
Algorithmica
DOI 10.1007/s00453-017-0283-7

Structural and Algorithmic Properties of 2-Community
Structures

Cristina Bazgan1 · Janka Chlebikova2 ·
Thomas Pontoizeau1

Received: 8 April 2016 / Accepted: 23 January 2017
© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract We investigate the structural and algorithmic properties of 2-community
structures in graphs introduced recently byOlsen (Math SocSci 66(3):331–336, 2013).
A 2-community structure is a partition of a vertex set into two parts such that for each
vertex the numbers of neighbours in/outside its own part and the sizes of the parts
are correlated. We show that some well studied graph classes as graphs of maxi-
mum degree 3, minimum degree at least |V | − 3, trees and also others, have always a
2-community structure. Furthermore, a 2-community structure can be found in polyno-
mial time in all these classes, evenwith additional request of connectivity in both parts.
We introduce a concept of a weak 2-community and prove that in general graphs it is
NP-complete to find a balanced weak 2-community structure with or without request
for connectivity in both parts. On the other hand, we present a polynomial-time algo-
rithm to solve the problem (without the condition for connectivity of parts) in graphs
of degree at most 3.

Keywords Graph theory · Complexity · Graph partitioning · Community structure ·
Clustering · Social networks

B Janka Chlebikova
janka.chlebikova@port.ac.uk

Cristina Bazgan
bazgan@lamsade.dauphine.fr

Thomas Pontoizeau
thomas.pontoizeau@lamsade.dauphine.fr

1 LAMSADE, Université Paris-Dauphine, PSL Research University, CNRS, 75016 Paris, France

2 School of Computing, University of Portsmouth, Portsmouth, UK

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81261771?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-017-0283-7&domain=pdf
http://orcid.org/0000-0002-9493-2049

Algorithmica

1 Introduction

The research around community structures can be seen as a contribution to the well-
establish research of clustering and graph partitioning. The partition of graphs have
been intensively studied with various measures to evaluate their quality, see e.g. [2,7,
14,17,19] for an overview.

A standard abstract model for any kind of social networks such as Facebook or
Linkedin is a graph, in which vertices are members of the network and edges are
relationships between members. In such model ‘a community’ intuitively corresponds
to a subgraph that has ‘more relationships’ inside the subgraph than outside of it.
More generally, ‘a community structure’ corresponds to a partition of a graph into
communities.

There have been several attempts to define the concept of communities formally, a
good introduction including the motivation can be found in [1,6,11,18,20]. One of the
first definitions of a community was motivated by the searching links in web graphs
and introduced by Flake et al. [13]. It defines a community as a set of vertices C such
that each vertex in C has at least as many neighbours inside C as outside. The same
notion called an ‘alliance in graphs’ were introduced by Kristiansen et al. [16] and
investigated further in various papers. The concept of communities and community
structures have received a significant attention in further research where also some
modified definitions of communities were studied e.g. the difference between the
number of outside and inside neighbours should be larger than a given constant, the
community should also be a dominating set, see e.g. [4,5,15] for overview and further
references.

In this paperwe study the structural and complexity problemsof the recent definition
of a community structure that reflects the sizes of communities too [10,11,18]. This
new approach to communities is supported by the practical experiments showing the
importance of capturing the sizes of communities for a better description of their
properties [18].

The general concept of a community structure does not put any restriction on the
number of communities. This paper focuses on a partitionwith two communitieswhere
the problems are already appealing. The presented techniques offer some possibili-
ties for an extension to a larger number of communities. Informally, a 2-community
structure is a partition of the vertex set into two parts A, B such that for each vertex,
say from part A, the ratio ‘the number of neighbours in part A’ over the size of A
(excluding the vertex itself) is at least as large as ‘the number of neighbours in part
B’ over the size of B. To generalise, in a k-community structure, the ratio must be
valid for every two communities. We also introduce a weak community structure in
which the vertex itself contributes to the ratio. The ratio condition in the latter defini-
tion is weaker, but it reflects the reasonable requirement that each member should be
considered as a part of its own community (see Sect. 2 for the technical details). Even
if there are minor differences between the definitions, the structural and complexity
results for the two problems are very different as it is presented in this paper. Both
definitions are relevant to describe the community structures, the choice depends on
the suitability of the model.

123

Algorithmica

We also study the 2-communities problems with additional constraints such as
connectivity or equality of sizes for both parts (a balanced partition). The connectivity
request corresponds to the essential condition that each member in the community
should ‘indirectly know’ all members in its own community, where the ‘indirectly
know’ relation corresponds to a path between two vertices in the graph. The study
of balanced communities is motived by the practical interest for equal size of the
communities. In general, the balanced graph partitions are well studied, e.g. due to
its applications in the divide-and-conquer algorithms, see e.g. [8]. In the balanced
partition problem, which can be seen as a generalisation of the bisection problem
to any given number of parts, the goal is to minimise the number of edges between
partitions. It is known that the problem cannot be approximated within any finite
factor in polynomial time in general graphs and it remains APX-hard even on trees of
constant maximum degree [12]. It demonstrates that some graph partitions problems
that are related to e.g. balanced communities are hard to solve even for restricted graph
classes and indicates hardness of various problems related to a community structure
too. Hence all positive results in community structure problems would be important to
get better understanding of the differences between community and partition problems.

Furthermore, a community structure is in fact a graph partition with a restricted
number of edges between parts, therefore the new results for communities may find
applications in the areas similar to a graph partition such as parallel-computing, VLSI-
circuit design, route planning [9] and divide-and-conquer algorithms [21].

There are only a few results related to this newdefinition of a community. Olsen [18]
proved that a community structure (without the condition on the exact number of
communities) can be found in polynomial time in any graph with at least 4 vertices,
except a star. Recently, Estivill-Castro et al. [11] claimed that the problem to find a
k-community structure with restriction to all communities to be connected and equal
size is NP-complete in general graphs, but polynomially solvable in trees. In [18]
Olsen also proved that it is NP-complete to decide, whether there is a community
structure in a graph in which a given set of vertices is included in a community.
Our contribution
The following overview summarises our results achieved in this paper. All considered
graphs are of size at least 4 and are not stars. If a 2-community structure with certain
properties exists for a graph class, then it exists for all the graphs from the class.
(i) trees

– a connected 2-community structure exists and can be found in linear time
(Theorem 1),

– there are trees with a balanced 2-community structure, but without a con-
nected balanced weak 2-community structure (Remark 2),

(ii) graphs of maximum degree 3
– a connected 2-community structure exists and can be found in polynomial
time (Theorem 2),

