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Abstract

Background: Although modern sequencing technologies permit the ready detection of numerous DNA sequence
variants in any organisms, converting such information to PCR-based genetic markers is hampered by a lack of
simple, scalable tools. Onion is an example of an under-researched crop with a complex, heterozygous genome
where genome-based research has previously been hindered by limited sequence resources and genetic markers.

Results: We report the development of generic tools for large-scale web-based PCR-based marker design in the
Galaxy bioinformatics framework, and their application for development of next-generation genetics resources in a
wide cross of bulb onion (Allium cepa L.). Transcriptome sequence resources were developed for the homozygous
doubled-haploid bulb onion line ‘CUDH2150" and the genetically distant Indian landrace ‘Nasik Red’, using 454"
sequencing of normalised cDNA libraries of leaf and shoot. Read mapping of ‘Nasik Red’ reads onto ‘CUDH2150’
assemblies revealed 16836 indel and SNP polymorphisms that were mined for portable PCR-based marker
development. Tools for detection of restriction polymorphisms and primer set design were developed in BioPython
and adapted for use in the Galaxy workflow environment, enabling large-scale and targeted assay design. Using
PCR-based markers designed with these tools, a framework genetic linkage map of over 800cM spanning all
chromosomes was developed in a subset of 93 F, progeny from a very large F, family developed from the ‘Nasik
Red’ x ‘CUDH2150" inter-cross. The utility of tools and genetic resources developed was tested by designing markers
to transcription factor-like polymorphic sequences. Bin mapping these markers using a subset of 10 progeny
confirmed the ability to place markers within 10 cM bins, enabling increased efficiency in marker assignment and
targeted map refinement. The major genetic loci conditioning red bulb colour (R) and fructan content (Frc) were
located on this map by QTL analysis.

Conclusions: The generic tools developed for the Galaxy environment enable rapid development of sets of PCR
assays targeting sequence variants identified from Illumina and 454 sequence data. They enable non-specialist users
to validate and exploit large volumes of next-generation sequence data using basic equipment.
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Background

Marker design from genome variants

Economical third generation sequencing technologies
now permit the deep sampling of variation from poorly
characterized species, providing a wealth of data to en-
able genetic studies [1]. In practice, a dearth of access-
ible, scalable and biologist-friendly bioinformatics tools
for exploiting these large-scale data restricts application
of these sequencing technologies in minor species and
institutions lacking bioinformatics infrastructure [2].

The typical goal in sampling sequence variation is to de-
tect variants for diagnostic and/or functional studies, most
commonly single-nucleotide polymorphisms (SNPs) and
insertion-deletion polymorphisms (indels). Although a
myriad of technologies have been developed for interroga-
tion of SNPs, the most widely accessible technologies are
those based on PCR. Among the most simple and robust
means to interrogate SNP variation is that of cleaved amp-
lified polymorphic sequences (CAPS; also known as PCR-
RFLP, snipSNPs), where sequence variants are revealed
by post-PCR cleavage of amplicons with restriction
enzymes [3]. Addition of engineered mismatches in primer
sequences can allow detection of SNPs that do not condi-
tion restriction polymorphisms [4]. High-resolution melt-
ing (HRM) of small amplicons in the presence of
intercalating dyes is increasingly used as a means to reveal
sequence variation [5,6], and has the advantage of being a
closed-tube assay. Although both approaches could be
used to validate and evaluate polymorphism at variant
sites identified by deep sequencing, the principal barrier to
achieving this on a useful scale is design of flanking PCR
primer pairs for large numbers of targets.

