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Non-coding RNAs (ncRNAs), such as microRNAs and large intergenic non-coding RNAs, have been shown to play essential 
roles in regulating pluripotency. Yet, it is not clear the role of natural antisense transcripts (NATs), also belonging to ncRNAs, 
in embryonic stem cells. However, the role of NATs in embryonic stem cells remains unknown. We further confirmed the ex-
pression of the NATs of three key pluripotency genes, Oct4, Nanog and Sox2. Moreover, overexpression of Sox2-NAT reduces 
the expression of Sox2 protein, and slightly enhances the Sox2 mRNA level. Altogether, our data indicated that like other 
ncRNAs, NATs might be involved in pluripotency maintenance. 
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The primary function of RNAs is well understood as inter-
mediate of genetic information for protein synthesis. Recent 
years, non-coding RNAs (ncRNAs) have drawn a lot of 
attention, and the diverse functions of ncRNAs in various 
biological processes have been revealed [16]. ncRNAs can 
be further divided into two classes: structural and regulatory 
ncRNAs. Structural ncRNAs, including transfer RNA 
(tRNA), ribosomal RNA (rRNA), and small nucleolar RNA 
(snoRNA), are involved in mRNA translation and rRNA 
modification, whereas regulatory ncRNAs, such as small 
interfering RNA (siRNA), microRNA (miRNA), PIWI- 
interacting RNA (piRNA), and long non-coding RNA 
(lncRNA), play important roles in regulating gene expres-
sion. 

Natural antisense transcripts (NATs), belonging to the 
lncRNA family, are transcribed from the opposite DNA 
strand to other transcripts, and at least partially overlap with 
sense RNAs [7,8]. NATs were first discovered in bacteria 

[9,10], and then in eukaryotes [11,12]. With the develop-
ment of genomic approaches, it became clear that NATs are 
widespread throughout the genomes of many species, in-
cluding mouse and human [1315]. Yet, NATs are general-
ly expressed in low abundance, normally more than 10–fold 
lower than sense transcripts [15,16]. NATs carry out the 
regulatory functions through distinct mechanisms, such as 
DNA replication interference, chromatin remodeling, tran-
scriptional regulation, RNA masking, double-stranded RNA 
(dsRNA) mediated siRNA mechanism and translation in-
terference [13]. 

Embryonic stem cells (ESCs) are derived from the inner 
cell mass of the blastocyst [1719]. They are able to self- 
renew indefinitely and have the potential to differentiate 
into all types of cells in an organism. Thus, ESCs have great 
application value in basic developmental biology research, 
drug discovery, and cell replacement therapies. Three tran-
scription factors, Nanog, Oct4 and Sox2, form a core regu-
latory circuit for pluripotency maintenance [2024].  
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ncRNAs also play critical roles in maintaining the pluripo-
tency of ESCs, as well as in establishing the pluripotency 
during induced pluripotent stem (iPS) cell generation. Dicer 
knockout ESCs, in which siRNA and miRNA generation is 
blocked, are deficient in proliferation and differentiation 
[25]. Similarly, ESCs lacking DGCR8, a RNA-binding pro-
tein required for miRNA biogenesis, are unable to fully 
down-regulate pluripotency markers, and retain ESC colony 
morphology upon differentiation [26]. It has been shown 
that dozens of large intergenic non-coding RNAs (linc- 
RNAs) are required for maintaining ESC unique gene ex-
pression profiles [27]. Both miRNAs and lincRNAs can 
facilitate the derivation of iPS cells [28,29]. Moreover, 
miRNAs alone, without exogenous reprogramming tran-
scription factors, could reprogram somatic cells to the plu-
ripotent state [30,31]. 

