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QUASITORIC MANIFOLDS WHICH ARE NOT TORIC

ORIGAMI

ANTON AYZENBERG, MIKIYA MASUDA, SEONJEONG PARK, AND HAOZHI ZENG

ABSTRACT. We construct 6-dimensional quasitoric manifolds which are not

toric origami manifolds.

INTRODUCTION

Origami manifolds appeared in differential geometry recently as a generalization

of symplectic manifolds [3]. Toric origami manifolds are in turn generalizations

of symplectic toric manifolds. Toric origami manifolds are a special class of 2n-

dimensional compact manifolds with an effective action of a half-dimensional com-
pact torus $T^{n}$ . In this paper we consider the following question. How large is this

class? Which manifolds with half-dimensional torus actions are toric origami man-
ifolds? In particular, which quasitoric manifolds admit toric origami structures? In
[7] Masuda and Park proved

Theorem 1. Any simply connected compact smooth 4-manifold $M$ with an effective
smooth action of $T^{2}$ is equivariantly diffeomorp $hic$ to a toric origami manifold.

In particular, any 4-dimensional quasitoric manifold is toric origami. The same
question about higher dimensions was open. Here we prove the negative result.

Theorem 2. There exist 6-dimensional quasitoric manifolds, which are not equiv-

ariantly homeomorphic to any toric origami manifold.
We will describe an obstruction for a quasitoric 6-man垣 old to be toric origami

and present a large series of examples, where such an obstruction appears. In spite

of topological nature of the task, the proof is purely discrete geometrical: it relies

on metric and coloring properties of planar graphs.

1. TOPOLOGICAL PRELIMINARIES

1.1. Quasitoric manifolds. The subject of this subsection originally appeared

in the seminal work of Davis and Januszkiewicz [4]. The modern exposition and
technical details can be found in [2, Ch.7].

Let $T^{n}$ be a compact $n$-dimensional torus. The standard representation of $T^{n}$

is a representation $\tau^{n}\sim \mathbb{C}^{n}$ by coordinate-wise rotations. The action of $T^{n}$ on
a manifold $M^{2n}$ is called locally standard, if $M$ has an atlas of standard charts,

each isomorphic to a subset of the standard representation. In the following $M$ is

supposed to be compact.
Since the orbit space $\mathbb{C}^{n}/T^{n}$ of the standard representation is a nonnegative cone

$\mathbb{R}_{\geq}^{n}=\{x\in \mathbb{R}^{n}|x_{i}\geq 0\}$ , the orbit space of any locally standard action has the

structure of a compact manifold with corners. Let $\mathcal{F}(Q)$ denote the set of facets of $Q$

(i.e. faces of codimension 1). For each facet $F$ of $Q$ consider a stabilizer subgroup
$\lambda(F)\subset T^{n}$ , which preserves points over the interior of $F$ . This subgroup is 1-

dimensional and connected, thus it has the form $\{(t^{\lambda_{1}}, \ldots, t^{\lambda_{n}})|t\in T^{1}\}\subset T^{n}$ , for
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some primitive integral vector $(\lambda_{1}, \ldots, \lambda_{n})\in \mathbb{Z}^{n}$ , defined uniquely up to a common
sign. Thus, a primitive integral vector $($up to sign) $\Lambda(F)\in \mathbb{Z}^{n}/\pm is$ associated with
any facet $F$ of $Q$ . This map $\Lambda:\mathcal{F}(Q)arrow \mathbb{Z}^{n}/\pm is$ called a characteristic function
(or a characteristic map). It satisfies the following so called $(*)$ -condition:

If facets $F_{1}$ , . . . , $F_{s}$ intersect, then the set of vectors
$(*)$

$\Lambda(F_{1})$ , . . . , $\Lambda(F_{s})$ is a part some basis of $\mathbb{Z}^{n}.$

Here we actually take not a class $\Lambda(F_{i})\in \mathbb{Z}^{n}/\pm$ , but one of its two particular

representatives in $\mathbb{Z}^{n}$ . Obviously, the condition does not depend on the choice of

sign, thus $(*)$ is well defined. The same convention appears further in the text

without special mention.

Definition 1.1. A manifold $M^{2n}$ with a locally standard action of $T^{n}$ is called
quasitoric, if the orbit space $M/T^{n}$ is homeomorphic to a simple polytope as a

manifold with corners.