– a balancedweak2-community structure exists and canbe found inpolynomial
time (Theorem 6),

– there are graphs without a balanced 2-community structure (Remark 1),
– there are graphs with a balanced 2-community structure, but without a con-
nected balanced weak 2-community structure (Remark 2)

123

Algorithmica

(iii) graphs of minimum degree (|V | − 3), complements of bipartite graphs, graphs
with minimum degree � (c−1)·|V |

c �where c is the size of an inclusion-wise maximal
clique in the graph
– a connected 2-community structure exists and can be found in polynomial
time (Theorems 3, 4, 5)

(iv) graphs of bounded tree-width
– there are graphs without a balanced 2-community structure (Remark 1), but
to decide whether such a structure exists and if it exists, find it, can be done
in polynomial time (Remark 3)

Estivill-Castro et al. [10] proved that the problemoffinding abalanced2-community
structure is NP-complete in general graphs. In Sect. 4 we show that the same result
also holds for a weak community, even with additional constraint of connectivity for
both parts. We also present a shorter proof of the known NP-complete result for a
balanced 2-community structure in general graphs based on an alternative definition
of community structure [4], which also implies NP-completeness for a connected
balanced 2-community structure.

The paper is structured as follows. In Sect. 2 we introduce formally some notations
and definitions of studied problems. In Sect. 3 we show that in somewell-studied graph
classes a 2-community structure always exists and can be found in polynomial time,
even with additional request for connectivity in both parts. In Sect. 4 we focus on the
balanced 2-community structure and present the structural and algorithmic results in
general graphs and some graph classes. Conclusions and open problems are provided
in Sect. 5.

2 Preliminaries

In the paper, all considered graphs are simple, undirected and connected. Let G =
(V, E) be a graph. For a vertex v ∈ V , let d(v) be the degree of the vertex v and for
any subgraph H of the graph G let NH (v) be the set of the neighbours of v in H ,
NH [v] = NH (v) ∪ {v} and let dH (v) = |NH (v)|. For a given partition of V into two
parts (a 2-partition), let an in-neighbour of v (resp. out-neighbour) be a neighbour
in its own part (resp. out of its part) and din(v) (resp. dout (v)) denote the number
of in-neighbours of v (resp. out-neighbours). For a graph G and a subset of vertices
S ⊆ V , let G[S] denote the subgraph of G induced by S. A partition {C1,C2} of V is
connected if the subgraphs G[C1] and G[C2] are connected and it is balanced if the
sizes of C1 and C2 differ by at most 1. The cut size of a 2-partition is the number of
edges that have end vertices in the different parts of the partition. A graph is said to be
of minimum (resp. maximum) degree k if any vertex of the graph has degree at least
(resp. at most) k. A pendant vertex of G is any vertex of degree 1. A star is a complete
bipartite graph K1,� for any � ≥ 1. The complement graph G = (V, E) of a graph
G = (V, E) is the graph in which {u, v} ∈ E iff {u, v} /∈ E for all vertices u, v ∈ V .
A graph G is 2-colourable if there exists a partition {C1,C2} of V such that G[C1],
G[C2] contain only isolated vertices.

Now we introduce Olsen’s definition of a k-community structure from [18].

123

Algorithmica

v

Fig. 1 A weak 2-community structure of a graph (presented by the colours black and white) in which the
vertex v does not satisfy the condition of a 2-community structure but satisfies the condition of a weak
2-community structure from Definition 1

Definition 1 A k-community structure for a connected graphG = (V, E) is a partition
� = {C1, . . . ,Ck} of V , k ≥ 2, such that ∀i ∈ {1, . . . , k}, |Ci | ≥ 2, and ∀v ∈
Ci ,∀C j ∈ �, j 	= i , the following holds

|NCi (v)|
|Ci | − 1

≥ |NC j (v)|
|C j |

For a weak k-community structure, the condition above is replaced by a “weaker”
condition

|NCi [v]|
|Ci | ≥ |NC j (v)|

|C j | .

Notice that a k-community structure is obviously a weak k-community structure

since
|NCi [v]|

|Ci | = |NCi (v)|+1
|Ci |−1+1 ≥ |NCi (v)|

|Ci |−1 , but the opposite is not true (see Fig. 1).
In this paper we investigate a community structure for a fixed number of two

communities and also study some variants of the 2- Community problem:
2- Community
Input: A graph G = (V, E).
Question: Does G have a 2-community structure?
It means, is there a 2-partition {C1,C2} of the vertex set V such that |C1|, |C2| ≥ 2,
and for each vertex v ∈ Ci , i ∈ {1, 2},

|NCi (v)|
|Ci | − 1

≥ |NC3−i (v)|
|C3−i | (1)

Obviously, if G has a 2-community structure, it must have at least 4 vertices and
be non-isomorphic to a star which we assume in the paper even without explicitly
mentioning that in some informal parts.

In the Weak 2- Community problem we are looking for a weak 2-community
structure in a graph where the condition (1) is replaced by

|NCi [v]|
|Ci | ≥ |NC3−i (v)|

|C3−i | . (2)

123

Algorithmica

Adding the balanced condition to the 2- Community problem, we obtain the Bal-
anced 2- Community problem introduced by Estivill-Castro et al. [10]. Similarly
we can define the Balanced Weak 2- community problem.

The additional constraint which asks for subgraphs induced by each part of the
partition to be connected is a natural condition useful for the problems related to the
connectedness. The Connected 2- Community problem is to decide if a graph has
a connected 2-community structure, i.e. a 2-community structure {C1,C2} such that
the subgraphs induced by C1, C2 are connected. We can define analogous problems
for weak and balanced versions.

3 Connected 2-Community Structures in Some Graph Classes

In this section we show that if a graph has certain structural properties, then it has
a connected 2-community structure which can be found in polynomial time. More
precisely, we prove that such a statement is valid for trees and graphs of highminimum
or low maximum degrees.

Theorem 1 Every tree with at least 4 vertices (except a star) has a connected
2-community structure that can be found in linear time.

Proof Let G = (V, E) be a tree not isomorphic to a star. We prove that there exists
an edge e ∈ E such that two connected components of G \ e form a 2-partition which
is a connected 2-community structure.

Let e = {u, v} be an edge in E such that d(v), d(u) ≥ 2 (due to the assumption
about G such an edge e must exist). Consider a partition {Xu, Xv} of V with Xu

(resp. Xv) be the set of vertices of the connected component of G \ e containing u
(resp. v).