It becomes clear that ncRNAs play essential roles in plu-
ripotent stem cells. NATs have been detected in human and 
mouse ESCs [32,33]. However, due to the experimental 
technique and focus, no genome-wide analysis of NATs has 
been performed in ESCs. In this study, through digital gene 
expression (DGE) profiling, we found that NATs are also 
genome-wide expressed in mouse ESCs. Next, we con-
firmed the expression of the NATs of three key pluripoten-
cy genes, Nanog, Oct4 and Sox2 by strand-specific reverse 
transcription-PCR (RT-PCR). The ends of these pluripo-
tency gene NATs were determined by 3′- and 5′-Rapid am-
plification of cDNA end (RACE). We further demonstrated 
that Sox2-NAT suppresses the expression of Sox2 protein at 
the post-transcriptional level, whereas Oct4-NAT does not 
affect the expression of Oct4. All together, our data demon-
strated the widespread expression of NATs in mouse ESCs, 
and that NATs may be involved in pluripotency mainte-
nance through regulating the expression of pluripotency 
genes. 

1  Materials and methods 

1.1  Cell Culture 

V6.5 mouse ESCs were cultured in growth medium con-
sisting of 85% DMEM (high-glucose, Invitrogen, USA), 
15% FBS (Hyclone, USA), 2 mmol L1 L-glutamine, 5000 
U mL1 penicillin and streptomycin, 0.1 mmol L1 non- es-
sential amino acids (Invitrogen, USA), 0.1 mmol L1 
-mercaptoethanol (Sigma, USA), and 1000 U mL1 LIF 
(ESGRO, Chemicon, USA). 

1.2  Digital Gene Expression (DGE) Profiling 

DGE profiling and bioinformatic analysis were carried out 
by BGI Tech, China. 

1.3  Strand-specific RT-PCR 

Total RNA was extracted from cells using the RNeasy mini 

kit (Qiagen, Germany). cDNA synthesis was performed 
using the Tanscriptor First Strand cDNA Synthesis Kit 
(Roche, Switzerland) with strand-specific primer Table S1 
in Supporting Information according to the manufacturer’s 
instructions. PCR reactions were performed with EasyTaq 
(Transgen, China) in a Bio-Rad cycler. PCR cycling condi-
tions were 95°C for 5 min, 35 cycles of 95°C for 15 s, 55°C 
for 15 s, and 72°C for 30 s. 

1.4  RACE  

Rapid amplification of cDNA end (RACE) was performed 
by the SMART RACE cDNA Amplification Kit (Clontech, 
USA). The RACE products were cloned into pEASY-T3 
vector (Transgen, China) and then sequenced. 

1.5  Quantitative RT-PCR 

Total RNA was extracted from cells using the RNeasy mini 
kit (Qiagen, Germany). cDNA synthesis was performed 
using the Tanscriptor First Strand cDNA Synthesis Kit 
(Roche, Switzerland) with random primers according to the 
manufacturer’s instruction. PCR reactions were performed 
with FastStart Universal SYBR Green Master (Roche, 
Switzerland) in a Bio-Rad iQ5 system. PCR cycling condi-
tions were 95°C for 2 min, 40 cycles of 95°C for 15 s, 58°C 
for 15 s, and 72°C for 30 s, and then a melting curve of the 
amplified DNA was acquired. Quantification of target genes 
was normalized with β-Actin. Primer information was listed 
in Table S1 in Supporting Information. 

1.6  Western blot Analysis 

Cells were lysed in lysis buffer (Beyotime, China), and pro-
tein concentration was measured using a BCA protein assay 
kit (Beyotime, China) to ensure equal loading. The samples 
were resolved by SDS-PAGE, followed by transferring onto 
a PVDF membrane (Millipore, USA). Membranes were 
probed with anti-Sox2 (Cell Signaling Technology, USA), 
anti-β-Tubulin (Huada, China), and anti-Oct3/4 (Santa Cruz 
Biotechnology, USA). Bound primary antibodies were rec-
ognized by HRP-linked secondary antibodies (GE 
Healthcare, Germany). Immunoreactivity was detected by 
ECL Plus (Beyotime, China) and Kodak light film. Digital 
images of films were taken with Bio-Rad Molecular Imager 
Gel Doc XR. The intensity of bands was quantified with the 
Quantity One analysis software (Bio-Rad, USA). 