Recall that a convex polytope $P$ of dimension $n$ is called simple if any of its

vertices lies in exactly $n$ facets. In other words, a simple polytope is a polytope

which is at the same time a manifold with corners. Considering manifolds with
corners, simple polytopes are the simplest geometrical examples one can imagine.

This makes the definition of quasitoric manifold very natural.
Let $P$ be a simple polytope and $\Lambda$ be a characteristic function, i.e. any map

$\Lambda:\mathcal{F}(P)arrow \mathbb{Z}^{n}/\pm$ satisfying ( $*)$ -condition. The pair $(P, \Lambda)$ is called a characteristic

pair. According to [4], there is $a$ one to one correspondence

{quasitoric manifolds} $-\{$characteristic pairs $\}$

up to equivariant homeomorphism on the left-hand side and combinatorial equiva-

lence on the right-hand side. The quasitoric manifold associated with a character-

istic pair $(P, \Lambda)$ will be denoted $M_{(P,\Lambda)}$ . Let $\eta$ denote the projection to the orbit
space $\eta:M_{(P,\Lambda)}arrow P$ . Each facet $F\in \mathcal{F}(P)$ determines a characteristic submani-

fold $N_{F^{d}}=^{ef}\eta^{-1}(F)\subset M_{(P,\Lambda)}$ of dimension $2n-2$ . On its own, the manifold $N_{F}$ is

again a quasitoric manifold with the orbit space $F.$

1.2. Toric origami manifolds. In the following subsections we recall the def-

initions and properties of toric origami manifolds and origami templates. More

detailed exposition of this theory can be found in [3], [7] or [6].

A folded symplectic form on a $2n$-dimensional smooth manifold $M$ is a closed

2-form $\omega$ whose top power $\omega^{n}$ vanishes transversally on a subset $Z$ and whose

restriction to points in $Z$ has maximal rank. Then $Z$ is a codimension-one subman-

ifold of $M$ called the fold. The pair $(M, \omega)$ is called a folded symplectic manifold.
If $Z$ is empty, $\omega$ is a genuine symplectic form and $(M, \omega)$ is a genuine symplectic

manifold according to classical definition.
Since the restriction of $\omega$ to $Z$ has maximal rank, it has a one-dimensional kernel

at each point of $Z$ . This determines a line field on $Z$ called the null foliation. If

the null foliation is the vertical bundle of some principal $S^{1}$ -fibration $Zarrow Y$ over a
compact base $Y$ , then the folded symplectic form $\omega$ is called an origami form and

the pair $(M, \omega)$ is called an origami manifold.
The action of a torus $T$ (of any dimension) on an origami manifold $(M, \omega)$ is

called Hamiltonian if it admits a moment map $\mu:Marrow t^{*}$ to the dual Lie algebra

of the torus, which satisfies the conditions: (1) $\mu$ is equivariant with respect to the

given action of $T$ on $M$ and the trivial action of $T$ on $t^{*};(2)\mu$ collects Hamiltonian
functions, that is, $d\langle\mu,$ $V\rangle=\omega(V\#$ , where $\langle\mu,$ $V\rangle$ is the function on $M$ , taking

the value $\langle\mu(x)$ , $V\rangle$ at a point $x\in M,$ $V\#$ is a vector flow on $M$ , generated by $V\in t,$

and $\omega(V\#, \cdot)$ is its dual 1-form.

113



QUASITORIC MANIFOLDS WHICH ARE NOT TORIC ORIGAMI

Definition 1.2. A toric origami manifold $(M, \omega, T, \mu)$ , abbreviated as $M$ , is a
compact connected origami manifold $(M, \omega)$ equipped with an effective Hamiltonian
action of a torus $T$ with $\dim T=\frac{1}{2}\dim M$ and with a choice of a $corre\mathcal{S}$ponding

moment map $\mu.$

1.3. Symplectic toric manifolds. When the fold $Z$ is empty, a toric origami
manifold is a symplectic toric manifold. In this case the image $\mu(M)$ of the moment
map is a Delzant polytope in $t^{*}$ , and the map $\mu:Marrow\mu(M)$ itself can be identified
with the map to the orbit space $\eta:Marrow M/T^{n}$ . A classical theorem of Delzant [5]
says that symplectic toric manifolds are classified by the images of their moment
maps in $t^{*}\cong \mathbb{R}^{n}$ . In other words, there is a one-to-one correspondence

{symplectic toric manifolds} $-$ {Delzant polytopes}

up to equivariant symplectomorphism on the left-hand side, and affine equivalence

on the right-hand side. Let us recall the notion of Delzant polytope.

