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Abstract
In this paper we consider a kind of the spruce-budworm system with memory effects.
On the basis of geometric singular perturbation theory, the transition of the solution
trajectory is illustrated, and the existence of the relaxation oscillation with a rapid
movement process alternating with a slow movement process is proved. The
characteristic of the relaxation oscillation, it is indicated, is dependent on the structure
of the slow manifold. Moreover, the approximate expression of the relaxation
oscillation and its period are obtained analytically. Finally we present two simulations
to demonstrate the validity of the analytical conclusion.
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1 Introduction
To reproduce the dynamics of the spruce-budworm system, the Hopfield spruce-budworm
model has been proposed in the work of Rasmusse et al. [] who showed for a spruce-
budworm model that the predator and prey permanently oscillate for any positive initial
conditions. Such kinds of spruce-budworm systems exhibit periodic outbreaks at about
 year intervals in North-American forests. During outbreaks, populations of the bud-
worm may multiply hundredfold in a few months, causing severe defoliation. Trees are
seldom killed by defoliation, and they may live for - years, but it takes them -
years to fully regrow their leaves.

In [], Ludwig et al. proposed a model separating the timescales of slow spruce regrowth
versus the fast population dynamics of budworm larvae and their predators. They used
the so-called logistic model for the food-limited dynamics of budworms in the absence
of predators. Birds preying on budworms were assumed to exhibit a switching functional
response [], searching for other food resources when the population of budworm is low,
and switching to budworm only when the density of budworm exceeds a certain threshold.
Following [, ] Rasmusse et al. study the model

⎧
⎨

⎩

Ṅ(t∗) = rN( – N
kS ) – β PN

ηS+N ,

Ṡ(t∗) = ρS( – S
Smax

) – δN ,
(.)
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where N and S represent the budworm population density and the spruce biomass density,
respectively. By using singular perturbation theory, a relaxation oscillation of this system
was obtained.

As pointed out in [, ], the existence of such relaxation oscillations implies that the
coexistence of predators and prey occurs through a simple periodically alternated two-
season behavior: a poor season, characterized by an almost endemic presence of the prey,
alternates with a rich season, during which prey are abundant and predators are regener-
ated.

It is natural to introduce time delay into models of interacting species, formulated in
the coupled ordinary differential equation [–]. For example, in predator-prey models
it is reasonable to assume that the rate of increase of the prey population depends on
the recent history of the prey population. So, in this study we propose and analyze the
following spruce-budworm system of equations:

⎧
⎨

⎩

Ṅ(t∗) = rN(t∗)( – N(t∗)
kS(t∗) ) – β P(N(t∗))

η(S(t∗))+(N(t∗)) ,

Ṡ(t∗) = ρS(t∗)( –
∫ t∗

–∞ W (t∗–z)S(z) dz
Smax

) – δN(t∗),
(.)

which describes the dynamics of interactions between a predator and a prey species with
a distributed delay W (t∗ – z) in the prey population S(t∗), at time t∗. The parameters r,
ρ , k, β , P, δ, η, and Smax are positive. r is the intrinsic growth rate for the budworm pop-
ulation, ρ is a typical growth rate for the biomass population, k is the effective carrying
capacity coefficient for the budworm, β is the maximum consumption rate of budworms
per budworm-predator per time, P is the maximal loss of budworm due to higher order
predators, δ is per capita rate for spruce depletion per budworm per time, η is the effective
regulation coefficient for the predation pressure, Smax is the ’carrying capacity’ (asymptotic
maximum) of the leaf area, kS is the carrying capacity for the budworm population, ηS is
the half-saturation density of the predator pressure, δN is the predation pressure on the
prey (leaves), and β PN

ηS+N represents the predation pressure by a lose term due to the
relatively fast timescale of predation.

The distributed delay represented by the weight function W (s) : R+ → R+ satisfies
W (s) ≥  and

∫ ∞
 W (t∗) dt = . See [–]. The continuous delay in the prey equation

means that the quantity of prey has an influence on the present growth rate of prey not
just at a single moment in the past but over the whole past, or at least in those time inter-
vals where the function W (t∗) is not zero. Our study in this paper treats the case of the
density function W (s) : R+ → R+ defined by

W (s) = ase–as, a > , (.)

which is the term called the ‘strong’ generic kernel function (’memory with hump’) and
is a particular case of the Gamma function described by Fargue []. The ‘strong’ generic
kernel implies that a particular time in the past is more important than any other [].