1.7  Statistical Analysis 

Data were analyzed by Student’s t test. Statistically signifi-
cant P values were indicated in figures as follows: **, 
P<0.01; *, P<0.05. 
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2  Results 

2.1  Widespread expression of NATs in mouse ESCs 

To determine the expression of NATs in mouse ESCs, du-
plicated mouse ESC RNA samples were subjected to DGE 
analysis. Solexa sequencing of the two DGE libraries 
yielded 6003694 and 5832791 clean sequence tags, respec-
tively. Around 55% of the sequence tags were unambigu-
ously mapped to ~13000 sense genes, while about 5% of the 
tags were mapped to ~8000 antisense genes (Table S3 in 
Supporting Information). The genes associated with anti-
sense tags were listed in Table S4 in Supporting Infor-
mation. The data demonstrated the widespread expression 
of NATs in mouse ESCs. Consistent with previous reports, 
NATs are generally expressed 10–fold lower than their 
sense counterparts. 

2.2  Validating the NATs of pluripotency genes 

Given the importance of pluripotency genes in ESC 
self-renewal, we are particularly interested in the NATs of 
pluripotency genes, such as Nanog, Oct4 and Sox2. Indeed, 
sequence tags corresponding to these pluripotency gene 
NATs were identified (Table 1). The DGE data showed that 
Oct4-NAT and Sox2-NAT are expressed at higher levels than 
Nanog-NAT. To confirm the expression of the pluripotency 
gene NATs, strand-specific RT-PCR were performed. For 
each NAT, multiple primer pairs were used to avoid 
false-negative result due to RNA splicing. Meanwhile, mul-
tiple primer pairs also facilitated us to narrow down the 3′ 
and 5′-ends of the NATs. With this strategy, we validated 
the expression of Nanog-, Oct4- and Sox2-NATs, with N2, 
N3, O2-O5, and S2 primer pairs. The antisense transcripts 
were not detected with N1, N4, O1, O6, S1, and S3 primer 
pairs (Figure 1A and B), indicating that these regions are 
not transcribed in the antisense direction. With this infor-
mation, we carried out 3′- and 5′-RACE experiments to pre-
cisely determine the 3′- and 5′-ends of these NATs (Fig- 

ure 1C). Except for the 3′-end of Nanog-NAT, all the ends 
were identified (indicated with arrows in Figure 1A, and 
listed in Table S2 in Supporting Information). The failure to 
map the 3′-end of Nanog-NAT is probably due to the low 
abundance of the Nanog-NAT transcript. Interestingly, three 
different 5′-ends of Oct4-NAT were identified, likely caused 
by different transcription starting sites. 

After defining the 3′- and 5′-ends of Oct4- and 
Sox2-NATs, we amplified the full length NATs by RT-PCR 
and sequenced them. The result showed that Oct4-NAT 
mRNA is spliced in the same pattern as its sense counterpart, 
despite the opposite transcription orientation. Both Sox2 and 
Sox2-NAT are single exon genes. Based on the overlapping 
pattern between sense and antisense transcripts, NATs can 
be divided into three different types: head to head, tail to tail, 
and full overlap [34]. Both Oct4-NAT and Sox2-NAT belong 
to the full overlap type. Thus far, we have demonstrated the 
expression of Nanog-, Oct4- and Sox2-NATs in mouse ESCs 
by DGE, strand-specific RT-PCR, and cloning the full 
length NATs. 