Web-based tools which have been reported for design of
CAPS markers from small numbers of sequences include
BlastDigester [7], SNP2CAPS [8] and SNP Cutter [9]. None
of these tools readily scale to large volumes of NGS data.
Bulk design of primer sets to SNPs or other genome targets
can be performed using the Primer3 executable [10]. Al-
though the use of this command-line tool can be simplified
by use of programming interfaces such as those provided
by BioPerl [11] or BioPython [12], such scripting is usually
performed by specialists and is generally reported in the
scientific literature as ‘custom scripts’ without code or detail
sufficient to permit reproducibility by non-specialists.
Web-based tools suitable for larger-scale primer design in-
clude SNP-RFLPing [13] for mammalian SNP assay design
and PRIMEGENS-w3 [14] which provides a variety of
options for assay and probe design, especially for well-
characterized genomes. Neither of these tools provides
source code and the web-based tools they provide are con-
strained to specific uses in well-characterized genomes.
The principal challenge faced by developers of such trad-
itional web applications has been to support the diversity of
input data and possible applications by biologists.
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Web-based bioinformatics workflow frameworks, such
as GenePattern [15] and Galaxy [16-18], now provide a
means to share biologist-friendly tools and complex work-
flows for bioinformatics tasks such as PCR-based primer
design. Importantly, they encourage a modular approach
to code and tool development, providing greater flexibility
to accommodate diverse inputs and goals. These features
support reproducibility of bioinformatics methods by spe-
cialist tool developers and non-specialist end-user scien-
tists. We previously reported the potential for enabling
PCR-based primer design in web-based bioinformatics fra-
meworks when we adapted MISA scripts [19] for simple
sequence repeat (SSR) marker design to Galaxy [20].

Onion genome resources
Although onion and shallot (Allium cepa L.) are among
the most widely cultivated and traded vegetable crops,
knowledge of their genomes, population structure and
genetic architecture of key traits is limited [21]. There is
strong need for applied genomic resources to enable
quality control of hybrid seed, inform genetic resource
mining and to accelerate genetic analysis and improve-
ment of consumer and sustainability traits. Laboratories
engaged in onion research and breeding typically have
limited technical and financial resources, as is common
in those researching second-tier crops and non-model
species. Therefore it is desirable that marker assays can
be implemented in laboratories with basic equipment.
The genomes of onion and related Allium crops such
as garlic (Allium sativum) and bunching onion (Allium
fistulosum), are very large (10-20 Gbp) and even tran-
scriptome sequencing has been limited to modest EST
projects [22,23]. A partial (0.3N) onion BAC library [24]
provided insights into gene structure and genome com-
position, most notably the very low gene density of one
gene per 168 kb [25]. The initial genetic linkage map
‘BYG15-23 x AC43 developed by Havey and colleagues
using RFLP markers remains as the key reference map
[26-28]. Notably, this map revealed a very high level
of dominant RFLP, suggesting that the large genome size
of onion is associated with high levels of gene duplica-
tion. Genetic stocks used to date for development of
onion mapping populations have generally been inbred
lines that have typically been only subjected to one gen-
eration of self-pollination. The high levels of residual
heterozygosity have previously greatly complicated mar-
ker development and sequence analysis in onion. Al-
though a number of researchers have produced doubled
haploid onion (DH) lines, these have in general suffered
from poor seed set [29]. The development of highly fec-
und DH lines from long-day US onion varieties by Alan
et al. [30,31] now provides an opportunity to use homo-
zygous, distributable reference lines for onion genetics
and genomics.
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In the present study we sought to develop PCR-based
genetic markers that were easily transferable among the
Allium research community, based on transcriptome se-
quence polymorphisms segregating in a wide bulb onion
cross. Inspection of the data revealed potential for large-
scale development of robust, low-technology PCR-based
markers, which was enabled by a set of simple bioinfor-
matics tools usable in the Galaxy workflow environment.
We used these markers to develop a framework map
spanning much of the genome. We further tested the util-
ity of these by conducting targeted design and bin map-
ping of transcription factor candidates [32]. The genomics
resources developed in this study provide a framework for
genetic analysis and genome sequencing in onion. The
bioinformatics tools are applicable for any biologist requir-
ing large-scale PCR-based variant validation and assay de-
sign from modern sequencing platforms.