If the weight function in model (.) is given by (.), we have the advantage that it spec-
ifies the moment in the past when the quantity of the prey is most important from the
point of view of the present growth of the prey. This occurs 

a units before the present
time t (the weight function has a hump at z = t – 

a , and going further backwards in time
the effect of the past is fading away), the phenomenon is richer. And when the delay kernel
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function W (s) takes the form of the ‘strong’ generic kernel function, it is unknown how
the delay kernel W (s) = ase–as (a > ) (i.e., the parameter a) affects the dynamics of sys-
tem (.). Therefore, in this paper, we study mainly the effects of the parameter a in the
‘strong’ delay kernel on the dynamical behaviors of system (.).

Though our study in this paper allows one to replace the distributed delay W (s) given
in (.) by a more general Gamma distributed delay kernel, for example

W (s) =
amsm–e–αs

(m – )!
, m = , , . . . , n, (.)

we prefer to retain the second equation in system (.) in its present form only as the
mathematical calculations are very complicated.

The present paper is organized as follows. In Section , by means of a change of variables,
we first transform system (.) with the ‘strong’ delay kernel into a four-dimensional sys-
tem of differential equations. In Section , by linearizing the resulting four-dimensional
system at the positive equilibrium and analyzing the associated characteristic equation,
the Hopf bifurcations are demonstrated. In particular, by applying geometric singular per-
turbation theory, the approximate expression of the relaxation oscillation and its period
are obtained analytically. To verify our theoretical predictions, two numerical simulations
are also included in Section .

As argued by Ludwig et al. [], we assume that the predator population in our model has
fast dynamics (the predator population grows much faster than those of the predator), i.e.,
ρ � r.

2 The model equation
We define two new variables as

Q
(
t∗) =

∫ t∗

–∞
W

(
t∗ – z

)
S(z) dz = a

∫ t∗

–∞

(
t∗ – z

)
S(z)e–a(t∗–z) dz

and

R
(
t∗) = a

∫ t∗

–∞
S(z)e–a(t∗–z) dz.

Then using the linear chain trick technique (see []), system (.) can be transformed into
the following equivalent system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ṅ(t∗) = rN(t∗)( – N(t∗)
kS(t∗) ) – β

P(N(t∗))

η(S(t∗))+(N(t∗)) ,

Ṡ(t∗) = ρS(t∗)( – Q(t∗)
Smax

) – δN(t∗),

Q̇(t∗) = a(R(t∗) – Q(t∗)),

Ṙ(t∗) = a(S(t∗) – R(t∗)).

(.)

To simplify expression of (.), we introduce a new time variable τ = ρt∗, and denote
ε = ρ

r , X = N
kS , Z = rN

βP , Y = rkS
βP , Ymax = rkSmax

βP , α = η

k , 	 = kδ
ρ

, and V = rkQ
βP , U = rkR

βP . Then
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equation (.) is referred to as the dimensionless spruce-budworm model,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ε dZ
dτ

= YF( Z
Y , Y ;α),

dY
dτ

= Yf ( Z
Y , V ;	, Ymax),

dV
dτ

= f ∗(V , U ; a),
dU
dτ

= g∗(Y , U ; a),

(.)

where

F
(
X, Y ;α) = X( – X) –


Y

· X

α + X ,

f (X, V ;	, Ymax) =  –
V

Ymax
– 	X,

f ∗(V , U ; a) = a(U – V ),

g∗(Y , U ; a) = a(Y – U),

and  < ε � . The small positive parameter ε in this system implies that model (.)
is a singularly perturbed system. The possible non-trivial equilibrium points satisfy the
conditions

Y =
X

(α + X)( – X)
, (.)

V = Ymax( – 	X), (.)

Y = U = V . (.)

Since X, Y > , it follows from (.)-(.) that possible equilibrium points are restricted to
the strip  < X <  and Y , V , U > .

We introduce a fast time variable t = τ
ε

, and denote Z(t) = Z(εt), Y (t) = Y (εt), V (t) =
V (εt), and U(t) = U(εt), then equation (.) becomes

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dZ
dt = YF( Z

Y , Y ;α),
dY
dt = εYf ( Z

Y , V ;	, Ymax),
dV
dt = εf ∗(V , U ; a)
dU
dt = εg∗(Y , U ; a).

(.)

Letting ε →  in equation (.), one has a fast subsystem governing the fast variable only

dZ
dt

= YF

(
Z
Y

, Y ;α
)

, (.)

where Y is regarded as a parameter.