2.3  Regulatory function of Oct4- and Sox2-NATs in 
ESCs 

To investigate whether Oct4- and Sox2-NATs regulate the 
expression of their sense transcripts, the full length Oct4- 
and Sox2-NATs were overexpressed in mouse ESCs by 
lipofectamine transfection, and the expression of Oct4 and 
Sox2 mRNA were measured by quantitative RT-PCR. The 
overexpression of Sox2-NAT slightly enhances the expres-
sion of Sox2 mRNA, while Oct4-NAT does not affect the 
Oct4 mRNA level (Figure 2A). Next, we asked whether 
Oct4- and Sox2-NATs regulate the expression of Oct4 and 
Sox2 at protein level. Western blot results showed that 
Sox2-NAT overexpression significantly down-regulates the 
level of Sox2 protein, whereas Oct4 protein remains un-
changed upon Oct4-NAT overexpression (Figure 2B and 
2C). Thus, Sox2-NAT regulates the expression of Sox2 pro-
tein post-transcriptionally. 

Table 1  Antisense sequence tags of key pluripotency genes 

Gene Tag 

Abundance 

Tag copy number TPM (Tag) 

ES-1 ES-2 ES-1 ES-2 

Nanog CATGTCAGTGTGATGGCGAGG 2 6 0.3 1.0 

 CATGGTGGCTCACAACCATAC 5 0 0.8 0.0 

      

Oct4 CATGGGAGAGCCCAGAGCAGT 125 121 20.8 20.74 

 CATGGTCTCCAGACTCCACCT 11 12 1.8 2.1 

 CATGTTCTTAAGGCTGAGCTG 5 7 0.8 1.2 

      

Sox2 CATGGATTCTCGGCAGCCTGA 249 210 41.5 36.0 

 CATGGACATTTTTTTTTTGCC 8 6 1.3 1.0 

 CATGTTTTCCTTTTGTACAAT 22 15 3.7 2.6 

 CATGTTTATCTCGATAAATAC 25 17 4.2 2.9 

 CATGGTCCGATTCCCCCGCCC 0 3 0.0 0.5 
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Figure 1  Validating the expression of Nanog-, Oct4- and Sox2-NATs in mouse ESCs. A, Schematic illustration of the Nanog, Oct4 and Sox2 loci. Exons 
are shown in black boxes, and arrows with “sense” indicate the sense transcription direction. Filled triangles represent sequence tags identified in DGE anal-
ysis. Short fragments N1-N4, O1-O6, and S1-S3, represent amplified regions in strand-specific RT-PCR. Black short fragments indicate detectable NATs, 
whereas grey short fragments mean undetectable NATs. The 5′- and 3′- ends of NATs are marked by arrows with short vertical lines. B, Confirmation the 
expression of Nanog, Oct4 and Sox2-NATs by strand-specific RT-PCR. White asterisks mark non-specific bands proved by sequencing. C, Determination of 
the 3′- and 5′-ends Nanog, Oct4 and Sox2-NATs by RACE. White asterisks mark non-specific bands proved by sequencing. 

 
Figure 2  Sox2-NAT down-regulates Sox2 protein. A, Mouse ESCs were transfected relative with empty vector (control), vectors expressing Oct4-NAT or 
Sox2-NAT. 48 h after transfection, cells were harvested for RNA purification. And the expression of Oct4 and Sox2 mRNA were measured by quantitative 
RT-PCR. B, Mouse ESCs were transfected with empty vector (control), vectors expressing Oct4-NAT or Sox2-NAT. 48 h after transfection, cells were har-
vested and subjected to Western Blot. C, Quantification of Western Blot results in (B). Averages and standard deviations of three independent experiments 
are shown. Statistically significant P values were indicated in figures as follows: **, P<0.01; *, P<0.05. 

2.4  Sox2-NAT functions as a ncRNA 

Sequence analysis of Sox2-NAT revealed a putative open 
reading frame (ORF) at the 3′-end, even though lacking a 
stop codon (Figure 3). To rule out the possibility that the 
putative encoded protein accounts for the regulatory func-
tion of Sox2-NAT, a series of truncation mutants of 
Sox2-NAT were constructed. Only the F800 and R800 mu-
tants remain the ability to reduce Sox2 protein expression, 
when they are overexpressed (Figure 3). Since 57 amino  

acid residues of the putative ORF, more than 1/3 of the pu-
tative protein, were deleted in the F800 mutant, it suggested 
that the regulatory function of Sox2-NAT is independent of 
the putative encoded protein. Moreover, the R600 mutant, 
harboring the intact ORF, failed to decrease Sox2 protein 
level, further ruling out that the putative encoded protein is 
required for the function of Sox2-NAT. Thus, Sox2-NAT 
functions as a ncRNA to down-regulate Sox2 protein. 