Results and discussion

cDNA sequencing and variant discovery

We set out to discover SNPs which could be used to de-
velop genetic markers revealing allelic variation between
the genetically distant onion parent lines used to develop
a large F, mapping population. To maximise the amount
of novel sequence obtained using GS-FLX sequencing,
we normalized the cDNA samples to reduce the most
abundant transcripts. BLASTX analysis of pilot 1/16
plate GS-FLX sequencing runs of normalised shoot
¢cDNA samples from ‘CUDH2150" (SRX031644) and
‘Nasik Red’ (SRR073449) revealed that high-abundance
transcripts (RuBISCO, histones, photosystem compo-
nents and ribosomal sequences) comprised 1.8% and
2.2% of reads respectively, indicating acceptable normal-
isation. A full plate of GS-Titanium sequence was gener-
ated from the homozygous line ‘CUDH2150" (899438
reads with a modal length of 400 bp; SRX031645) to
provide a working reference assembly and a plate of GS-
FLX sequence was obtained for ‘Nasik Red (578117
reads, modal length 255 bp; SRR073447) for variant dis-
covery. We chose 454 sequencing chemistry for greater
read length, since the genome of onion has not been
sequenced and there is only limited transcriptome data
[22,23]. This reference assembly of ‘CUDH150’ contains
24106 contigs with N50 contig size of 677 bp represent-
ing 85% of the total reads. Mapping ‘Nasik Red’ reads
onto these contigs revealed 14467 and 2369 indels be-
tween the parental lines, representing one variant per
740 bp. Due to the high degree of duplication in onion,
estimates of SNP frequency based on this assembly
should be interpreted conservatively.

Bioinformatics and marker design
Preliminary inspection of variant data revealed nu-
merous SNPs conditioning restriction polymorphisms
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suitable for CAPS marker design. However, a literature
survey failed to reveal any published code or tools that
could be readily used to facilitate identification of these
and to design flanking PCR primer sets on large data sets.
Therefore, prototype scripts were developed using BioPy-
thon [12] to identify SNPs conditioning restriction poly-
morphisms for enzymes known to perform well in PCR
buffers, based on our prior experience developing CAPS
markers in onion [33]. Mining of the variant data revealed
a total of 2395 polymorphic restriction sites, the most
abundant being those revealed by Taql (438), Alul (401),
Rsal (381), Dpnll (321), Hinfl (281) and Haelll (147).
Using the BioPython interfaces to EMBOSS and Primer3,
custom scripts were used to design flanking primer pairs
to variant features with masking of non-target variant sites.

Based on experience gained in developing tools for SSR
marker design [20], we modified the prototype scripts to
enable more general usage in the Galaxy workflow envir-
onment [34]. The detection of CAPS polymorphisms and
design of primers was separated into two tools, which were
modified to use Galaxy interval format and GFF3/GVF for-
mats [35] as the input and output formats. Helper scripts
were developed to enable conversion of VCF [36] and
Roche gsMapper 454HCDiffs.txt variant formats to GFF3
formats. CAPS detection and primer design tools were
modified to use iterators to provide efficient memory usage
with genome-scale data. Additional tools were developed
to parse EMBOSS primersearch output for conducting
electronic PCR and PATMAN [37] for mapping primers
back to sequences. The tools are available for installation
to any Galaxy installation at Galaxy Toolshed (http://
toolshed.g2.bx.psu.edu) as repository ‘pcr_markers’ (http://
toolshed.g2.bx.psu.edu/repos/john-mccallum/pcr_markers/).
The scripts may also be obtained from GitHub (https://
github.com/cfljam/galaxy-pcr-markers) for direct use from
the command-line.

