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induced virulence gene expression in two
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Abstract

Background: Vibrio parahaemolyticus is a main causative agent of serious human seafood-borne gastroenteritis
disease. Many researchers have investigated its pathogenesis by observing the alteration of its virulence factors in
different conditions. It was previously known that culture conditions will influence the gene expression and the
metabolic profile of V. parahaemolyticus, but little attention has been paid on the relationship between them. In
this study, for the first time, the metabolomics response in relation to the expression of two major virulence genes,
tdh and trh, induced at three temperatures (4, 25 and 37 °C) was examined in two genotypes of pathogenic Vibrio
parahaemolyticus (ATCC33846 (tdh+/trh−/tlh+) and ATCC17802 (tdh−/trh+/tlh+)).

Results: Reverse transcription real-time PCR (RT-qPCR) analysis illustrated that the expression levels of tdh and trh
induced at 25 °C in V. parahaemolyticus were significantly higher than those induced at 4 and 37 °C. Principal
components analysis (PCA) based on the UPLC & Q-TOF MS data presented clearly distinct groups among the
samples treated by different temperatures. Metabolic profiling demonstrated that 179 of 1,033 kinds of identified
metabolites in ATCC33846 changed significantly (p <0.01) upon culturing at different temperatures, meanwhile 101
of 930 kinds of metabolites changed (p <0.01) in ATCC17802. Pearson’s correlation analysis highlighted the
correlation between metabolites and virulence gene expression levels. At the threshold of | r | = 1, p <0.01, 12 kinds
of metabolites showed extremely significant correlations with tdh expression, and 4 kinds of metabolites
significantly correlated with trh expression. It is interesting that 3D, 7D, 11D-Phytanic acid showed the same trend
with pyrophosphate, whose derivative could activate the degradation of phytanic acid. Several metabolites could
be sorted into the same class by the method of chemical taxonomy, by assuming that they are involved in the
same metabolic pathways.

Conclusions: This research can help to find biomarkers to monitor virulence gene expression, and can further help
laboratory and clinical research of V. parahaemolyticus from the perspective of metabolomics.
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Background
Vibrio parahaemolyticus is a gram-negative and halo-
philic bacterium, known as a leading cause of seafood-
borne poisoning all over the world [1–3]. Numerous
outbreaks of food-borne disease were associated with
V. parahaemolyticus infection [4–6]. Most people are
infected by eating raw or undercooked shellfish, par-
ticularly oysters. V. parahaemolyticus can also cause
systemic infection through wound infection [7].
The pathogenesis of V. parahaemolyticus is complex.

As we known, V. parahaemolyticus strains contain a
number of different virulence factors including adhesins,
thermostable direct hemolysin (TDH), TDH-related
hemoysin (TRH), two type III secretion systems, T3SS1
and T3SS2 [8, 9]. Two co-existed type VI secretion sys-
tems, T6SS1 and T6SS2, would be new virulence fac-
tors of V. parahaemolyticus [10, 11]. Previous studies
have found that pathogenic V. parahaemolyticus often
carries thermostable direct hemolysin (tdh) and/or
thermostable-related hemolysin (trh) genes [12–14].
TDH and TRH were first identified as V. parahaemoly-
ticus virulence factors in the 1980s, and then consid-
ered as the main toxins which induce cytotoxicity and
enterotoxicity [15–17]. In recently years, though re-
search about regulatory mechanism of virulence has
been discovered [18], there were few discussions about
the correlation between growth condition and virulence
gene expression of V. parahaemolyticus. Studies of
virulence factors have made remarkable progress, while
the synergy effect and pathogenicity of them are still
under investigation [9].
The rapid development of metabolomics introduced a

powerful way to study the pathogenesis of diseases by
analyzing the metabolites of patients and monitoring the
alteration of biomarkers in the course of diseases [19].
Metabolomics could be valued as a new vision for
characterization of a pathogen during its growth and in-
fection process. It has been confirmed that there is cor-
relation between genes and metabolites in E. coli [20],
but little attention has been paid to the analysis of the
metabolome for better understanding the pathogenesis
of V. parahaemolyticus. So it is meaningful to research
the virulence gene expression, the metabolic situation of
V. parahaemolyticus, and most significantly, the correla-
tionship between them.
Previous research of our group has detected tdh and