The F400, F600, R400 and R600 mutants all lost the reg-
ulatory function on Sox2 protein (Figure 3), implying that 
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Figure 3  Sox2-NAT functions as an ncRNA. Black lines represent full length (FL) Sox-NAT and a series of truncation Sox-NAT mutants. The dotted box on 
the FL Sox-NAT marks the putative ORF. FL Sox-NAT and truncation Sox-NAT mutants were overexpressed in mouse ESCs for 48 h. Then Cells were har-
vested and subjected to Western Blot. The F800 and R800 mutants, as well as FL Sox-NAT, suppress the expression of Sox2 protein, while the rest mutants 
do not affect Sox2 protein expression. C: Control vector. 

Sox2-NAT does not carry out its function through a dsRNA 
mediated siRNA mechanism. Instead, the proper folding of 
RNA and certain domain(s) are essential for Sox2-NAT’s 
function. We then used RNAfold (http://rna.tbi.univie.ac.at/ 
cgi-bin/RNAfold.cgi) to predict the secondary structures of 
the full length and truncated Sox2-NATs. Notably, the 
structures of mutants with large truncations, such as F400, 
F600, R400 and R600, are quite different from that of the 
full length Sox2-NAT (Figure 4A). It might explain why 
these truncation mutants are defect in regulating Sox2 pro-
tein. In contrast, the overall structures of the F800 and R800 
mutants are similar to that of the full length Sox2-NAT, es-
pecially the central region highlighted with dotted rectan-
gles (Figure 4A). This region might be involved in interact-
ing with other protein and/or RNA molecules, thus indis-
pensible for the function of Sox2-NAT. 

3  Discussion 

Over the past few years, it became clear that NATs are 
widely expressed in many species, and that they exert their 
regulatory functions through distinct mechanisms in various 
biological processes [7,8]. Thirty NATs, including OCT4-, 
NANOG- and LIN28-NATs, have been identified in human 
ESCs by reverse serial analysis of gene expression (SAGE) 
[32]. A recent study on lncRNAs identified 202 and 143 
NATs in human and mouse ESCs, respectively [33]. In this 
study, we first demonstrated widespread expression of 
NATs in mouse ESCs by DGE analysis. Around 8000 genes 
are associated with antisense transcription. The discrepancy 
might be due to the conventional sequencing method used 
in the first study and the stringent call for large noncoding 
RNAs in the second study. The high sensitivity of DGE 
analysis might also facilitate detecting low abundant NATs. 

We then confirmed the expression of the NATs of three key 
pluripotency genes, Nanog, Oct4 and Sox2, by strand-  
specific RT-PCR, 3′- and 5′-RACE, and cloning the full 
length NATs. Furthermore, we found that Sox2-NAT func-
tions as a ncRNA to down-regulate Sox2 protein expression. 
Therefore, like other ncRNAs, NATs might be involved in 
regulating self-renewal and differentiation of ESCs. NATs 
may prevent overexpression of pluripotency genes, such as 
Sox2, thus facilitating ESCs exiting from the pluripotency 
state. On the other hand, NATs may contribute to ESC 
self-renewal by suppressing of differentiation genes. 

Even though DGE analysis allows identification of NATs, 
it cannot provide the full-length information of NATs. To 
obtain the full-length information of NATs, RNA sequenc-
ing with the second generation sequencing technology 
(RNA-seq) is required. However, due to the low abundance 
of NATs, deeper sequencing is necessary to comprehen-
sively detect genome-wide NATs. 