First we notice that only one of the vertices u and v may not satisfy the condition
(1). If this is not true then d(u)−1

|Xu |−1 < 1
|Xv | and

d(v)−1
|Xv |−1 < 1

|Xu | . Since d(u), d(v) ≥ 2,

it implies |Xv| <
|Xu |−1
d(u)−1 ≤ |Xu | − 1 and |Xu | <

|Xv |−1
d(v)−1 ≤ |Xv| − 1, which is not

possible.
If both vertices u and v satisfy the condition (1), then {Xu, Xv} is obviously a

2-community structure. If not, then without loss of generality, let the vertex u satisfy
the condition (1) and v do not. Then the Update procedure is repeated and if no
update is possible, a modified partition {Xu, Xv} is already a 2-community structure
as it is shown later.

The Update procedure:
Let v1, v2, . . . , vd(v)−1 be the neighbours of v excluding u (there is at least one

such a vertex due to our assumption d(v) ≥ 2). For each i , 1 ≤ i ≤ d(v) − 1, and
ei = {v, vi } ∈ E , let Xi be the set of vertices of the connected component in G \ ei
containing vi .

Notice that if for all j , 1 ≤ j ≤ d(v)−1, d(v j) = 1, then v must already satisfy the
condition (1) in the partition {Xu, Xv} at the beginning of the Update procedure.

Hence from now we suppose that v has at least one neighbour of degree at least 2
excluding u. In the following we show that there exists j , 1 ≤ j ≤ d(v)−1, such that
d(v j) > 1 and the vertex v satisfies the condition (1) in the partition {X j , V \ X j }.

123

Algorithmica

Indeed, suppose that for all j , 1 ≤ j ≤ d(v) − 1, with d(v j) > 1, this is not true.
Notice that for each such j and the partition {X j , V \ X j } must hold d(v)−1

n−|X j |−1 < 1
|X j |

which implies that
d(v)|X j | < n − 1. (3)

Moreover, for any j , 1 ≤ j ≤ d(v) − 1 with d(v j) = 1 we have |X j | = 1 and hence

d(v)|X j | < n − 1, (4)

since G is not a star. Recall that v doesn’t satisfy the condition (1) in the partition
{Xu, Xv}, hence d(v)−1

|Xv |−1 < 1
|Xu | and also

d(v)|Xu | < n − 1, (5)

Summing (3), (4) and (5) together, we obtain d(v)
∑d(v)

j=1 |X j | = d(v)(n − 1) <

d(v)(n − 1), a contradiction.
Hence, there exists i , 1 ≤ i ≤ d(v)−1 such that d(vi) > 1 and the vertex v satisfies

the condition (1) in the partition {Xi , V \ Xi }. Then, relabel u := v and v := vi and
return to the beginning of the Update procedure.

Each time the labels of u and v are updated, the size of Xu strictly increases by at
least one, hence the whole process always terminates. A final partition at the end of
the process is a connected 2-community structure because both partitions correspond
to two connected components of a tree obtained by removing an edge.

Notice that finding such an edge can be done in O(|V |) operations. First, in constant
time fix an edge e = {u, v} such that d(v), d(u) ≥ 2. Then, consider G \ e as a union
of two trees Tu and Tv , where Tu is a tree on the vertex set Xu rooted in u (and similarly
for Tv on Xv rooted in v). For each vertex w of G calculate recursively the size of the
subtree of Tu (or Tv) rooted in w which can be done in time O(|V |). Finally, using
the sizes of the subtrees, check if {Xu, Xv} corresponds to a 2-community structure
and if needed, update Xu , Xv according to the algorithm. The number of such updates
is clearly at most |E |. Since G is a tree, the repetition of the Update procedure
finishes with a connected 2-community structure in O(|V |) time. ��

Very recently, Estivill-Castro et al. proved in [11] the same result using different
methods. Our approach is more structural and the proof for the existence of an edge
that connects two communities results directly in a linear time algorithm.

Now we investigate graphs that may contain cycles but that still have low densities,
namely the graphs of maximum degree 3. First, the restrictions on the size of partitions
are discussed to ensure the vertices fulfil the condition (1) of a 2-community structure.

Lemma 1 Let G = (V, E) be a graph of maximum degree 3 of size n. Let {C1,C2}
be a partition of V such that � n−1

3 � ≤ |Ci | ≤ n−� n−1
3 �, i = 1, 2. Then each vertex of

degree 3 in G with at most one out-neighbour fulfils the condition (1) of a 2-community
structure.

Furthermore, if for some i ∈ {1, 2}, |Ci | = � n−1
3 � (or also |Ci | = � n−1

3 � + 1 in
case n ≡ 1 mod 3) then each vertex of degree 3 in Ci with two out-neighbours fulfils
the condition (1) too.

123

Algorithmica

Proof Let {C1,C2} be a fixed partition of G such that � n−1
3 � ≤ |Ci | ≤ n − � n−1

3 �,
i = 1, 2. It is clear that the condition (1) is true for each vertex which has only
neighbours in its own part. Firstly, suppose the vertex v fromCi , i ∈ {1, 2} has exactly
one out-neighbour.

Since |Ci | ≤ n − � n−1
3 �, then obviously |Ci | ≤ n − n−1

3 and 2
|Ci |−1 ≥ 1

n−|Ci | .
Therefore the condition (1) is fulfilled for the vertex v.

Now suppose that for i ∈ {1, 2} there is a vertex v ∈ Ci with exactly two out-
neighbours and |Ci | = � n−1

3 �. Obviously, � n−1
3 � ≤ n+2

3 and hence 2� n−1
3 � − 2 ≤

n − � n−1
3 � which implies 1

� n−1
3 �−1

≥ 2
n−� n−1

3 � . This corresponds to the condition (1)

for the vertex v. Similarly if |Ci | = � n−1
3 � + 1 and n ≡ 1 mod 3: n − 1 = 3� n−1

3 �
which implies 1

� n−1
3 � ≥ 2

n−� n−1
3 �−1

. ��

Lemma 2 Let G = (V, E) be a graph of maximum degree 3 of size n. Let {C1,C2}
be a partition of V such that � n−1

3 � ≤ |C1| ≤ � n
2 �. Then each vertex of degree 2 in C1

with at most one out-neighbour fulfils the condition (1) of a 2-community structure.
If the partition is balanced, then each vertex of degree 2 in G with at most one

out-neighbour fulfils the condition (1).