tlh expression in V. parahaemolyticus by reverse tran-
scription real-time PCR (RT-qPCR) [21] and distin-
guished different pathogenic V. parahaemolyticus strains
based on metabolic profiling [22]. This research fo-
cused on investigating the correlation between the viru-
lence gene expression of V. parahaemolyticus and its
metabolites induced at three temperatures, for better
understanding its pathogenesis and monitoring typical

virulent V. parahaemolyticus strains. Three tempera-
tures, 4, 25 and 37 °C, were chosen as the incubation
temperatures for simulating the storage temperature of
fresh aquatic products, environmental temperature and
human body temperature. The tdh and trh gene were
chosen as the virulence genes to be studied in this re-
search. Relative virulence gene expression of two standard
pathogenic strains of V. parahaemolyticus, ATCC33846
(tdh+/trh−/tlh+) and ATCC17802 (tdh−/trh+/tlh+), were
performed by RT-qPCR. Metabolic profiling of V.
parahaemolyticus was determined by Ultra Perform-
ance Liquid Chromatography & Quadrupole-Time-of-
Flight Mass Spectrometry (UPLC & Q-TOF MS). Fur-
thermore, the relationship between metabolome and
virulence gene expression was explored by Pearson’s
correlation analysis.

Results
Virulence gene expression of V. parahaemolyticus
The virulence gene expression of two genotypes of V.
parahaemolyticus were investigated by RT-qPCR under
different culture conditions (4, 25 and 37 °C). Both pvuA
and pvsA were used as the reference genes due to the
bias which may be caused by the fluctuation in expres-
sion level of a single reference gene [23]. The expres-
sion levels of tdh induced at 25 °C in V.
parahaemolyticus ATCC33846 (tdh+/trh−/tlh+) were
approximately two-fold higher than those induced at 4
and 37 °C (p <0.05) (Fig. 1a). The expression of the trh
gene presented the same trend in V. parahaemolyticus
ATCC17802 (tdh−/trh+/tlh+) (Fig. 1b).

Metabolic profiling of V. parahaemolyticus
To generate an overview of the data set, the positive and
negative ions were detected and processed by Mas-
sLynx 4.1, and then the data were fed to SIMCA-P
11.5 for principal components analysis (PCA). PCA
was performed to validate the differences between the
metabolites in V. parahaemolyticus affected by differ-
ent temperatures. Figure 2 showed the scatter plot
using the score of first principal component (PC1)
and the second principal component (PC2) for each
sample. In general, the V. parahaemolyticus samples
were clustered in three distinct groups according to
temperatures (4, 25 and 37 °C). The close clustering
of the V. parahaemolyticus samples indicated their
high similarity in terms of their metabolites composi-
tions and abundances.
Typical UPLC & Q-TOF MS chromatograms of V.

parahaemolyticus were analyzed. According to UPLC-
MS data, over 5000 peaks were determined in the two
strains of bacteria grown at 4, 25 and 37 °C. Every peak
was identified as a certain metabolite by searching its
value of m/z in HMDB. The value of relative
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concentration of metabolite was used for statistical ana-
lysis (Additional file 1: Table S1 and Additional file 2:
Table S2). The number of identified peaks, total num-
bers of identified metabolites, and numbers of metabo-
lites changed significantly and numbers of metabolites
highly correlated with tdh/trh expression level were

shown in Table 1. There are 179 and 101 kinds of me-
tabolites changed with incubation temperature signifi-
cantly in ATCC33846 and ATCC17802, respectively.
Heatmaps were employed to visualize the variations of
metabolites concentration, which containing hierarch-
ical clustering on the left (Figs. 3 and 4). Metabolites
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Fig. 1 Relative quantifications of gene expressions and metabolites in V. parahaemolyticus. a tdh gene expression (column) and 12 kinds of metabolites
(line) which had extremely high correlation with tdh gene expression (| r | = 1, p <0.01) in ATCC33846. Relative amount of six kinds of metabolites
illustrated positive correlation with relative gene expression under different temperatures; the other six kinds of metabolites showed negative
correlation. b trh gene expression (column) and four kinds of metabolites (line) which had extremely high correlation with trh gene expression (| r | = 1,
p <0.01) in ATCC17802. One metabolite illustrated positive correlation with gene expression; the other three metabolites showed negative correlation