Sox2-NAT regulates Sox2 protein expression post-  
transcriptionally (Figure 4B). Two evidences support that 
Sox2-NAT carries out this regulatory function as a ncRNA, 
but not through its putative encoded protein. First, trunca-
tion of the putative ORF does not impair the function of the 
F800 mutant. Second, the R600 mutant, which deletes the 
5′-end of Sox2-NAT and keeps the ORF intact, loses the 
regulatory function. The proper folding of Sox2-NAT seems 
to be essential to down-regulate Sox2 protein. How 
Sox2-NAT suppresses Sox2 protein expression, remains to 
be explored. It has been shown that PU.1 antisense RNA 
inhibits the synthesis of PU.1 protein by blocking transla-
tion elongation [35]. It is possible that Sox2-NAT also exerts 
its regulatory function at the protein synthesis step. Alterna-
tively, Sox2-NAT might interact with Sox2 mRNA, as well 
as other proteins, to retain Sox2 mRNA in the nucleus. 
Consequently, protein synthesis is blocked. Overexpression 
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Figure 4  Proper folding of Sox2-NAT RNA may be essential for its regulatory function. A, Predicted secondary structures of Sox2-NAT and its truncation 
mutants. RNAfold (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi) was used to predict RNA secondary structure. Rectangles highlight the relatively con-
served structure shared by FL, F800 and R800. B, A proposed model for the regulatory function of Sox2-NAT. Sox2-NAT should be properly folded, and 
interact with other RNA and protein molecules to suppress the translation of Sox2 protein. 

of Sox2-NAT slightly enhances the level of Sox2 mRNA. 
The formation of RNA duplex might stabilize Sox2 mRNA, 
thus elevating the expression of Sox2 mRNA. Another pos-
sibility is that reduced Sox2 protein level induces a com-
pensatory response at transcriptional level, and more Sox2 
mRNA is transcribed.  

Even though we did not find any function of Oct4-NAT, 
it does not mean that Oct4-NAT is just a product of tran-
scriptional noise without any function. Overexpression of 
Oct4-NAT only allows us to identify the regulatory function 
in trans, but not in cis. It remains possible that Oct4-NAT 

functions in cis to regulate the transcription of the Oct4 
gene. To study the in cis function of Oct4-NAT, modulating 
the endogenous Oct4-NAT transcription is necessary. How-
ever, Oct4-NAT completely overlaps with Oct4 sense tran-
script. Thus, with conventional siRNA or shRNA, it is im-
possible to specifically down-regulate Oct4-NAT, without 
affecting Oct4. It has been reported that chemically modi-
fied single-stranded siRNA (ss-siRNA) can achieve al-
lele-specific silencing [36,37]. Yet, the ss-siRNA technolo-
gy is not widely accessible to the research community. In 
the future, application of ss-siRNA might facilitate the 
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functional study of NATs. 
In this study, we only investigated the narrowly defined 

NATs, also known as cis-NATs, which refer to RNAs tran-
scribed from the opposite DNA strand of other transcripts, 
and at least overlapping partially with their sense counter-
parts. A broader definition of NATs refers to RNAs con-
taining sequences complementary to other transcripts [38]. 
According to their origin, the broadly defined NATs can be 
divided into two classes, cis-NATs and trans-NATs. cis- 
NATs are transcribed from the same genomic loci as their 
trans-counterparts, while trans-NATs and their comple-
mentary sense transcripts are derived from separate ge-
nomic loci [38]. Further studies are required to investigate 
the abundance of trans-NATs in mouse ESCs, and the roles 
of trans-NATs in pluripotency maintenance. 

In summary, our study confirmed the expression of 
NATs in mouse ESCs, and demonstrated a regulatory func-
tion of Sox2-NAT. This is just a beginning to understand the 
role of NATs in pluripotent stem cells. Further studies and 
new experimental technologies are required to elucidate the 
functions of NATs in pluripotency maintenance. 
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