Proof Let {C1,C2} be a partition of V such that � n−1
3 � ≤ |C1| ≤ � n

2 �. Obviously,
any vertex of degree 2 with no neighbours out of its own part fulfils the condition
(1). Moreover any vertex of degree 2 in C1 with only one out-neighbour satisfies

1
|C1|−1 ≥ 1

|C2| since |C1| ≤ |C2|.
If the partition is balanced, then 1

|C1|−1 ≥ 1
|C2| and 1

|C2|−1 ≥ 1
|C1| , and hence

the vertices of degree 2 from both parts with exactly one out-neighbour satisfy the
condition (1). ��
Lemma 3 Let G = (V, E) be a graph of maximum degree 3 of size n and {C1,C2}
be a partition of V such that � n−1

3 � ≤ |Ci | ≤ n − � n−1
3 �, i = 1, 2.

If the partition has one of the properties (i)–(iii) where only specified vertices may
have out-neighbours (the other ones have only in-neighbours), then {C1,C2} is a
2-community structure on G:

(i) The vertices of degree 2 from the smaller part and all the vertices of degree 3
have at most one out-neighbour.

(ii) The vertices of degree 2 and 3 have at most one out-neighbour and the partition
is balanced.

(iii) The vertices of degree 2 from the smaller part have at most one out-neighbour, the
vertices of degree 3 in Ci , for some i ∈ {1, 2}, have at most two out-neighbours
and |Ci | = � n−1

3 � (or also |Ci | = � n−1
3 � + 1 if n ≡ 1 mod 3) and the vertices

of degree 3 in C3−i have at most one out-neighbour.

Proof In each case (i), (ii), or (iii), all the vertices of the graph G satisfy the condition
(1) due to Lemmas 1 and 2. Hence, {C1,C2} is a 2-community structure on G. ��
Lemma 4 Every connected graph of maximum degree 3 on n vertices, n ≥ 4, (except
a star) has a connected partition {C1,C2} such that � n−1

3 � ≤ |Ci | ≤ n − � n−1
3 �,

i = 1, 2. Moreover, such a partition can be found in polynomial time.

123

Algorithmica

Proof Let G = (V, E) be a graph with the given properties. If G is a tree, take a
pendant vertex u ∈ V and let v ∈ V be its neighbour. If G is not a tree, let {u, v} be
an edge of a cycle in G. Since G is not isomorphic to a star such an edge must exist.

Initially, put into C1 the vertices u, v together with their pendant vertices, if it is
applicable. If there is a vertex z of degree 2 adjacent to u and v, updateC1 := C1∪{z}.
Define C2 := V \ C1.

The algorithm keeps connectivity of G[C1] and G[C2] and extends C1 either by
transferring vertices fromC2 toC1 or relabelling a suitable connected part of the graph
until � n−1

3 � ≤ |Ci | ≤ n − � n−1
3 �, i = 1, 2.

The algorithm starts with the initial set C1 and repeats the Update Procedure
until |C1| ≥ � n−1

3 �. In each run of the procedure only one of the options 1 or 2 is
executed.
The Update procedure:
Let w be a vertex in C2 which has a neighbour in C1 (such a vertex must exist since
G is connected).
Option 1 If the subgraph induced by C2 \ {w} is connected, put

C1 := C1 ∪ {w},C2 := C2 \ {w}.

Option 2 If the subgraph induced by C2 \ {w} is disconnected (w must be of degree
3), then denote by A, B the vertex-sets of two connected induced subgraphs of G on
C2 \ {w}. Depending on the size of A, the following update is executed.

• If |A| ≤ n − 2� n−1
3 �, put

C1 := C1 ∪ A ∪ {w},C2 := B.

Notice that |C1| ≤ n−� n−1
3 �, {C1,C2} is a connected partition and the size of C1

strictly increased.
• If n − 2� n−1

3 � + 1 ≤ |A| ≤ n − � n−1
3 �, then notice that |A| ≥ � n−1

3 � and put

C1 := A, C2 := V \ A.

Obviously, {C1,C2} is a connected partition with � n−1
3 � ≤ |Ci | ≤ n − � n−1

3 �,
i = 1, 2, hence the Update Procedure halts.

• If |A| > n − � n−1
3 �, put

C1 := C1 ∪ B ∪ {w}, C2 := A.

Notice that |C1| < � n−1
3 �, {C1,C2} is a connected partition and the size of C1

strictly increased.

If |C1| ≥ � n−1
3 � after the execution of the option 1 or 2, then theUpdate procedure

halts, otherwise the Update Procedure is repeated again.
By our construction, the partition {C1,C2} remains connected during each run of

the Update procedure.

123

Algorithmica

Each time the Update procedure is executed, the size of C1 strictly increases,
hence the algorithm always terminates.

At the end of the algorithm � n−1
3 � ≤ |Ci | ≤ n −� n−1

3 �, i = 1, 2 and the algorithm
clearly runs in a polynomial time. ��
Theorem 2 Every connected graph of maximum degree 3 with at least 4 vertices
(except a star) has a connected 2-community structure which can be found in polyno-
mial time.

Proof Let G = (V, E) be a connected graph of maximum degree 3 on n vertices,
n ≥ 4, not isomorphic to a star. Due to Lemma 4, a connected partition {C1,C2} of
V such that � n−1

3 � ≤ |Ci | ≤ n − � n−1
3 �, i = 1, 2, can be found in polynomial time.

Let {C1,C2} be such a partition and notice that the vertices that do not satisfy the
condition (1) can be split into two categories:

(A) if there exists i ∈ {1, 2} such that |Ci | > � n−1
3 � in case n 	≡ 1 mod 3 or

|Ci | > � n−1
3 � + 1 in case n ≡ 1 mod 3, then all the vertices of degree 3 in Ci

with two out-neighbours,
(B) if the partition is not balanced, then all the vertices of degree 2 in the larger part

with one out-neighbour.

The algorithm starts with the initial partition {C1,C2} and then the Improvement
Procedure (consisting in three stages) can be applied several times. The procedure
transfers step-by-step all the vertices of degree at least 2 (with exactly one neighbour
in its own part) between C1 and C2 or relabel the sets, until all the vertices satisfy the
condition (1). Since the initial partition is connected, transferring vertices with such a
property never disconnects any part of the partition.
The Improvement Procedure: Stage 1 (Category (A) vertices)
In this stage we handle vertices in C2 of degree 3 with two out-neighbours by trans-
ferring them into C1, keeping the size of C1 smaller than n − � n−1

3 � and ensuring
connectivity of the partition {C1,C2}.
While |C1| < n−� n−1

3 � and there is a vertex u ∈ C2 with two out-neighbours, update

C1 := C1 ∪ {u}, C2 := C2 \ {u}.