Fig. 2 Principal component analysis score plot. First and second PCs from metabolites found in V. parahaemolyticus grown at 4, 25 and 37 °C.
(Based on measurements of three independent biological replicates)
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which were arranged nearby have similar variational
rules of concentrations in different temperatures. The
significantly changed metabolites could be classified
into different categories by chemical taxonomy, such as
alkaloids and derivatives, benzenoids, lipids and lipid-
like molecules, nucleosides, nucleotides, and analogues,
organic acids and derivatives, organoheterocyclic com-
pounds, phenylpropanoids and polyketides (Additional
file 3: Table S3 and Additional file 4: Table S4).

Correlation between expression of tdh/trh and
metabolome
In previous studies, Pearson’s correlation analysis was ap-
plied in examining the correlation between mRNA and
protein abundance [24, 25]. In this study, tdh and trh gene
expression were used for discussing the correlation with
metabolites of ATCC33846 and ATCC17802, respectively.
There were 388 (37.6 %) and 345 (37.1 %) kinds of metab-
olites that showed high correlationship (| r | >0.8) with
the gene expression of tdh and trh in ATCC33846 and
ATCC17802, respectively (Table 1).
Following, the threshold of | r | = 1, p <0.01 was chosen

for further insight into the relationship between the viru-
lence gene expression and metabolome. There were 12
and four kinds of metabolites that showed extremely sig-
nificant correlation with tdh and trh gene expression level
in ATCC33846 and ATCC17802, respectively (Table 2).

Discussion
V. parahaemolyticus, a major seafood-derived pathogen
which can cause gastrointestinal illness in humans, has
attracted more and more interest especially in its viru-
lence in recent years [8, 9]. Two virulence genes ex-
pression and metabolites profile were investigated at
different incubation temperature. The relationship be-
tween them was explored for the first time.
In this study, both tdh and trh gene expression showed

a similar trend, that the expression level reached highest
at 25 °C. These results suggested that though 37 °C was
regularly used as the culturing temperature in V. para-
haemolyticus for simulating actual environmental condi-
tion in the human gut, 25 °C was more conducive for
virulence gene expression in culture medium.
Of thousands of metabolites, 200–300 kinds of them

mainly changed, which including low-molecular-weight
organic acids, amino acids, alcohols, ketones, esters,

sugars and others. These same categories of metabolites
were also detected in other microorganism, such as yeast
[26] and Listeria monocytogenes [27]. Ewald et al. reported
that the concentration of intracellular metabolites was de-
termined by the molecular integration of genomic and en-
vironmental factors [28]. Meanwhile, the metabolic study
on E. coli suggested that the concentration of some me-
tabolites changed along with a certain gene mutation in
continuous cultures [20]. Thus, the concentration of vari-
ous metabolites in microorganisms may result from the
change of culturing condition and gene expression.
So we hypothesized that there is a correspondence be-

tween metabolome and virulence gene expression; and
both of them are impacted by culturing temperature.
In this study, based on statistical analysis, 12 and four

metabolites showed extremely significant correlation with
tdh and trh gene expression, respectively. The alteration
rules of metabolites and virulence gene expression are
correlated together by the regulation of culturing
temperature. Not much research is available about dis-
cussing metabolites and their function in the life cycle
of microorganism. Nevertheless we found a few pos-
sible connections between several of them or character-
istics in metabolic process. 3D, 7D, 11D-Phytanic acid
is a branched chain fatty acid, and could be a kind of
Fatty-acid metabolic intermediate. It undergoes α-
oxidation in the cytosol, where it is converted into pris-
tanic acid by the removal of one carbon [29]. In the
third process of α-oxidation, 2-hydroxyphytanoyl-CoA
is cleaved by 2-hydroxyphytanoyl-CoA lyase in a TPP-
dependent reaction to form pristanal and formyl-CoA.
TPP consists of a pyrimidine ring which is connected
to a thiazole ring, which is in turn connected to a pyro-
phosphate functional group. Coincidentally, pyrophos-
phate changes with 3D, 7D, 11D-Phytanic acid at the
same trend in our data suggesting they might be in-
volved in the same metabolic pathway. LysoPE(0:0/
16:1(9Z)) is a lysophosphatidylethanolamine (LPE) or a
lysophospholipid (LPL). It could transfer to different
derivatives by simple enzymatic action. Some LPLs
serve important signaling functions [30] in cells and
might be a signal molecule for answering the alteration
of environmental factors. Homoarecoline, isolated from
betel nuts, belongs to the class of organic compounds
known as alkaloids and derivatives of arecoline. Areco-
line is known to be a partial agonist of muscarinic