Workflows for using these tools to design CAPS mar-
kers from Illumina (vcf files) or Roche 454 data (gsMapper
454HCDiffs.txt files) are provided in the Galaxy Toolshed
repository and are described in on-line documenta-
tion at GitHub (https://github.com/cfljam/galaxy-pcr-
markers/wiki). Polymorphism information from Illumina
(samtools vcf) or Roche 454 (454HCDiffs.txt) read map-
pers is converted to gff3 format using vcf2gff or gsmap-
per2gff tools. The resulting gff3 and reference fasta file are
provided as input to the CAPS detection tool. The list of
desired features can then be filtered out and cut from this
tabular output file using standard Galaxy tools and pro-
vided to the primer design tool. This provides tabular out-
put containing primer pairs. These or existing primer
pairs may be tested for redundancy and specificity by elec-
tronic PCR against reference sequences using EMBOSS
primersearch or individual primers mapped onto sequen-
ces using PATMAN.
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Construction of a genetic linkage Map

A total of 376 primer sets were designed to target puta-
tive restriction polymorphism, indel or SNP variants. Of
these, 91% of the sets amplified products under standard
conditions with no optimisation (Table 1). HRM markers
exhibited the most polymorphism during screening but
were frequently unsuitable for mapping in the F, popu-
lation because of difficulty in reliably resolving homozy-
gotes. By contrast, the CAPS and indel markers were
robust and reproducible. These markers are the most
transferrable as they only require standard PCR and gel
analysis equipment available in all genetics laboratories.
Overall, 58% of the markers designed from EST se-
quence which amplified in genomic DNA were poly-
morphic between the parent lines. This SNP conversion
rate is higher than the 25% found in onion previously
[22] and similar to the 51% found for pine [38]. Koepke
et al. [39] reported a validation rate of 30.5% from HRM
primers designed using 3’ UTR sequencing data.

Despite the lower success rate of HRM markers, these
are an appealing marker class for design and screening
in bulk using these approaches. Importantly, for studies
of the large and duplicated onion genome, the use of a
homozygous DH during screening permits ready con-
firmation that the amplicon derives from a single locus
and heterozygosity is easily discerned in F; or population
samples. Implementing melt prediction methods such
MELTSIM [40] and unlabeled probe design are two ob-
vious strategies that could be used to improve outcomes
for bulk HRM marker design in Galaxy.

Of the 376 markers tested, 93 were assigned to 1 of 9
linkage groups assigned to the 8 chromosomes of A. cepa
anchored using previously published markers (Figure 1;
Additional file 1: Table S1). The overall map length was
808 c¢cM. The map and underlying data can also be
accessed at alliumgenetics.org [41]. The markers appeared
to show both some overlap at particular positions, which
may indicate redundancy or gene clusters but were also
spread across the genome with an average spacing be-
tween markers of 7.5 cM. The major genetic loci condi-
tioning red bulb colour (R) and fructan content (Frc) were
located on this map by QTL analysis on chromosomes 7
and 8 respectively, as expected [42-44]. This resource is
useful across onion germplasm since the anchor markers
used here have been tested in other mapping populations,
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allowing the linkage maps to be aligned for comparative
mapping using the CMap tool [45] provided at http://
alliumgenetics.org [41]. The map was then used as a refer-
ence to select a subset of genotypes for bin mapping
[46,47] to facilitate rapid marker screening and targeted
map development. A set of 10 genotypes was identified for
selective genotyping (bin mapping) using MapPop [32],
providing an approximate bin length resolution of 8.8 cM.

Design and Bin mapping of transcription factor markers
Using a Galaxy workflow, SNPs were identified by mapping
‘Nasik Red’ reads to ‘CUDH2150 contigs that showed sig-
nificant matches to transcription factor motifs. Transcrip-
tion factors have been implicated in regulating genes in
pathways controlling many key economic traits in crops in-
cluding stress response, flowering and colour. A total of 95
primer sets (27 HRM markers and 68 CAPS markers) were
designed to flank these polymorphisms. Of these, 84 ampli-
fied products, including 13 that amplified multiple loci. Of
the remaining, 31/71 (44%) exhibited polymorphism be-
tween parent lines and could be assigned to the genetic map
by selective or complete genotyping in the mapping popula-
tion (Figure 2; Additional file 1: Table S1 and Additional file
2: Table S2). This confirmed the utility of these tools for tar-
geted design of markers to sets of candidate gene variants.
The genetic resources developed also allowed the markers
to be efficiently mapped to the onion genetic map to within
10 cM using just 10 lines from the population. The combin-
ation of bulk marker design and bin mapping now allows a
more targeted approach to onion genetic map improvement
through saturating regions of interest or low coverage.