Notice that each iteration of Stage 1 decreases the size of the cut by at least one.
The Improvement Procedure: Stage 2 (Category (A) vertices) Similarly to Stage
1, in Stage 2 we handle vertices in C1 of degree 3 with two out-neighbours by trans-
ferring them into C2, keeping the size of C2 smaller than n − � n−1

3 � and ensuring
connectivity of the partition {C1,C2}.
While |C2| < n−� n−1

3 � and there is a vertex u ∈ C1 with two out-neighbours, update

C2 := C2 ∪ {u}, C1 := C1 \ {u}.

Notice that each iteration of Stage 2 decreases the cut-size by at least one.
The Improvement Procedure: Stage 3 (Category (B) vertices)
If the partition is not balanced, the vertices of degree 2 with one out-neighbour must
be transferred from the larger part to the smaller part.

123

Algorithmica

If |C1| > |C2|, relabel C1 := C2 and C2 := V \ C1.
While |C1| < � n

2 � and there exists a vertex u of degree 2 in C2 with one neighbour in
C1, update

C1 := C1 ∪ {u}, C2 := C2 \ {u}.

Each iteration of the while loop in Stage 3 doesn’t increase the size of the cut. In
the end of Stage 3 if the final partition doesn’t have a 2-community structure then a
vertex of the category (A) must exist in the partition. In that case, Stage 1 or 2 must be
executed before entering Stage 3 again, hence the cut-size is decreased by at least one.
Notice that Stage 3 may again create vertices of the category (A) even if they didn’t
exist before entering Stage 3.

It is easy to see that the algorithm always terminates. Each iteration of the while
loop in Stage 1 (resp. Stage 2) decreases the cut-size by at least one. In Stage 3
each iteration of the while loop increases the size of the smaller part by at least one
and halts before or when the partition is balanced. Following the construction, if the
Improvement Procedure needs to be run again, it must first run through Stage 1 or
2 which decreases the cut-size by at least one. Moreover, the algorithm clearly runs
in polynomial time.

Let’s discuss the correctness of the algorithm. Suppose the algorithm terminates
with the final partition {C1,C2}. Due to the conditions inside the algorithm, � n−1

3 � ≤
|Ci | ≤ n − � n−1

3 �, i = 1, 2.
Initially, the partition is connected and remains so after each stage, hence the final

partition is connected too.
Then necessarily, each vertex of degree 1 satisfies the condition (1) since it must

be in the same part as its neighbour. Now there are two options:

– If the final partition is balanced then all vertices of degree 2 and 3 may have
at most one out-neighbour (otherwise the Improvement Procedure could be
applied again), hence the final partition {C1,C2} is a 2-community structure due
to Lemma 3(ii).

– If the final partition is not balanced, then the partition must have the properties
described in Lemma 3(i) or (iii) (otherwise, one of Stages 1–2 could be applied
again). Hence the final partition {C1,C2} is a 2-community structure. ��
Now we investigate the problem of the existence and finding of a connected 2-

community structure in dense graphs. We prove that any graph G = (V, E) of
minimum degree |V | − 3 has a connected 2-community structure which can be found
in polynomial time.

Lemma 5 If the complement of the graph G is 2-colourable (using each colour for at
least 2 vertices), then G has a connected 2-community structure which can be found
in polynomial time.

Proof Let G = (V, E) be a graph such that its complement G is 2-colourable. Fix
a 2-colouring of G (with at least 2 vertices for each colour) and define {C1,C2}
as a partition of V , where each part corresponds to one colour in G. Obviously,

123

Algorithmica

|C1|, |C2| ≥ 2. Notice that the induced subgraph on the vertex set C1 (resp. C2) is
a clique. Therefore, any vertex v ∈ V satisfies the condition (1) and the partition
{C1,C2} is a 2-community structure. Since a 2-colouring can be found in polynomial
time, the 2-community structure {C1,C2} too. Obviously, the partition is connected.

��
This result directly implies the following theorem:

Theorem 3 The complement of any bipartite graph (with at least two vertices in each
part) has a connected 2-community structure which can be found in polynomial time.

Theorem 4 Any graph (except a star) of minimum degree (n − 3), n ≥ 4, where n is
the order of the graph, has a connected 2-community structure which can be found in
polynomial time.

Proof Let G be a graph of size n and of minimum degree (n − 3) (except a star),
n ≥ 4, and G be the complement of G. Notice that G is of degree at most 2. If
G doesn’t contain an odd cycle, then there exists a 2-colouring of G with at least 2
vertices for each colour. In such case, a connected 2-community structure can be found
in polynomial time due to Lemma 5.

Now let A be the union of all vertices belonging to an odd cycle in G and denote
by B := V \ A. G[A] is the union of p odd induced cycles with the vertex sets
O1, . . . , Op, p ≥ 1. For each i , 1 ≤ i ≤ p, let vi be any vertex of Oi and fix a
2-colouring of G[Oi \ {vi }]. Let Oi,1, Oi,2 be the set of vertices corresponding to each
colour, obviously |Oi,1| = |Oi,2|. If |B| ≥ 2, take a 2-colouring of B and define a
partition {B1, B2} of B (each part corresponding to a colour) such that |B1| ≥ |B2| ≥ 1,
otherwise B1 := B, B2 := ∅. Define

C1 := ∪p
i=1(Oi,1 ∪ {vi }) ∪ B1, C2 := ∪p

i=1Oi,2 ∪ B2.

Observe that |C1|, |C2| ≥ 2 (|C2| ≤ 1 is only possible for a star or a graph with 3
vertices). Obviously, every such 2-colouring can be found in polynomial time. Finally
we show that the partition {C1,C2} is a connected 2-community structure.

All vertices of C2 satisfy the condition (1) in G since G[C2] is a clique. For each i ,
1 ≤ i ≤ p, all neighbours of vi in G[C1] satisfy the condition (1) in G since they have
all vertices of C1 as neighbours. Moreover, the non-neighbour of vi in G[C1] and vi
itself satisfy the condition (1) in G since |C1| > |C2| implies that |C1|−2

|C1|−1 ≥ |C2|−1
|C2| .

Observe that the partition {C1,C2} is connected. Obviously, G[C2] is connected
since G[C2] is a clique. Moreover, any two vertices in C1 are neighbours except vi
and its neighbour in G[Oi,1] for all i , 1 ≤ i ≤ p. If B1 	= ∅, such two vertices must
have a common neighbour in B1. If B1 = ∅, then either |O1,1| ≥ 3 or p ≥ 2 (due to
assumptions on G), and such two vertices have a common neighbour either in O1,1 or
Oj,1, j 	= i . Hence, G[C1] is also connected. ��
Theorem 5 Let G = (V, E) be a graph with minimum degree � (c−1).|V |

c � where c is
the size of an inclusion-wise maximal clique in G, i.e. such a clique is not a subgraph
of another clique. Then, G has a connected 2-community structure which can be found
in polynomial time.