Table 1 Metabolic profiling of V. parahaemolyticus grown at different temperatures

Strains Numbers of peaks identified at different temperatures Total numbers of
metabolites identified

Numbers of metabolites
changed significantly at
different temperatures
(p <0.01)

Numbers of metabolites
highly correlated with
tdh/trh expression level
(|r| >0.8)

4 °C 25 °C 37 °C

ATCC33846 882 1,011 916 1,033 179 388

ATCC17802 847 887 868 930 101 345
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Fig. 3 Heatmap of the metabolite whose concentration changed significantly (p <0.01), grouped by different culturing temperatures in ATCC33846.
Colors represent an increase and decrease of metabolite (see color key). The dendrogram for metabolite clustering is shown on the left
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Color key

Fig. 4 Heatmap of the metabolite whose concentration changed significantly (p <0.01), grouped by different culturing temperatures in ATCC17802.
Colors represent an increase and decrease of metabolite (see color key). The dendrogram for metabolite clustering is shown on the left
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acetylcholine M1, M2, M3 receptors and M4, [31–33]
which is believed to be the primary cause of its parasym-
pathetic effects. Arecoline has also been used medicinally
as an antihelmintic [34]. In addition, DG(14:1n5/0:0/
20:5n3), DG(20:5n3/0:0/22:6n3), exo-2-Methyl-3-methyle-
nebicyclo[2.2.1]heptan-2-ol and Glucosylceramide (d18:1/
25:0), are lipids or lipid-like molecules in V. parahaemoly-
ticus ATCC33846; 5-(2-Heptadecenyl)-1,3-benzenediol
and zucchini factor B are benzene and substituted deriva-
tives in V. parahaemolyticus ATCC17802.
We believe that once increasing experimental evi-

dences are explored in metabolic pathways, these metab-
olites which have been screened out could be developed
as biomarkers or regulators for V. parahaemolyticus in
future research. New biomarkers would be helpful in
monitoring and rapid detection of virulence factors;
some metabolites could be used as regulatory factors to
control the growth of bacteria; and some potential me-
tabolites might be developed as new drugs to treat dis-
eases caused by V. parahaemolyticus.

Conclusions
This study proved that there is a correlation between
the metabolome and virulence gene expression, under
different culturing temperatures. This relationship pro-
vides a new perspective for better monitoring virulence
performance and understanding pathogenesis of this
bacteria. Moreover, some certain metabolites could be
developed as biomarkers in future research of Vibrio
parahaemolyticus.

Methods
Strains and cultivation
V. parahaemolyticus ATCC33846 and ATCC17802 were
purchased from the American type culture collection
and the stock cultures were maintained at −80 °C in
25 % glycerol solution. The frozen culture was activated
in tryptic soy broth (TSB, Beijing Land Bridge Technol-
ogy Company Ltd., Beijing, PRC) plus 3 % NaCl and in-
cubated at 37 °C with two consecutive transfers after a
10 h incubation. One hundred mL TSB (3 % NaCl) in a
250 mL flask was inoculated with 200 μL inoculum and
incubated at 37 °C or 12 h with shaking at 180 r/min,
then shifted to 4, 25 and 37 °C statically for 12 h.

Enumeration of bacteria
Bacteria were counted according to the procedure de-
scribed in a previous study [35] with some modifications.
Briefly, the culture was serially diluted 10-fold in 0.85 %
NaCl solution, and then 0.1 mL samples of each dilution
were spread onto the thiosulfate citrate bile sucrose agar
(TCBS, Beijing Land Bridge Technology Company Ltd.,
Beijing, PRC) plate. The bacteria counts were enumer-
ated after incubation at 37 °C for 24 h.