Conclusions

The tools for PCR-based assay design we present pro-
vide a ‘missing link’ to facilitate access to the wealth of
sequence variant data from modern sequencing tech-
nologies by researchers with limited informatics and la-
boratory equipment. Importantly they are provided with
source code and customised for use in a web-based
framework to permit community improvement and use
by non-specialists. The ability to easily develop custom
panels of SNP markers for interrogating genes or gen-
ome regions of interest will complement modern genetic
strategies that identify candidate variants through deep
sequencing of population samples.

Table 1 Summary of marker validation outcomes for the indel and SNP markers (CAPS and HRM) generated in this

study

Marker Number assessed Amplified Multi-locus (%) Polymorphic between Nasik Red and CUDH2150 (%) Mapped in F,
Indel 22 21 (95%) 0 11 (50%) 8 (36%)
CAPS 167 144 (86%) 32 (19%) 90 (54%) 57 (34%)
HRM 187 172 (92%) 33 (18%) 104 (56%) 16 (9%)
Total 376 337 (90%) 65(19%) 195(58%)
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Figure 2 Genetic linkage map of chromosome 2 for ‘Nasik Red’ x
‘CUDH2150’ showing the assigned locations of bin mapped

markers targeting transcription factor-like sequences.

steps and encourages sharing of these through public re-
positories. This provides greater flexibility for research-
ers with diverse technologies and needs.

The practicability of CAPS markers in onion supports
previous reports in Arabidopsis 3], Caenorhabditis [48,49]
and human [13,50]. Now that such polymorphisms may be
readily designed using NGS data these may become an
appealing marker class for other non-model organisms.

The strategy employed in this study integrating a DH
reference parent line, NGS variant data and bulk marker
design is a next-generation strategy for onion genetics that
has proven much faster, cheaper and less technically
demanding than marker development in previous studies
of onion [28,51,52]. Because the sequence resources, Gal-
axy tools and parental lines forming the basis of this work
are publically available, they will provide a reproducible
framework for future onion genome research. The very
large family sizes, high levels of polymorphism and segre-
gation for multiple traits make these families ideally suited
for field-based population studies and fine mapping. We
are currently using the framework map for genetic analysis
of metabolic and developmental traits, and see potential
for supporting genome sequencing of onion. Reduced rep-
resentation sequencing of the gene space of a DH line such
as ‘CUDH2150" using Cot-based methods [53,54] or me-
thyl filtration [55] is likely to be the first phase of develop-
ing an onion genome reference sequence. These new
mapping and marker development resources will support
the bin mapping and fine mapping strategies required to
align contigs with the genetic and physical maps of Allium.

Methods

Plant materials and propagation

The doubled haploid onion line ‘CUDH2150’ was pro-
vided by Cornell University [30,31] and the heterozygous
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landrace ‘Nasik Red’ (PI271311) was obtained from
the USDA ARS Plant Genetics Resources Unit (Cornell
University, Geneva, NY). Two individual flowering plants
were cross-pollinated by blowflies and multiple F; plants
were individually self-pollinated to generate F, families.
Two F; plants spontaneously produced topset bulbils,
which were replanted and mass-pollinated to provide two
very large F, families. Samples of these families were
grown at Lat 42 deg S near Christchurch, New Zealand.
Cured bulbs were phenotyped for red bulb colour and
freeze-dried samples were analyzed for fructan and hexose
content as described elsewhere [56]. DNA was isolated
from fresh leaf material or freeze-dried bulb tissue as
described previously [57]. Working sets of PCR templates
were generated from master stocks by whole-genome
amplification using GenomiPhi V2 (GE Healthcare).