123

Algorithmica

Proof If c ≥ |V | − 1, then for any vertex u ∈ V , d(u) ≥ � (|V |−2).|V |
|V |−1 � ≥ |V | − 3 and

the rest follows from Theorem 4.
If c ≤ |V |−2, letC be the inclusion-wise maximal clique inG and take {C, V \C}

as a partition. Obviously, the size of both parts is at least 2. C is a clique, hence the
condition (1) is trivially satisfied for all vertices in C . If a vertex u ∈ V \ C has a
neighbour in C , then

din(u)

|V | − c − 1
≥

(c−1).|V |
c − (c − 1)

|V | − c − 1
≥ c − 1

c
≥ dout (u)

c
,

hence the condition (1) is satisfied for all vertices u ∈ V \ C with a neighbour in C .
The rest of vertices in V \ C trivially satisfy the condition (1) since they do not have
a neighbour in C .

Now we prove that the partition {C, V \ C} is connected, which is obviously true
for G[C]. Let suppose that G[V \C] be disconnected and A be the smallest connected
component of G[V \ C]. Notice that |A| ≤ |V |−c

2 and let u ∈ A. Then (c−1)·|V |
c ≤

d(u) ≤ |V |−c
2 + c − 2 and hence |V | ≤ c·(c−4)

c−2 < c, which is impossible. Therefore,
G[V \ C] is a connected subgraph. ��

4 Balanced 2-Community Structure

In this section we study complexity of the problems related to a balanced
2-community structure. First we prove that every graph of maximum degree 3 has
a balanced weak 2-community structure that can be found in polynomial time. The
structural properties of low-degree graphs are crucial to obtain such a result. In general
graphs, the Balanced Weak 2- community and Balanced 2- community prob-
lems are NP-complete as it is shown further in the section. The latter result is contained
as the main result in [10], an alternative shorter proof is presented in this section. Both
NP-completeness results are extended to a connected balanced 2-community structure.

Remark 1 Due to Theorem 2, every graph of maximum degree 3 has a 2-community
structure, but it is not true for a balanced 2-community structure, see Fig. 2. The graph is
obtained by linking three “cross gadgets”. First notice that if a balanced 2-community
exists for the graph, then all vertices of each cross gadget must be in the same part.
Indeed, each vertex of such community structure must have two neighbours in its own
part. But on the other hand, this graph is impossible to split into two balanced parts
without splitting a cross gadget.

Nevertheless, if we focus on a weak community, a balanced weak 2-community
always exists in graphs of maximum degree 3, as it is shown in the following theorem.

Theorem 6 Any graph of maximum degree 3 with at least 4 vertices has a balanced
weak 2-community structure. Moreover, such a community structure can be found in
polynomial time.

Proof Let G = (V, E) be a connected graph of maximum degree 3. First notice that
in any balanced partition of V :

123

Algorithmica

Fig. 2 A cross gadget and a
graph of maximum degree 3
without balanced 2-community
structure

Fig. 3 A tree of maximum degree 3 in which any balanced 2-community structure (or even balanced weak
2-community structure) is disconnected (an example of a balanced 2-community structure is presented by
the black and white colours)

– each vertex of degree 1 fulfils the condition (2), even if its neighbour is not in its
own part,

– each vertex of degree 2 or 3, which has at least one neighbour in its own part,
satisfies the condition (2). Therefore, the only vertices which may not satisfy the
condition (2) are vertices of degree 2 or 3 which have no neighbour in their own
part.

Choose any balanced partition {C1,C2} of G and repeat the following steps (S1)–
(S2) until it is possible:

(S1) If both parts contain a vertex of degree 2 or 3 that has no neighbour in its own part
(sayv1 ∈ C1,v2 ∈ C2), thenupdate:C1 := C1∪{v2}\{v1},C2 := C2∪{v1}\{v2}.

(S2) If there is only one partition that contains a vertex v of degree 2 or 3 that has
no neighbour in its own part (without loss of generality suppose v ∈ C1), then
choose a vertex w ∈ C2 such that w has at least one neighbor in C1 and update:
C1 := C1 ∪ {w}\{v},C2 := C2 ∪ {v}\{w}.

First notice that if case (S2) occurs, such a vertex w always exists since the graph
is connected.

Moreover, the partition remains balanced after each step (S1) or (S2). Besides, the
cut size between the partitions C1 and C2 always decreases (by at least 2 in case (S1),
by at least 1 in case (S2)) so after a finite number of iterations (bounded trivially by
O(|V |2), every vertex of degree 2 or 3 has at least one neighbour in its own part.
Hence, the algorithm returns a balanced weak 2-community structure. ��
Remark 2 Notice that Theorem 6 cannot be extended to a connected case. There exist
graphs of maximum degree 3 in which every balanced weak 2-community structures
is disconnected, see Fig. 3 as an example.

Remark 3 It can be observed that theBalanced 2- community problem (hence also
Balanced Weak 2- community) is polynomially solvable for graphswith bounded
tree-width. Such result follows directly from [3]where the t- Decomposition problem
closely related to communities was studied. The input to the t- Decomposition prob-
lem is a graphG = (V, E), an integer-valued function t = t (n) such that 0 ≤ t (n) ≤ n

123

Algorithmica

for every n ∈ IN, and two functions a, b : V → IN such that a(v), b(v) ≤ d(v), for
all v ∈ V . The problem consists of deciding if there is a partition {V1, V2} of V with
|V1| = t (|V |) such that dG[V1](v) ≥ a(v) for every v ∈ V1 and dG[V2](v) ≥ b(v) for
every v ∈ V2.

In order for {V1, V2} to be a balanced 2-community structurewith |V1| ≥ |V2|, every
v ∈ V1 must satisfy the condition

dG[V1](v)

�n/2�−1 ≥ d(v)−dG[V1](v)

�n/2� and analogously for every

v ∈ V2 must hold
dG[V2](v)

�n/2�−1 ≥ d(v)−dG[V2](v)

�n/2� . Thus, Balanced 2- community can be
condidered as the t- Decomposition problem for selected values of the functions t , a,
b. The conditions for Balanced 2- community can be transformed to the conditions
of the t- Decomposition problem where t (n) = � n

2 �, a(v) = b(v) = � n/2−1
n−1 d(v)�

for n even and a(v) = �d(v)/2�, b(v) = � (n−1)/2−1
n−1 d(v)� for n odd.