Remark  The model with the delay kernel W (s) is very hard to analyze. So authors use
many methods to eliminate delay. By defining new variables and using the linear chain trick
technique, the original model (.) can be rewritten as the equivalent ordinary differential
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Figure 1 Three different cases of the one
equilibrium point in the strip 0 < X < 1 and Y > 0
when 0 < α2 = 0.0085 < 1

27 with the projection on
the (X, Y) plane.

equations (.) without delay. But the price is that the dimension of the equations would
be increased from two to four. Although the model becomes the four-dimensional system
(.), the variables U and V of the systems do not play a major role. Therefore, we only
need to analyze the first two equations of (.).

3 Slow-fast dynamics
Geometric singular perturbation theory, mainly due to Tikhonov and Fenichel [–],
is an efficient tool for investigating the slow-fast dynamics of the systems with two
timescales. According to the geometric singular perturbation theory, the dynamical be-
havior of the two timescale systems is governed by the structure of the slow manifold
including the shape, stability, and bifurcation of the slow manifold, as well as the location
and stability of the equilibrium of the two timescale systems.

First, the geometric singular perturbation theory defines the slow manifold of equation
(.) as the equilibriums of the fast subsystem equation (.)

M =
{

(Z, Y , V , U)
∣
∣
∣ YF

(
Z
Y

, Y ;α
)

= 
}

=
{

(Z, Y , V , U)
∣
∣
∣ Y =

X
(α + X)( – X)

}

, (.)

where X = Z
Y . It is the phase space for the reduced problem. Denote 
(X;α) := X

(X+α)(–X) ,
�(X; Ymax,	) := Ymax( – 	X). From Y = X

(α+X)(–X) , we have

dY
dX

= 
 ′(X;α) =
P(X)

(X + α)( – X) , (.)

where P(X) = X – X + α.
The shape of the slow manifold depends on the coefficient α. In the following discus-

sion, the case with an S-shape curve of the slow manifold is focused on, correspondingly,
we let α satisfy  < α < 

 (see Figure ).
To determine the stability and bifurcation of the slow manifold M, let us consider the

stability of the equilibriums of the fast subsystem equation (.). For any equilibrium point
(Y, X), the linearized system is

dZ
dt

=
[

 – X –
αX

Y(α + X
)

]

Z(t). (.)



Wang and Han Advances in Difference Equations  (2016) 2016:73 Page 6 of 12

Figure 2 The structure of the slow manifold M of
equation (2.6) with the projection on the (X, Y)
plane, where B1 and B2 are the saddle-note
bifurcation points.

In the slow manifold M, the one eigenvalue of equation (.) is

λ =  – X –
αX

Y(α + X
) .

As for λ, there are two critical points X and X satisfy with  < X < 
 < X ≤ 

 <  such
that λ >  with X ∈ (X, X) and λ <  with X ∈ (, X) ∪ (X, ). The stable branches
and the unstable branch meet in bifurcation points which can be shown to represent two
saddle-node points [], denoted by B = (Z, Y, V, U) and B = (Z, Y, V, U), where Zi =
XiYi, Vi = Ui = Yi, Xi

(X
i +α)(–Xi)

= Yi, andP(Xi) =  (i = , ). The slow manifold M is divided
into three parts by the bifurcation points B and B,

M = M + M + M,

here

M =
{

(Z, Y , V , U)
∣
∣
∣ Z = XY , Y =

X
(X + α)( – X)

,  < X < X

}

,

M =
{

(Z, Y , V , U)
∣
∣
∣ Z = XY , Y =

X
(X + α)( – X)

, X < X < X

}

,

M =
{

(Z, Y , V , U)
∣
∣
∣ Z = XY , Y =

X
(X + α)( – X)

, X < X < 
}

,

and M is unstable, M and M are stable, as illustrated in Figure .
Next, consider the location and stability of the equilibrium points of equation (.), the

equilibrium points are the intersecting nodes of the slow manifold and the curved surface,

{
(Z, Y , V , U)|Y = Ymax( – 	X)

}
.

The number and location of the equilibrium points are dependent on the parameters of
the system; there may be one, two or three equilibrium points, as shown in Figure  and
Figure  with the projection on the (X, Y ) plane.

To decide on the stability of those equilibrium points, consider the characteristic equa-
tion

D(λ) = λ + bλ + cλ + dλ + e = , (.)
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Figure 3 Different cases of the number and location of the equilibrium points of equation (2.6) with
the projection on the (X, Y) plane.

where

b = ε(a – 	X),

c = ε
(
a + 	X – 	X


)

– ε · a	X,

d = ε
[

a	X( – X – a) +
aY

Ymax

]

,

e = εa	X( – X).