Definition 1.3. A simple convex polytope $P\subset \mathbb{R}^{n}$ is called Delzant, if its normal

fan is smooth (with respect to a fixed lattice $\mathbb{Z}^{n}\subset \mathbb{R}^{n}$ ).

Construction 1.4 (Topological model of symplectic toric manifold). Let $P$ be a
Delzant polytope in $\mathbb{R}^{n}$ . For a facet $F\in \mathcal{F}(P)$ consider its outward primitive normal
vector $\tilde{\nu}(F)\in \mathbb{Z}^{n}$ . Consider the corresponding vector modulo $sign:\nu(F)\in \mathbb{Z}^{n}/\pm.$

By the definition of Delzant polytope, $\nu:\mathcal{F}(P)arrow \mathbb{Z}^{n}/\pm$ satisfies ( $*)$ , thus provides
an example of a characteristic function. The quasitoric manifold

$M_{P}^{d}=^{ef}M_{(P,\nu)}.$

is the symplectic toric manifold corresponding to $P$ (up to equivariant homeomor-
phism).

1.4. Origami templates. To generalize Delzant correspondence to toric origami

manifolds we need a notion of an origami template, which we review next.

Let $\mathcal{D}_{n}$ denote the set of all (full-dimensional) Delzant polytopes in $\mathbb{R}^{n}$ (w.r.t. $a$

fixed lattice) and $\mathcal{F}_{n}$ the set of all their facets.

Definition 1.5. An origami template is a triple $(\Gamma, \Psi_{V}, \Psi_{E})$ , where

$\bullet$
$\Gamma$ is a connected finite graph (loops and multiple edges are allowed) with the

vertex set $V$ and edge set $E_{j}$

$\bullet\Psi_{V}:Varrow \mathcal{D}_{n}$ ;
$\bullet\Psi_{E}:Earrow \mathcal{F}_{n}$ ;

subject to the following conditions:

1. If $e\in E$ is an edge of $\Gamma$ with endpoints $v_{1},$ $v_{2}\in V$ , then $\Psi_{E}(e)$ is a facet of
both polytopes $\Psi_{V}(v_{1})$ and $\Psi_{V}(v_{2})$ , and these polytopes coincide near $\Psi_{E}(e)$

(this means there exists an open neighborhood $U$ of $\Psi_{E}(e)$ in $\mathbb{R}^{n}$ such that
$U\cap\Psi_{V}(v_{1})=U\cap\Psi_{V}(v_{2}))$ .

2. If $e_{1},$ $e_{2}\in E$ are two edges of $\Gamma$ adjacent to $v\in V$ , then $\Psi_{E}(e_{1})$ and $\Psi_{E}(e_{2})$

are disjoint facets of $\Psi_{V}(v)$ .

The facets of the form $\Psi_{E}(e)$ for $e\in E$ are called the fold facets of the origami
template.

For convenience in the following we call the vertices of graph $\Gamma$ the nodes.
One can simply view an origami template as a collection of (possibly overlapping)

Delzant polytopes $\{\Psi_{V}(v)|v\in V\}$ in the same ambient space, with some gluing

data, encoded by a template graph $\Gamma$ (see Fig. 1).
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FIGURE 1. Examples of origami templates in $\dim=2$ . Fold facets
are shown in red.

Theorem 3 ([3]). Assigning the moment data of a toric origami manifold induces
$a$ one-to-one correspondence

{toric origami manifolds} $-$ { origami templates}

up to equivariant origami symplectomorphism on the left-hand side, and affine
equivalence on the right-hand side.