Since the t- Decomposition problem was proved to be polynomial-time solvable
for bounded tree-width in [3], we can conclude the same result for the Balanced
2- community problem. Notice that the result cannot be extended to a connected case
for all graphs, see a tree on Fig. 3 as a counterexample.

Now we focus on the problem of Balanced 2- community in general graphs.
In [8] it has been proved that to find a connected balanced partition without any
additional constraints is an NP-complete problem in general graphs. We prove similar
results for Balanced Weak 2- community and Balanced 2- community and
their connected variants. To show that Balanced Weak 2- community is NP-
complete, we use a reduction from the Balanced Co- Satisfactory Partition
problem, proved to be NP-complete in [5].

The problems is defined as follow:
Balanced Co- Satisfactory Partition
Input : A graph G = (V, E) on an even number of vertices.
Question : Is there a balanced partition {C1,C2} of V such that for every v ∈ V ,
din(v) ≤ dout (v)?

Theorem 7 Balanced Weak 2- community is NP-complete.

Proof The problem is clearly in NP. In the following we define a polynomial-time
reduction from Balanced Co- Satisfactory Partition to Balanced Weak
2- community. Let G be a graph on an even number n of vertices as an instance
of Balanced Co- Satisfactory Partition, and let G, the complement of G,
be an instance of Balanced Weak 2- community. If G admits a balanced co-
satisfactory partition {C1,C2} then {C1,C2} is also a weak 2-community. Suppose
din(v) ≤ dout (v) for every vertex v ∈ V (in the graph G). Let d̄in(v) (resp. d̄out (v))
be the number of in-neighbours (resp. out-neighbours) of v in G. Then, the following
holds d̄in(v)+1 = n

2 −din(v) ≥ n
2 −dout (v) = d̄out (v), which is the condition (2) for

a balanced partition. Conversely, any balanced weak 2-community in G is a balanced
co-satisfactory partition in G. ��

The proof of the NP-completeness of Balanced Co- Satisfactory Partition
in [5] is based on the graphsG = (V, E), where V = F∪T ∪V0 with some additional
properties: F and T are independent sets, there are no edges between T and V0, and

123

Algorithmica

there is a vertex f ∈ F that is not adjacent to any vertex of V0. Any balanced co-
satisfactory partition {C1,C2} of V must have the following structure: C1 = F ∪ S
and C2 = T ∪ (V0 \ S) where S ⊆ V0. If G is an instance of Balanced Weak
2- community (constructed following the proof of Theorem 7), one can see that C1
is connected since f is adjacent to all vertices in F ∪ S and C2 is connected since
T is a clique and every vertex of T is adjacent to every vertex of V0 \ S. Hence we
can conclude that even the connected version of Balanced Weak 2- community
is NP-complete.

Theorem 8 Connected Balanced Weak 2- community is NP-complete.

Estivill-Castro et al. [10] have shown that Balanced 2- community is NP-
complete by constructing a reduction from a variant of the Clique problem. We
propose a shorter alternative proof which is also valid for the Connected Bal-
anced 2- community problem. The proof is based on the NP-complete problem
Balanced Satisfactory Partition which was introduced by Bazgan et al. [4] as
follows:
Balanced Satisfactory Partition
Input : A graph G = (V, E) on an even number of vertices.
Question : Is there a balanced partition {C1,C2} of V such that for every v ∈ V ,
din(v) ≥ d(v)

2 ?
It can be proved that these two problems are in fact equivalent when the number of

vertices is even.

Lemma 6 Let G = (V, E) be a graph with n vertices. Consider a partition {C1,C2}
of V and v ∈ C1. Then the following assertions are equivalent:

1. din(v)
|C1|−1 ≥ d(v)

n−1

2. dout (v)
|C2| ≤ d(v)

n−1

3. din(v)
|C1|−1 ≥ dout (v)

|C2|

Proof (1) ⇔ (2) : din(v)
d(v)

≥ |C1|−1
n−1 ⇔ 1 − dout (v)

d(v)
≥ n−|C2|−1

n−1 ⇔ 1 − n−|C2|−1
n−1 ≥

dout (v)
d(v)

⇔ dout (v)
d(v)

≤ |C2|
n−1

(3) ⇔ (1) : din(v)
|C1|−1 ≥ dout (v)

|C2| ⇔ din(v)
|C1|−1 ≥ d(v)−din(v)

n−|C1| ⇔ din(v)[1
|C1|−1 + 1

n−|C1|] ≥
d(v)

n−|C1| ⇔ din(v)
d(v)

≥ |C1|−1
n−1 ��

Note Notice that the third assertion in Lemma 6 is the condition (1) of a 2-community
structure.

Lemma 7 Let G = (V, E) be a graph with an even number n of vertices and {C1,C2}
be a balanced partition of V . Then for any vertex v ∈ V , din(v) = n/2−1

n−1 d(v) if and
only if d(v) = n − 1.

Proof If d(v) = n − 1, then clearly din(v) = n
2 − 1. Suppose now that din(v) =

n/2−1
n−1 d(v). Notice that (−2)(n2 −1)+1(n−1) = 1 fromwhich it can be easily shown
that n

2 −1 and n−1 do not have common divisors. This implies that d(v) is a multiple
of n − 1. Thus, d(v) = n − 1. ��

123

Algorithmica

Note Let {C1,C2} be a balanced partition of G and v ∈ C1 be a vertex of degree
n − 1. Since v has n

2 − 1 neighbours in its own part and n
2 in other part, v does not

satisfy the condition of Balanced Satisfactory Partition. However, v satisfies
the Balanced 2- Community condition since din(v)

|C1|−1 = 1.

Proposition 1 For any graph with n vertices and maximum degree (n − 2) the prob-
lems Balanced Satisfactory Partition and Balanced 2- Community are
equivalent.

Proof Suppose that G = (V, E) is a yes-instance of Balanced Satisfactory
Partition. Hence there exists a balanced partition {C1,C2} of V such that any ver-
tex v ∈ V satisfies the condition din(v) ≥ 1

2d(v), which implies that din(v) ≥
|C1|−1
2|C1|−1d(v) = |C1|−1

n−1 d(v). Thus, G is a yes-instance of Balanced 2- Community.
Suppose now that G is a yes-instance of Balanced 2- Community. Hence there

exists a balanced partition {C1,C2} of V such that any vertex v ∈ V satisfies the
condition din(v) ≥ |C1|−1

|C2| dout (v) that is equivalent to din(v) ≥ |C1|−1
n−1 d(v) using

Lemma 6. According to Lemma 7, there is no vertex v such that din(v) = |C1|−1
n−1 d(v).