Transcriptome sequencing
Total RNA was extracted from leaves and shoot meristem
at the 4-5 leaf stage, prior to commencement of bulbing,
from multiple plants of ‘CUDH2150" and ‘Nasik Red
Poly-A RNA was purified using Ambion Poly (A) Purist
Kit (Life Technologies), as per manufacturers’ protocol.
¢DNA synthesis was performed using the MINT
c¢DNA Synthesis Kit (Evrogen). First strand synthesis
was carried out on 2 pg polyA+ RNA substituting the kit
3’ primer with the modified primer 5AAGCAGTGG-
TATCAACGCAGAGT(5)GT(9)CT(10)VN 3". Then ds
cDNA synthesis was performed with the additional 3’
primer 5’AAGCAGTGGTATCAACGCAGAGT(5)GTC
TA)GTTCTGTTTCT(4)VN at equimolar concentration
to the kit “PCR Primer M1”. The optimal number of
cycles was determined at 19 for Onion ¢cDNA and 24
cycles for the kit control. After ¢cDNA synthesis, ds
c¢DNA was purified using the High Pure PCR Product
Purification Kit (Roche). Approximately 3 pg ds cDNA
was recovered from onion and 1.6 pg from the kit control.
Normalization of cDNA was carried out with the Trimmer
c¢DNA Normalization Kit (Evrogen) using 1.3 pg ds cDNA.
The optimal number of cycles for the first amplification of
normalized cDNA, was determined at 10 and the second
amplification was performed for a total of 12 cycles. Ap-
proximately 8 pg of normalized cDNA was synthesized for
sequencing. GS-FLX standard libraries were prepared
from each genotype using unsheared cDNA and each was
sequenced on 1/16 of a plate. Normalisation was assessed
by BLASTN/X comparisons with Onion Gene Index V2.0
[58], rice and Arabidopsis unigene sets. A GS-FLX Tita-
nium library was synthesized from the ‘CUDH2150’ cDNA
and sequenced on a full Titanium plate. The ‘Nasik Red’
GS-FLX standard library was sequenced on full GS-FLX
plate. Sequence data are accessible at NCBI under
BioProject 60277. Raw flowgram data was submitted to
Genbank SRA (Accession SRX031644-6).
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Bioinformatics and marker design

A reference assembly of ‘CUDH2150" was generated by
assembling adapter-trimmed reads (SRA SRX031645)
using Roche Newbler V 2.0.01.14 with options -cdna -cpu
6 -minlen 45 -tr -rip -icl 100. Reads showing significant
BLASTN homology (E < 107°) to plant ribosomal RNA
sequences were excluded from the assembly. Contigs from
the assembly were filtered by length and quality using
Prinseq [59] to meet the Genbank Transcriptome Shotgun
Assembly (TSA) standards and submitted to TSA as ac-
cessions JR842819 — JR863573.

Polymorphisms were detected by mapping ‘Nasik Red’
reads onto the ‘CUDH2150" reference assembly using
Roche gsMapper with default parameters. Tools for
parsing gsMapper 454HCDiffs.txt/454 AllDiffs.txt variant
output files, detecting restriction polymorphisms and
performing bulk PCR primer design were developed
using GNU awk, Perl and BioPython [12] and then
adapted for use in the Galaxy bioinformatics framework
[16-18]. These scripts along with additional helper
scripts for primer analyses and format conversions are
freely available for download at Github (https://github.
com/cfljam/galaxy-pcr-markers/) and for installation
into Galaxy at the Galaxy Toolshed (http://toolshed.g2.
bx.psu.edu) as repository ‘pcr_markers’.(http://toolshed.
g2.bx.psu.edu/repos/john-mccallum/pcr_markers/).
Amplicon size of 90-120 bp was used for design of
CAPS markers, and 60-100bp for indel and HRM mar-
kers. HRM design was limited to class I and II SNPs
[60] through filtering with standard Galaxy tools.

Marker genotyping

Initial screens of the SNP and indel markers were car-
ried out using templates from ‘Nasik Red, ‘CUDH2150’
and the F; parent of the F, population. Markers that
were heterozygous in the F; and segregating in an F,
subset of 9 lines were then tested on a core set of
93 F, lines. Markers were assessed as multi-locus if mul-
tiple fragments were present after amplification with
‘CUDH2150’.

