus, we can find locally k-edge-connected components in polynomial time.
Since k-special components are maximal locally k-edge-connected components, we
just have to compute a partition of the graph into locally k-edge-connected compo-
nents and check whether less than k edges leave such a component. Therefore, the
sets Li and Xi ⊆ Li as well as the vertices ui and vi with the properties as in
Lemmas 3.7 and 3.8 can be computed in polynomial time.
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Finally, we need the following lemma for improving the approximation ratios in
the next section. It basically implies that we can jump from disconnected graphs
directly to 2-edge-connected graphs in one iteration.

Lemma 3.16 Let G = (V , E) be any undirected graph (not necessarily connected)
of minimum degree 2. Let L1, . . . , Ls be the 2-special components of G. Then we
have the following properties:

1. There exists a set of edges Q = {{ui, vi} | 1 ≤ i ≤ s
}
such that {ui, vi} ∈ E,

ui, vi ∈ Li , and neither ui nor vi are connected to any vertex outside Li .
2. The graph G′ = G − Q contains exactly the same connected components as G.
3. Let S = {{ui, vi+1} | 1 ≤ i ≤ s

}
, where arithmetic is modulo s. Then the graph

G̃ = G − Q + S is 2-edge-connected.

Proof Every 2-special component is 2-edge-connected. Consider any 2-special com-
ponent Li of G. We have cutG(Li) ≤ 1 by definition. If cutG(Li) = 0, then Li

contains at least three vertices since G has minimum degree 2. Hence, the existence
of an edge {ui, vi} ∈ E with ui, vi ∈ Li follows. If cutG(Li) = 1, then there is one
vertex xi that connects Li to the rest of the graph. This vertex must be incident to at
least two other vertices of Li as Li is 2-edge-connected. Now a similar argument as
for the case cutG(Li) = 0 applies. This proves Item (1).

Since every 2-special component is 2-edge-connected, removal of Q does not
cause any 2-special component to split. Thus, we have Item (2).

Let us now prove Item (3). The graph G̃ is connected: any two connected
components of G, which are still connected in G′, contain 2-special compo-
nents Li and Lj , respectively. These are connected via a path that passes through
ui, vi+1, ui+1, . . . , uj−1, vj . We have to show that G̃ remains connected after the
removal of any edge.

First, if we remove an edge {ui, vi+1} ∈ S, then we still have a path from ui to vi+1
via vi, ui−1, vi−1, . . . , vi+2, ui+1. Second, if we remove a bridge edge e = {x, y}
of G (a bridge edge of a graph is an edge whose removal increases the number of
connected components), then there still must exist a path from x to some ui that does
not visit y. Similarly, there must exist a path from y to some uj that does not visit
x. Now ui and uj are connected as in the first case. Third, if we remove any other
edge e = {x, y} of G̃, then x and y belong to the same 2-edge-connected component
C of G. If C = Li is 2-special, then there is a path from x to y in G − e. If this
path uses {ui, vi}, we can reroute it via vi+1, ui+1, . . . , vi−1, ui−1 to obtain a path in
G̃. If this path does not use {ui, vi}, then it still exists in G̃. If C is not equal to a 2-
special component, then C is a 2-edge-connected component of G̃ and, thus, remains
connected after removal of e.

3.2 Algorithm and Analysis

Our approximation algorithm for Min-dReg-kEdge (Algorithm 2) starts with any
d-factor F0 without requiring connectivity. Then it iteratively uses a subroutine
(Algorithm 3) that increases the connectivity.
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We analyze correctness and approximation ratio using a series of lemmas.

Lemma 3.17 Let k ≥ 1 be arbitrary, and let p ∈ {0, 2, 3, 4, . . . , k − 1, k}. Let Fp

be computed by Algorithm 2. Then Fp is d-regular and p-edge-connected.

Proof By construction of F0 and F2, . . . , Fk , all these graphs are d-regular. The
graph F2 is 2-edge-connected by Lemma 3.16 or F0 was already 2-edge-connected.
Now assume that the lemma holds for some p − 1 for p ≥ 3. We know that Fp−1 is
(p − 1)-edge-connected and d-regular by induction hypothesis.

Either Fp−1 is already p-edge-connected. In this case, Fp = Fp−1 (line 16). Or
Fp−1 is not p-edge-connected. Then we apply Algorithm 3. By Lemma 3.11, Fp is
p-edge-connected. All degrees are maintained. Thus, Fp is d-regular.
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In our approximation algorithm, we use Christofides’ algorithm [29, Section 2.4]
to compute TSP tours. In order to analyze the approximation ratio and to achieve
a constant approximation for all k, we exploit a result that Fukunaga and Nag-
amochi [8] attributed to Goemans and Bertsimas [12] and Wolsey [30]. It relates the
weight of the tour computed by Christofides’ algorithm to the objective value of the
relaxation of the integer linear program for k-edge-connected graphs of minimum
weight. Fukunaga and Nagamochi state the following result only for the case k = 2.
We obtain the result below that we need for our purposes by scaling the right-hand
side of their linear program by a factor of k/2.