Now we need to show that for every vertex v ∈ V, din(v) ≥ 1
2d(v). Suppose by

contradiction that there exists a vertex v ∈ V that does not satisfy the inequality that
is

|C1| − 1

n − 1
d(v) < din(v) <

1

2
d(v)

First, notice that 1
2d(v) − |C1|−1

n−1 d(v) = 1
2(n−1)d(v) < 1, which means that there

is at most one integer number between |C1|−1
n−1 d(v) and 1

2d(v).

Moreover, d(v) cannot be even, since otherwise d(v)
2 would be a whole number and

thus din(v) could not be an integer number. Then d(v) is odd and let d(v) = 2p + 1
for some integer p. We arrive to a contradiction by showing that p < din(v) < p+ 1

2 .

Notice that d(v) < n − 1 ⇒ d(v)−1
2 <

|C1|−1
n−1 d(v) that implies p <

|C1|−1
n−1 d(v) <

din(v). Then necessarily din(v) ≥ 1
2d(v) for every vertex v ∈ V , that is G is a

yes-instance of Balanced Satisfactory Partition. ��

Balanced Satisfactory Partition has already been proved NP-complete in
[4], even if both parts are required to be connected. Moreover, the reduction used in
[4] does not construct a graph with vertices of degree n − 1.

Thus we obtain a similar result as in [10] (the authors have mentioned in the proof
that used technique works also in a connected case).

Theorem 9 Connected Balanced 2- Community is NP-complete.

Finally, it is interesting to notice that there exist graphs inwhich every 2-community
structure is balanced (see Fig. 4).

123

Algorithmica

Fig. 4 An example of a graph
in which all 2-community
structures are balanced

5 Conclusion and Open Problems

An interesting open question is to determine if a graph of size at least 4 (except stars)
has always a 2-community structure, even a connected one. In this paper we prove
that the statement is true for trees, graphs of maximum degree 3, minimum degree
|V | − 3 and some other graph classes. Furthermore, such a structure can be found in
polynomial time. The question remains open even for a weak 2-community structure
where the partial positive results are only known for the same graph classes.

In case of Balanced 2- Community the situation is different. We show that any
graph of maximum degree 3 has a balanced weak 2-community structure, while we
present a graph without a balanced 2-community structure within the same class.
Computationally speaking, finding a balanced weak 2-community structure can be
done in polynomial time in graphs of maximum degree 3 while the Balanced
2- Community problem is NP-complete in general graphs just as its weak version.
The results are similar for connected communities.

To get better understanding of community structures, there are some interesting
problems left open, as to extend 2-community results to other graph classes, to char-
acterise graph classes where the existential/complexity results for 2-community/weak
2-community problems and their connected versions are different or to generalise the
results to k-communities for a fixed k, k ≥ 3.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Aharoni, R., Milner, E.C., Prikry, K.: Unfriendly partitions of a graph. J. Comb. Theory B 50, 1–10
(1990)

2. Andreev, K., Racke, H.: Balanced graph partitioning. Theory Comput. Syst. 39(6), 929–939 (2006)
3. Bazgan, C., Tuza, Z., Vanderpooten, D.: Degree-constrained decompositions of graphs: bounded

treewidth and planarity. Theor. Comput. Sci. 355(3), 389–395 (2006)
4. Bazgan, C., Tuza, Z., Vanderpooten, D.: The satisfactory partition problem. Discret. Appl. Math.

154(8), 1236–1245 (2006)
5. Bazgan, C., Tuza, Z., Vanderpooten, D.: Approximation of satisfactory bisection problems. J. Comput.

Syst. Sci. 74(5), 875–883 (2008)
6. Bazgan, C., Tuza, Z., Vanderpooten, D.: Satisfactory graph partition, variants, and generalizations.

Eur. J. Oper. Res. 206(2), 271–280 (2010)
7. Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent advances in graph partitioning.

arXiv:1311.3144
8. Chlebikova, J.: Approximating the maximally balanced connected partition problem in graphs. Inf.

Process. Lett. 60(5), 223–230 (1996)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1311.3144

Algorithmica

9. Delling, D., Goldberg, A., Pajor, T., Werneck, R.: Customizable route planning. In: Proceedings of
10th International Symposium on Experimental Algorithms, LNCS 6630, pp. 376–387 (2011)

10. Estivill-Castro, V., Parsa, M.: On connected two communities. In: Proceedings of the 36th Australasian
Computer Science Conference (ACSC), pp. 23–30 (2013)

11. Estivill-Castro, V., Parsa, M.: Hardness and tractability of detecting connected communities. In: Pro-
ceedings of the Australasian Computer ScienceWeekMulticonference (ACSW), Article No. 25 (2016)

12. Feldmann, A.E., Foschini, L.: Balanced partitions of trees and applications. Algorithmica 71(2), 354–
376 (2015)

13. Flake, G., Lawrence, S., Giles, C.L.: Efficient identification of web communities. In: Proceedings 6th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM Press, pp.
150160 (2000)

14. Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75–174 (2010)
15. Yero, I.G., Rodríguez-Velázquez, J.A.:Defensive alliances in graphs: a survey (2013). arXiv:1308.2096
16. Kristiansen, P., Hedetniemi, S.M., Hedetniemi, S.T.: Alliances in graphs. J. Comb. Math. Comb. Com-

put. 48, 157–177 (2004)
17. Newman, M.E.J.: Detecting community structure in networks. Eur. Phys. J. B—Condens. Matter

Complex Syst. 38(2), 321–330 (2004)
18. Olsen, M.: A general view on computing communities. Math. Soc. Sci. 66(3), 331–336 (2013)
19. Schaeffer, S.E.: Graph clustering. Comput. Sci. Rev. 1, 27–64 (2007)
20. Shafique, K.H.: Partitioning a graph in alliances and its application to data clustering. Ph.D. Thesis,

School of Computer Science, University of Central Florida, Orlando, (2004)
21. Shmoys, D.B.: Cut problems and their application to divide-and-conquer. In: Approximation Algo-

rithms for NP-Hard Problems, PWS Publishing, pp. 192–235, (1996)

123

http://arxiv.org/abs/1308.2096

	Structural and Algorithmic Properties of 2-Community Structures
	Abstract
	1 Introduction
	2 Preliminaries
	3 Connected 2-Community Structures in Some Graph Classes
	4 Balanced 2-Community Structure
	5 Conclusion and Open Problems
	References