When ε = , D(λ) =  has four characteristic roots

λi
 = , i = , , , .

When  < ε � , the three characteristic roots of D(λ) =  can be described as

λ
ε = εκ, λ

ε = εκ, λ
ε = εκ, λ

ε = εκ,

where κi = O() (i = , , , ) are constant. The equilibrium point (Z, Y, V, U) is stable
if and only if all the four characteristic roots λi

ε (i = , , , ) are with a negative real part.
Since e and c are always positive, the sign of λi

ε (i = , , , ) is one of (–, –, –, –), (–, –, +, +),
and (+, +, +, +).

When 	 < a
X

and 	X( – X – a) + aY
Ymax

> , one has –b <  and –d < , which leads
to λi

ε <  (i = , , , ) due to λ
ε + λ

ε + λ
ε + λ

ε = –b <  and λ
ελ


ε(λ

ε + λ
ε ) + λ

ελ

ε (λ

ε + λ
ε) =

–d < .
When 	 > a

X
or 	X( – X – a) + aY

Ymax
< , one has –b >  or –d > , which leads to the

sign of λi
ε (i = , , , ) being either (–, –, +, +) or (+, +, +, +).

Thus, when the equilibrium point (Z, Y, V, U) ∈ M and 	 > a
X

or 	X( – X – a) +
aY

Ymax
< , then the equilibrium point located in M is unstable. When the equilibrium point

(Z, Y, V, U) ∈ M ∪ M, 	 < a
X

, and 	X( – X – a) + aY
Ymax

> , then the equilibrium
point located in M ∪ M is stable.

Once the structure of the slow manifold M and the position and stability of the equi-
libriums of equation (.) are obtained, the dynamical behaviors of equation (.) can be
analyzed through the geometric singular perturbation theory.
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Figure 4 The relaxation oscillation of equation
(2.6) with the projection on the (X, Y) plane.

Conditions 	 < 
X

and –Ymax	 > Y–Y
X–X

guarantee that there is an equilibrium point in
the slow manifold M and M, respectively, as shown in Figure (b). When 

X
< 	 < 

X

and –Ymax	 < – Y
X–X

, there are no equilibrium points in the slow manifold M ∪ M, as
shown in Figure . According to the geometric singular perturbation theory, the solution
trajectory will be attracted by the stable manifold and repelled by the unstable manifold.

Remark  The original model (.) in [] is a D system. The Jacobian J of the vector field
defining the original system is given by second-order matrices. The authors used tr(J) and
det(J) to judge on the positive and negative of eigenvalues. However, the corresponding
characteristic equation of our model is a quartic equation. Thus, the positive and negative
judgment of eigenvalues is more complicated. Through the analysis of the characteristic
equation, the positive and negative of characteristic roots were obtained.

When the solution trajectory is attracted by the stable slow manifold M, it will stick to
the stable manifold and move slowly from down to up, due to

dY
dτ

= Yf
(

Z
Y

, V ;	, Ymax

)

> 

with (Z, Y , V , U) ∈ M. When the solution trajectory crosses the saddle-note bifurcation
point B, it will be repelled by the unstable slow manifold M, and be attracted by the
stable slow manifold M quickly, then the solution trajectory will stick to M and move
slowly from up to down due to dY

dτ
<  with (Z, Y , V , U) ∈ M. When the solution trajectory

crosses the saddle-note bifurcation point B, it will be again attracted by M quickly. Thus,
the slow movement process alternates with the rapid movement process in the predator-
prey system, and the predator-prey system undergoes relaxation oscillation, as shown in
Figure .

Remark  Reference [] used the attraction domain of the upper and lower stable branch
of the quasi-steady state () to judge on the clockwise direction of the relaxation os-
cillation. In this paper, we use the sign of dY

dτ
to judge on the clockwise direction of the

relaxation oscillation. This method is simpler and clearer in comparison.
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The relaxation oscillation of (.) is described approximately as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Y = X
(X+α)(–X) , X ∈ (X∗

 , X],

Z = YX, X ∈ (X, X∗
 ],

Y = X
(X+α)(–X) , X ∈ [X, X∗

 ),

Z = YX, X ∈ [X∗
 , X),

(.)

where X∗
i

((X∗
i )+α)(–X∗

i ) = Y ∗
i .