Lemma 3.18 (Fukunaga, Nagamochi [8, Theorem 2]) Let T be the TSP tour
obtained from Christofides’ algorithm. Then w(T ) ≤ 3

k
· w(OptEk).

We also need the following lemma. (Otherwise, we have to replace Christofides’
algorithm by the spanning tree heuristic for the case of k = 1.)

Lemma 3.19 Let T be the TSP tour obtained from Christofides’ algorithm. Then
w(T ) ≤ 2 · w(MST).

Proof The weight w(T ) can be bounded from above by the sum of an MST plus the
weight of a minimum-weight perfect matching on the odd-degree nodes of this tree.
The weight of this minimum-weight perfect matching can be bounded from above by
the weight of the MST using the triangle inequality.

Lemma 3.20 If, in Algorithm 2, we enter line 14 and call Algorithm 3, then

w(Fp) ≤ 3

k
· w(optEFk

d) + w(Fp−1).

Proof Let Q, S, T , and T ′ be as in the corresponding call of Algorithm 3. We
have w(Fp) = w(Fp−1) − w(Q) + w(S). By construction, the triangle inequality,
Lemma 3.18, and w(OptEk) ≤ w(optEFk

d), we have

w(T ′) ≤ w(T ) ≤ 3

k
· w(optEFk

d).

Since w({ui, vi+1) ≤ w({ui, ui+1}) + w({ui+1, vi+1}), we have w(S) ≤ w(T ′) +
w(Q). The overall weight added is w(S) − w(Q), thus at most w(T ′). Hence, the
lemma holds.

Lemma 3.21 In Algorithm 2, we have w(F2) ≤ w(F0) + 3
k

· w(optEFk
d).

Proof The proof is almost identical to the proof of Lemma 3.20.

Lemma 3.22 If Algorithm 2 calls Algorithm 3 q times, then

w(Fk) ≤ 3q

k
· w(optEFk

d) + w(F2).
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Proof The lemma follows by immediately applying Lemma 3.20.

Theorem 3.23 For k ≥ 1 and d ≥ 2�k/2�, Algorithm 2 is a polynomial-time
approximation algorithm forMin-dReg-kEdge. It achieves an approximation ratio of

• 2.5 for even d,
• 4 − 3

k
for odd d and k ≥ 2, and

• 3 for odd d and k = 1.

Proof First, let d be even. We can restrict ourselves to consider even k as discussed
in Section 1.1.2. Algorithm 2 calls Algorithm 3 at most k/2 − 1 times as every
call increases the connectivity by at least two. The approximation ratio follows from
Lemmas 3.21 and 3.22 and w(F0) ≤ w(optEFk

d).
Second, let d be odd and k ≥ 2. We need at most k − 2 calls of Algorithm 3 to

obtain a k-edge-connected d-factor. Thus, we obtain w(Fk) ≤ 3k−6
k

· w(optEFk
d) +

w(F2) ≤ (
4 − 3

k

) · w(optEFk
d) by Lemmas 3.21 and 3.22.

Finally, consider odd d and k = 1. In this case, the approximation ratio follows
from Lemma 3.19. (Lemma 3.20 yields a worse bound for this case.)

Algorithm 2 works also for the case of even d = k, but there exists already an
approximation algorithm with a ratio of 2 + 1

k
for this special case [1].

Remark 3.24 We observe that even for Min-dReg-1Edge for odd d, Algorithm 2
always outputs a 2-edge-connected graph that weighs at most 3 · w(OptEF1d). This
limits the approximation ratio of the approximation algorithm as there are instances
with 3 · w(OptEF1d) = w(OptEF2d) (see Proposition 3.5 below). Directly computing
a 1-edge-connected solution might result in an improved approximation ratio, but we
do not see how to achieve this.

Proposition 3.25 For every odd d ≥ 3, there are instances with 3 · w(OptEF1
d) =

w(OptEF2
d).

Proof The set of vertices of the instance consists of a vertex v plus d sets V1, . . . , Vd

that consist of d + 2 vertices each. We set the distance of v to each of the other
vertices equal to 1. The distance between each pair of vertices from the same set Vi

is 0. Finally, the distance between all pairs of vertices from different sets Vi and Vj

is 2. The triangle inequality is satisfied.
An optimal connected d-factor connects v to one vertex of each Vi . Since each Vi

has an odd number of vertices and d is odd as well, we can complete the connected
d-factor without any further cost. Thus, the total cost is d.