Construction 1.6 (Topological construction of toric origami manifold). Consider
an origami template $O=(\Gamma, \Psi_{V}, \Psi_{E})$ , $\Gamma=(V, E)$ . For each node $v\in V$ the Delzant
polytope $\Psi_{V}(v)\in \mathcal{P}_{n}$ gives a symplectic toric manifold $M_{\Psi_{V}(v)}$ , see construction 1.4.
Now do the following procedure:

1 Take a disjoint union of all manifolds $M_{\Psi_{V}(v)}$ for $v\in V$ ;
2 For each edge $e\in E$ with distinct endpoints $v_{1}$ and $v_{2}$ take an equivariant

connected sum of $M_{\Psi_{V}(v_{1})}$ and $M_{\Psi_{V}(v_{2})}$ along the characteristic submani-
fold $N_{\Psi_{E}(e)}$ (which is embedded in both manifolds);

3 For each loop $e\in E$ based at $v\in V$ take a real blow up of normal bundle
to the submanifold $N_{\Psi_{E}(e)}$ inside $M_{\Psi_{V}(v)}.$

Step 2 makes sense because of pt.1 of Definition 1.5. Indeed, the polytopes
$\Psi_{V}(v_{1})$ and $\Psi_{V}(v_{2})$ agree near $\Psi_{E}(e)$ , thus $M_{\Psi_{V}(v_{1})}$ and $M_{\Psi_{V}(v_{2})}$ have equivari-

antly homeomorphic neighborhoods around $N_{\Psi_{E}(e)}$ , so the connected sum is well

defined. Pt. 2 of Definition 1.5 ensures that surgeries do not touch each other, so
all the connected sums and blow ups can be taken simultaneously.

Denote the resulting manifold of this construction by $M_{O}=M_{(\Gamma,\Psi_{V},\Psi_{E})}$ . This
is exactly the toric origami manifold associated with $O$ via Theorem 3.

Example 1.7. Let us construct a toric origami manifold $X$ , corresponding to the
origami template, made of two triangles (Fig. 1, left). The symplectic toric 4-
manifold corresponding to a triangle is known to be the complex projective plane
$\mathbb{C}P^{2}$ . The characteristic submanifold corresponding to the fold facet is a projective
line $\mathbb{C}P^{1}\subset \mathbb{C}P^{2}$ . Thus, $X$ is a connected sum of two copies of $\mathbb{C}P^{2}$ along the line
$\mathbb{C}P^{1}$ , which lies in both. It is easily seen that this manifold is $S^{4}.$

An origami template $O=(\Gamma, \Psi_{V}, \Psi_{E})$ (and the corresponding manifold $M_{O}$ )

is called co\"orientable if $\Gamma$ has no loops (i.e. edges based at one point). If $M_{O}$ is

co\"orientable, then the action of $T^{n}$ on $M_{O}$ is locally standard [6, lemma 5.1]. The
converse is also true. In the following we consider only co\"orientable templates and
toric origami manifolds.

Construction 1.8 (Orbit space of toric origami manifold). The orbit space $Q=$

$M_{(\Gamma,\Psi_{V},\Psi_{E})}/T^{n}$ of $a$ (co\"orientable) toric origami manifold is a manifold with corners.
It can be described as a topological space obtained by gluing polytopes $\Psi_{V}(v)$ along
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fold facets. More precisely,

(1.1) $Q=v\in V\sqcup(v, \Psi_{V}(v))/\sim,$

where $(u, x)\sim(v, y)$ if there exists an edge $e$ with endpoints $u$ and $v$ , and $x=y\in$

$\Psi_{E}(e)$ . Facets of $Q$ are given by non-fold facets of polytopes $\Psi_{V}(v)$ identified in

the same way. To make this precise, let us call non-fold facets $F_{1}\in \mathcal{F}(\Psi_{V}(v_{1}))$ and
$F_{2}\in \mathcal{F}(\Psi_{V}(v_{2}))$ elementary neighboring w.r. $t$ . to the edge $e\in E$ (with endpoints
$v_{1}$ and $v_{2}$ ) if $F_{1}\cap\Psi_{E}(e)=F_{2}\cap\Psi_{E}(e)$ . The relation of elementary neighborliness
generates an equivalence relation $rightarrow on$ the set of all non-fold facets of all polytopes
$\Psi_{V}(v)$ . Define the facet $[F]$ of the orbit space $Q$ as a union of facets in one
equivalence class:

(1.2) $[F] def= \sqcup(v, G)/\sim, [F]\in \mathcal{F}(Q)$ ,

$Gisnotf\circ 1d,Grightarrow Fv\in V,G\in \mathcal{F}(\Psi_{V}(v)),$

where $\sim$ is the same as in (1.1).