Since  < ε � , the quick movement process of fast manifolds is instantaneous, thus,
the period of the relaxation oscillation is governed by the slow movement process. Hence,
from (.) the asymptotic expression for the period T of the relaxation oscillations to the
lowest order in the perturbation parameter ε is [–]

T =
∫

M

dτ +
∫

M

dτ + O(ε)

≈
∫

M

dY
Yf (X, V ;	, Ymax)

+
∫

M

dY
Yf (X, V ;	, Ymax)

=
∫ X

X∗



 ′(X) dX

(X)f (X,
(X);	, Ymax)

+
∫ X∗



X


 ′(X) dX

(X)f (X,
(X);	, Ymax)

= Ymax

(∫ X

X∗


P(X) dX
XP(X)

+
∫ X

X∗


P(X) dX
XP(X)

)

, (.)

where O(ε) is the so-called junction time governed by the fast movement process, and
P(X) = Ymax	X – Ymax( + 	)X + Ymax( + α	)X – ( + αYmax + α	Ymax)X + αYmax.

In summary, the main results of this paper can be stated as follows.

Proposition If one of the following two conditions holds:

(H) max{ 
X

, a
X

, a
X

} < 	 < 
X

, –Ymax	 < – Y
X–X

;
(H) 

X
< 	 < 

X
, –Ymax	 < – Y

X–X
, and 	Xi( – Xi – a) + aYi

Ymax
<  (i = , ),

then the predator-prey system undergoes relaxation oscillation, and the analytical expres-
sions of the relaxation oscillation and its period are described approximatively as equations
(.) and (.), respectively.

Remark  Conditions (H) and (H) are incompatible.

4 Numerical example
To demonstrate the validity of the analytical results obtained in the previous sections, two
specific examples are studied in this section.

Example  Let ε = ., α = ., Ymax = , 	 = ., a = ., equation (.) reads

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dZ
dt = Y [X( – X) – 

Y · X

.+X ],
dY
dt = εY ( – V

 – .X),
dV
dt = .ε(U – V ),
dU
dt = .ε(Y – U),

(.)
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Figure 5 The relaxation oscillation of equation (4.1).

where X = Z
Y . By calculating on the platform of Mathematica, we have X = ., X =

., Y = ., Y = ., X∗
 = ., X∗

 = ., 
X

= .,


X
= .. It is easy to see that max{ 

X
, a

X
, a

X
} < 	 = . < 

X
, –Ymax	 = – < – Y

X–X
=

–.. The system undergoes relaxation oscillation, this result is confirmed by the nu-
merical result in Figure . From equation (.), the approximate expression of the relax-
ation oscillation is

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Y = X
(X+α)(–X) , X ∈ (., .],

Z = ., X ∈ (., .],

Y = X
(X+α)(–X) , X ∈ [., .),

Z = ., X ∈ (., .).

(.)

From equation (.), one obtains the approximate period of the relaxation oscillation
Tappr = ., which agrees with the numerical result T = ..

Example  Let ε = ., α = ., Ymax = , 	 = , a = ., equation (.) reads

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dZ
dt = Y [X( – X) – 

Y · X

.+X ],
dY
dt = εY ( – V

 – X),
dV
dt = .ε(U – V ),
dU
dt = .ε(Y – U),

(.)
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Figure 6 The relaxation oscillation of equation (4.3).

where X = Z
Y . Since 

X
< 	 =  < 

X
, –Ymax	 = – < – Y

X–X
= –., 	X( – X – a) +

aY
Ymax

= –. < , and 	X( – X – a) + aY
Ymax

= –. < , the system undergoes
relaxation oscillation. This result is confirmed by the numerical result in Figure . From
equation (.), one obtains the approximate period of the relaxation oscillation Tappr =
., which agrees with the numerical result T = ..

Remark  Though the two phase planes look very similar for the two cases, they represent
two different cases which satisfy the incompatible conditions (H) and (H).

5 Summary
In this paper the geometric singular perturbation theory is employed to illuminate the
transition of the solution trajectory. The existence of the relaxation oscillation is also
proved. Its validity is illustrated by two examples. The whole study is complemented with
direct numerical simulations of the dimensionless spruce-budworm model (.).

Remark  By using the qualitative result (see the proposition), the existence of the relax-
ation oscillation of this kind of predator-prey system with distributed delay can be deter-
mined quickly. The figures of the solution which is obtained by mathematical software can
be explained as the periodical change of ecological population, such as the period of pests
outbreaks. After understanding the periodic system, we can control the pests outbreaks
possibly by adjusting the model’s parameters.
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Remark  The studies indicate that this kind of predator-prey system with distributed de-
lay can exhibit relaxation oscillation, which shows that the Hopfield predator-prey system
has the potential to reproduce the complex dynamics of a real predator-prey system.
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