An optimal 2-edge-connected d-factor has a weight of 3d: Because each Vi has
an odd number of vertices and d is odd, any 2-edge-connected d-factor must have at
least three edges leaving each set Vi . If such an edge e is incident with v, then we
charge its weight to Vi . The other possibility is that e is incident with a vertex from
some Vj , where j �= i. In this case e has a weight of 2 and we charge a weight of
1 to both Vi and Vj . The total charge of all sets Vi equals the total weight of the
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2-edge-connected d-factor. Since each Vi is charged at least 3, the total weight of any
2-edge-connected d-factor is at least 3d.

4 Generalization to Arbitrary Degree Sequences

Both algorithms of Sections 2 and 3 do not exploit d-regularity, but only that
the degree of each vertex is at least d. Thus, we immediately get approximation
algorithms for Min-dGen-kVertex and Min-dGen-kEdge, where we have a degree
requirement of at least d for each vertex.

For k-vertex-connectivity, we require that the minimum degree requirement is at
least 2k − 1. (For minimum degree at least 2k, we get a small improvement similarly
to Corollary 2.3.) For k-edge-connectedness, we require that the minimum degree
requirement is at least 2�k/2�.

Theorem 4.1 For k ≥ 2, Min-(2k − 1)Gen-kVertex can be approximated in polyno-
mial time with an approximation ratio of 5 + 2k−2

n
+ 2

k
.

Min-(2k)Gen-kVertex can be approximated in polynomial time with an approxi-
mation ratio of 5 + 2k−2

n
.

Theorem 4.2 For k ≥ 2, Min-(2� k
2�)Gen-kEdge can be approximated in polynomial

time with an approximation ratio of 4 − 3
k
.

Min-2Gen-1Edge can be approximated in polynomial time with an approximation
ratio of 3.

5 Hardness Results

5.1 TSP-Inapproximability

In this section, we prove that Min-dReg-1Edge cannot be approximated better than
Min-TSP.

Theorem 5.1 For every d ≥ 2, if Min-dReg-1Edge can be approximated in polyno-
mial time within a factor of r , then Min-TSP can be approximated in polynomial time
within a factor of r .

Proof We show that Min-dReg-1Edge can be used to approximate Min-TSP. Let the
instance of Min-TSP be given by a complete graph G = (V , E) and edge weights
w = (we)e∈E that satisfy the triangle inequality. Let n = |V |. We construct an
instance of Min-dReg-1Edge as follows: The instance consists of a complete graph
H = (V ′, E′). Here V ′ = ⋃

v∈V Vv , where Vv = {v1, v2, . . . , vd+1}, i.e., H contains
(d + 1) · n vertices. We assign edge weights w̃ as follows:

• w̃{vi ,vj } = 0 for all v ∈ V , i �= j ,
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• w̃{ui ,vj } = w{u,v} for all u �= v, i and j .

Every TSP tour T of G maps to a connected d-factor R of H of the same weight: We
give T an orientation. For an edge from u to v in T , we include {u1, v2} in R. Adding
all edges except {v1, v2} to R within each Vv yields a connected d-factor R. Clearly,
w̃(F ) = w(T ).

Now assume that we have a connected d-factor R of H . We claim that we can
construct a TSP tour T of G with w(T ) ≤ w̃(R). We construct a multiset T ′ of edges
of G as follows: For each edge {ui, vj } of R, if u �= v, we add an edge {u, v} to T ′.
Otherwise, if u = v, we ignore the edge. The sum of the degrees in R of all ver-
tices in each set Vv is equal to (d + 1)d and is therefore even. Thus, for each v, the
number of edges leaving Vv in R, which equals the number of edges incident to v in
T ′ by construction, is even as well. Since R is connected, the multigraph G′ =
(V , T ′) is connected as well. By construction, w(T ′) = w̃(R). Since G′ is connected
and all its vertices have even degree, G′ is Eulerian. Therefore, we can obtain a TSP
tour T from T ′ by taking shortcuts. By the triangle inequality, w(T ) ≤ w(T ′) =
w̃(R).

The same construction as in the proof of Theorem 5.1 yields the same inapprox-
imability result for Min-dReg-2Edge.

Min-TSP is APX-hard [25]. Furthermore, the reduction from Min-TSP to
Min-dReg-1Edge (and also to Min-dReg-2Edge) is in fact an L-reduction [24] (see
also Shmoys and Williamson [29, Section 16.2]). This proves the APX-hardness of
Min-dReg-1Edge and Min-dReg-2Edge for all d ≥ 2.