RNA extractions and cDNA synthesis
Cells of the culture (1 mL) were harvested by centrifuga-
tion at 12,000 g for 5 min, and resuspended in 1 mL Tri-
zol reagent (Invitrogen, Carlsbad, USA) for 15 min and
incubated at room temperature for 20 min. Nucleic acids
were recovered from the lysate by adding 200 μL solu-
tion (phenol: chloroform: isoamyl alcohol = 25: 24: 1)

Table 2 The metabolites highly correlated with the expression level of tdh and trh genes

Gene Compounds Correlation coefficient p-value

tdh LysoPE(0:0/16:1(9Z)) 1.000a 0.001

tdh 3D,7D,11D-Phytanic acid 1.000a 0.002

tdh S-(PGA1)-glutathione 1.000a 0.003

tdh Cardanolmonoene 1.000a 0.004

tdh Trabectedin 1.000a 0.006

tdh Pyrophosphate 1.000a 0.008

tdh Glucosylceramide (d18:1/25:0) −1.000a 0.001

tdh DG(14:1n5/0:0/20:5n3) −1.000a 0.004

tdh DG(20:5n3/0:0/22:6n3) −1.000a 0.005

tdh Sambutoxin −1.000a 0.006

tdh exo-2-Methyl-3-methylenebicyclo[2.2.1]heptan-2-ol −1.000a 0.007

tdh 2-Pentyl-4-propylthiazole −1.000a 0.008

trh 5-(2-Heptadecenyl)-1,3-benzenediol 1.000a 0.008

trh Zinc methionine sulfate −1.000a 0.002

trh Zucchini factor B −1.000a 0.002

trh Homoarecoline −1.000a 0.003
aPresented correlation is significant at 0.01 level
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(Sangon, Shanghai, PRC), followed by centrifugation at
12,000 g for 15 min at 4 °C. The aqueous layer was then
transferred into a clean microcentrifuge tube. Nucleic
acids were precipitated by adding equivalent isopropanol
(Sangon, Shanghai, PRC) and pelleted by centrifugation
at 12,000 g for 10 min at 4 °C. The pellet was washed
with 75 % cold ethanol (−20 °C) (Sangon, Shanghai,
PRC) by centrifuged at 10,000 g for 5 min at 4 °C, air
dried, and resuspended in 30 μL diethyl pyrocarbonate
(DEPC) water (Sangon, Shanghai, PRC). RNA quality
was checked on 1 % agarose gel. Then the samples were
stored at −80 °C for further analysis.
Reverse transcription (RT) was performed with 200 ng

total RNA using the PrimeScript RT reagent Kit with
gDNA Eraser (Takara, Dalian, PRC) following the manu-
facturer’s instructions.

Quantitative real-time PCR analysis
Relative gene expression was performed by real-time
PCR using the ABI 7500 Fast quantitative PCR system
(Applied Biosystems, Carlsbad, USA) and FastStart Uni-
versal SYBR Green Master (Rox) (Roche, Mannheim,
Germany). Primers used in this study were described in
Additional file 5: Table S5 and pvuA and pvsA were used
as reference genes [36, 37]. The primers of tdh and trh
gene were referenced the PCR detection method in the
FDA bacteriological analytical manual [38]. Amplifica-
tions were performed in duplicate. The primers were di-
luted to 10 μM before use. Each PCR was performed
with a 20 μL final volume containing 2 μL cDNA, 1.5 μL
(each) primers, 5 μL diH2O, 10 μL 1 × SYBR Green PCR
Master Mix (Roche). The following thermal cycling con-
ditions were used: a denaturation program (95 °C for
10 min), an amplification program repeated 40 times
(95 °C for 15 s and 60 °C for 1 min). Negative controls
(deionized water) were included in each run. Melt curve
analysis was performed on the PCR products at the end
of each run to ensure that a single product was amplified.
Relative quantification was measured using the 2-ΔΔCt

method (the amount of target, normalized to an endogen-
ous control and relative to a calibrator, where ΔΔCt = (Ct

target −Ct reference) sample − (Ct target −Ct reference) calibrator)
[39]. The Ct is the number of cycles needed for the fluor-
escence signal to reach a specific threshold level of detec-
tion and is negatively correlated with the amount of
template nucleic acid in the reaction. All values are the
normalized means ± standard deviations (SD) of the re-
sults for two runs, each with two replicate samples.