Markers were amplified by PCR using 0.5 U Thermo-
Prime Taq DNA polymerase (Thermo Fisher Scientific) in
15 pl reactions containing 1x PCR buffer, 200 pM dNTP,
1.5 mM MgCl,, 0.5 pM each primer and 20 ng template
DNA. Amplifications carried out on a MasterCycler
epGradientS (Eppendorf). The conditions included an ini-
tial denature at 95°C for 2 min then 40 cycles of 95°C for
30 s, 55°C for 30 s and 72°C for 30 s with a final extension
of 7 min at 72°C. For CAPS markers the PCR products
(5 pl) were digested in a 10 pl reaction using 3 U of re-
striction enzyme (NEB) (Additional file 1: Table S1) with
the appropriate buffer at 1X final concentration and BSA
where necessary. The digests were incubated for 3 h at
37°C or 65°C for Taql digests. PCR and digestion products
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were separated using electrophoresis with a 4% agarose
gel (2% Seakem LE + 2% NuSieve 3:1) and visualised
under UV after ethidium bromide staining.

HRM markers were amplified in a 10 pl reaction using
1x HOT FIRE Pol EvaGreen HRM Mix (Solis BioDyne),
0.25 uM of forward and reverse primer and 20 ng DNA
template. The solution was then overlaid with 15 uL PCR
grade mineral oil (SIGMA). Amplification conditions
included: 95°C for 15 min, then 45 cycles of 95°C for 30 s,
62°C for 30 s and 72°C for 15 s. Final hold temperatures
were 95°C for 30 s and 25°C for 2 min. The products were
then melted from 55°C to 95°C and melt curves assessed
using the LightScanner (Idaho Technology Inc.).

SSR markers were screened and evaluated as described
previously [20,28,61].

Linkage mapping

All mapping calculations were carried out in JoinMap V4
[62] using the Kosambi function. Segregation and phase of
all markers were checked and skewed markers (p < 0.05)
were disregarded from further analysis. Linkage groups
were formed using a maximum recombination fraction of
0.25 and a minimum LOD value of 7. The markers were
then ordered using window size of 5 and a minimum LOD
of 3. Rippling using a window size of 3 was used to
visualize the marker order by both checking the minimum
number of cross-overs and a maximum likelihood estima-
tion for all possible orders. The linkage groups were then
assigned a chromosome number based on the anchored
SSR markers or markers that had been anchored using A.
fistulosum - A. cepa monosomic addition lines [63], groups
were visualized using Mapchart [64]. QTL analysis was
performed using RQTL [65]. Using the framework map, a
bin mapping set of 10 progeny was selected with
minimization of expected bin size using the SAMPLEEXP
command in MapPop [32].

Targeted marker development and Bin mapping
Sequences for the following transcription factor families
were downloaded from ‘pfam’ [66]: AP2, Dof, GRAS, HD,
Myb, NAC, PHD, PLATZ, SET, Sigma70, WRKY, Whirly,
BHLH, bZip, Arid and TCP. Translated assemblies of
‘CUDH2150’ transcriptome were searched for matches
with these motifs using hmmsearch [67,68] with E < 10°°
cutoff. SNP and indel variants identified in these contigs
were filtered from GFF3 formatted read mapping output
using Galaxy textual filtering tools. CAPS, indel and HRM
markers were designed to these using Galaxy tools
described in this paper. Markers were initially tested on
parental and F; samples and then on a bin mapping panel
of 10 individuals. Markers were assigned to genetic map
bins using MapPop 1.0 [32].
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Additional files

Additional file 1: Table S1. Genetic Marker assays and map locations.
Genbank accessions denote accession number of contigs or read
identifier for singleton reads in SRA accession SRX031645.

Additional file 2: Table S2. Bin mapped genetic marker assays
targeting TF-like sequences and genomic SSR.
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