5.2 Hardness for Growing d

In this section, we generalize the NP-hardness proof by Cheah and Corneil [2] for the
decision problem if a graph contains a connected d-factor to the case that d grows
with n. We also extend Theorem 5.1 and the APX-hardness to growing d.

Let us consider Cheah and Corneil’s [2, Section 3.2] reduction from the Hamilto-
nian cycle problem. Crucial for their reduction is the notion of the d-expansion of a
vertex v, which is obtained as follows:

1. We construct a gadget Gd+1 by removing a matching of size � d
2 � − 1 from a

complete graph on d + 1 vertices.
2. We connect each vertex whose degree has been decreased by one to v.

The reduction itself takes a graph G for which we want to test if G contains a
Hamiltonian cycle and maps it to a graph Rd(G) as follows: For even d, Rd(G)

is the graph obtained by performing a d-expansion for every vertex of G. For odd
d, the graph Rd(G) is obtained by doing the following for each vertex v of G:
add vertices u1, u2, . . . , ud−2; connect v to u1, . . . , ud−2; perform a d-expansion on
u1, . . . , ud−2. We have that G contains a Hamiltonian cycle if and only if Rd(G)

contains a connected d-factor.
We note that Rd(G) has (d + 2) · n vertices for even d and �(d2n) vertices for

odd d and can easily be constructed in polynomial time since d < n.
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Theorem 5.2 For every fixed δ ∈ [0, 1), there is a function d = d(n) = �(nδ) that
maps to even integers such that checking if an n-vertex graph contains a connected
d(n)-factor is NP-hard.

For every fixed δ ∈ [0, 1
2 ), there is a function d = d(n) = �(nδ) that maps to odd

integers such that checking if an n-vertex graph contains a d(n)-factor is NP-hard.

Proof We first present the proof for the case that we map to even integers. After that,
we briefly point out the difference for odd integers.

Let f = f (n) = 2�n δ
1−δ � and apply R = Rf (G). The graph R has g(n) =

n · (f + 2) vertices. since f is even. We have g = �(n
1

1−δ ). Now we determine d.
We require d(g(n)) = f (n). This can be achieved because g = ω(n) is an injective
function. From this, d = �(nδ) follows. For natural numbers that are not images of
g, we interpolate f to maintain the growth bound.

Let us now point out the differences for functions f mapping to odd integers. In
this case, since the reduction for d maps to graphs of size �(d2n), we have to choose

d = �(n
δ

1−2δ ). This, however, works only up to δ < 1/2.

In the same way as the NP-completeness, the inapproximability can be transferred.
The reduction creates graphs of size (d + 1) · n. The construction is the same as
in Section 5.1, and the proof follows the line of the proof of Theorem 5.2. Here,
however, we do not have to distinguish between odd and even d for the symmetric
variant, as the reduction in Section 5.1 is the same for both cases.

Theorem 5.3 For every fixed δ ∈ [0, 1), there exists a function d = �(nδ) such that
Min-dReg-1Edge and Min-dReg-2Edge are APX-hard and cannot be approximated
better than Min-TSP.

Complementing Theorems 5.2 and 5.3, Min-dReg-1Edge admits a PTAS for
d ≥ n/3 and finding a connected d-factor can be done in polynomial time for
d ≥ n/3 [23].

6 Conclusions and Open Problems

We conclude this paper with two questions for further research.
First, for edge-connectivity, we require d ≥ 2�k/2�. Since there exists an approx-

imation algorithm for Min-kReg-kEdge (for k ≥ 2) [1], the only case for which it
is unknown if a constant factor approximation algorithm exists is the generalized
problem Min-kGen-kEdge for odd values of k. We are particularly curious about
approximation algorithms for Min-1Gen-1Edge, where we want to find a cheap con-
nected graph with given vertex degrees. To get such algorithms, vertices with degree
requirement 1 seem to be bothersome. (This seems to be a more general phenomenon
in network design, as, for instance, the approximation algorithms by Fekete et al. [7]
for bounded-degree spanning trees and by Fukunaga and Nagamochi [8] for k-edge-
connected subgraphs with multiple edges both require that the minimum degree
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requirement is at least 2.) Still, we conjecture that constant factor approximation
algorithms exist for these problems as well.

Second, we would like to see constant factor approximation algorithms for
Min-dReg-kVertex for the case k + 1 ≤ d ≤ 2k − 2 and for the general prob-
lem Min-dGen-kVertex for k ≤ d ≤ 2k − 2. We conjecture that constant factor
approximation algorithms exist for these problems.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license, and indicate if changes were made.
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