Sampling for intracellular metabolites
Approximately 5 × 108 CFU of bacteria were injected
into a tube containing 15 mL pre-cooled solution of
75 % methanol (v/v) with 70 mM 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES) (−80 °C). The

contents of tube were quickly mixed by vortexing and
then the tube was stored in the ice for 5 min.

Metabolite extraction
Extraction of intracellular metabolites was performed
using the cold ethanol method of Buchholz et al. [40] with
some modifications. Briefly, the cells were centrifuged
at 4,650 g for 10 min with a pre-cooled rotor of 4 °C.
The cell pellet was resuspended in 1 mL of cold 75 %
methanol (−20 °C). After rapid mixing, the mixture was
frozen at −80 °C for 5 min and thawed at 65 °C for
10 min, which was performed with two consecutive
repetitions. After the freeze-thaw cycle, proteins and
cell fragments were removed by centrifugation at
12,000 g for 2 min at 4 °C. The supernatant was stored
at −80 °C until further analysis.

Chromatography
Chromatographic separations were performed on an
ACQUITY™ UPLC System (Waters Corporation, Milford,
MA). A BEH C18 reversed-phase column (100 × 2.1 mm,
1.7 μm, Waters, MA, USA) and a BEH C18 guard column
(5 × 2.1 mm, 1.7 μm) were used. The column was main-
tained at 37 °C with a flow rate of 0.4 mL/min. Mobile
phase A was 0.1 % formic acid (Sinopharm, Shanghai,
PRC), while mobile phase B was acetonitrile (Sinopharm,
Shanghai, PRC) modified by addition of 0.1 % formic acid.
Each sample was run twice: once in positive ionisation
mode and once in negative ionisation mode. In positive
mode, the gradient was t = 0 min, 99 % B; t = 2 min, 70 %
B; t = 4 min, 25 % B; t = 7 min, 25 % B; t = 9 min, 0 % B; t =
11.5 min, 0 % B; t = 12 min, 99 % B; t = 13.5 min, 99 % B.
In negative mode, the gradient was t = 0 min, 99 % B;
t = 2 min, 70 % B; t = 4 min, 25 % B; t = 5 min, 25 %
B; t = 7 min, 10 % B; t = 8 min, 0 % B; t = 10 min,
0 % B; t = 10.4 min, 99 % B; t = 12.2 min, 99 % B.

Mass spectrometry
MS spectrometry was carried out on a Water Q-TOF
Primer system (Waters Corporation, Milford, MA) with
electrospray source ionization (ESI) operation in both
positive and negative ion ionisation modes. Nitrogen
was used as the drying gas. For both positive and nega-
tive ionisation modes, the capillary and conevoltage were
set at 3 kV and 55 V, respectively. The desolvation gas
was set to 650 L/h at a temperature of 350 °C, and the
cone gas was set to 50 L/h and the source temperature
was set to 100 °C. The data acquisition rate was set to
0.28 s, with a 0.02 s interscan delay. Data was acquired
with a scan range from 50 to 1000 Da.

Data analysis
The RT-qPCR data were analyzed using the ABI 7500
fast system. The quantity results based on RT-qPCR for
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tdh and trh genes at 25 °C were used as datum for rela-
tive quantity data, which were respectively set as to 1.
The RT-qPCR value of tdh or trh genes for other sample
was converted to relative quantity data in comparison with
the value from datum. A one-way ANOVA was performed
by Microsoft office Excel 2007 (Microsoft, Redmond,
USA) to determine significant differences at α = 0.05.
UPLC-MS spectra data were first processed by

Markerlynx Applications Manager Version 4.1 (Waters,
Manchester, UK), including the detection and retention
time (R.T.) alignment of peaks in each chromatogram.
Metabolites were identified by mass-to-charge ratios in
the human metabolome database (HMDB). The processed
data were then introduced to SIMCA-P 11.5 (Umetrics,
Umea, Sweden). Multivariate statistical analysis method of
principal component analysis (PCA) was performed to de-
termine the trend of data which transforms the correlated
variables dataset into a smaller number of independent
variables, i.e., the principle components [41].
Pearson’s correlation analysis was performed using the

SPSS 17.0 (SPSS Inc., Chicago, USA). The correlation
analysis was performed between the virulence genes ex-
pression and metabolome.
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