Let us define a primitive normal vector to the facet $[F]$ of $Q$ by $v([F])^{d}=^{ef}\nu(F)\in$

$\mathbb{Z}^{n}/\pm$ . It is well defined since $\nu(F)=\nu(G)$ for $Frightarrow G.$

Note that the relation of elementary neighborliness determines a connected sub-
graph $\Gamma_{[F]}$ of $\Gamma$ . All facets $Grightarrow F$ are Delzant and lie in the same hyperplane $H_{[F]}.$

Thus we obtain an induced origami template

(1.3) $O_{[F]}=(\Gamma_{[F]}, \Psi_{V}|_{\Gamma_{[F]}}\cap H_{[F]}, \Psi_{E}|r_{[F]}\cap H_{[F]})$

of dimension $n-1$ . In particular, if $\eta:M_{O}arrow Q$ denotes the projection to the orbit
space, then the characteristic submanifold $\eta^{-1}([F])$ is the toric origami manifold
of dimension $2n-2$ generated by the origami template $O_{[F]}.$

Extending the origami analogy, we can think of the orbit space $Q$ as“unfolding”
the origami template and then smoothening the angles adjacent to the former fold
facets (remember that we have to identify neighboring faces!).

FIGURE 2. The orbit space of a manifold $S^{4}$ , corresponding to the
origami template shown on Fig. 1, left.

It is easy to see that the orbit space $Q=M_{(\Gamma,\Psi_{V},\Psi_{E})}/T^{n}$ has the same homotopy

type as the graph $\Gamma$ , thus $Q$ is either contractible (when $\Gamma$ is a tree) or homotopy
equivalent to a wedge of circles. This observation shows that whenever the template
graph $\Gamma$ has cycles, the corresponding toric origami manifold cannot be quasitoric.
As an example, the origami template shown on Fig. 1, at the right corresponds to
the origami manifold which is not quasitoric. Since we want to find a quasitoric

manifold which is not toric origami, we need to consider only the cases when the
orbit space is contractible. Thus in the following $\Gamma$ is supposed to be a tree.

2. WEIGHTED SIMPLICIAL SPHERES

In the previous section we have seen that quasitoric manifolds are encoded by
the orbit spaces (which are simple polytopes) and characteristic functions (which
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are colorings of facets by elements of $\mathbb{Z}^{n}/\pm$ ). It will be easier, however, to work
with the dual objects, which we call weighted simplicial spheres.

Recall that a simplicial poset is a finite partially ordered set $S$ such that: (1)

There is a unique minimal element $\emptyset\in S$ , (2) For each $I\in S$ the interval subset
$[\emptyset, I]def=\{J\in S|J\leq I\}$ is isomorphic to the poset of faces of $(k-1)$-dimensional
simplex (i.e. Boolean lattice of rank $k$ ). In this case the element $I$ is said to have
rank $k$ and dimension $k-1$ . The elements of $S$ are called simplices and elements
of rank 1 are called vertices. The set of vertices of $S$ is denoted Vert(S).

A simplicial poset is called pure, if all maximal simplices have the same dimen-

sion. A simplicial poset $S$ is called a simplicial complex, if for any subset of vertices
$\sigma\subseteq Vert(S)$ , there exists at most one simplex whose vertex set is $\sigma.$

Construction 2.1. It is convenient to visualize simplicial posets using their geo-
metrical realizations. Assign the geometrical simplex $\Delta_{I}$ of dimension rank$(I)-1$

to each $I\in S$ and attach them together according to the order relation in $S$ . More
formally, the geometric realization of $S$ is the topological space

$|S|^{d}=^{ef}\sqcup(I, \triangle_{I})/\sim I\in S$ ’

where $(I_{1}, x_{1})\sim(I_{2}, x_{2})$ if $I_{1}<I_{2}$ and $x_{1}=x_{2}\in\Delta_{I_{1}}\subset\Delta_{I_{2}}$ . See details in [2].

A simplicial poset $S$ is called a triangulated sphere if $|S|$ is homeomorphic to a
sphere. $S$ is called a PL-sphere if the barycentric subdivision $S’$ (which is a sim-
plicial complex) is PL-homeomorphic to the boundary of a simplex. In dimension
2, which is the only important case for us, these two notions are equivalent. In the
sequel we call either of them simplicial spheres.

Construction 2.2. Let us define a connected sum of two simplicial spheres along

their vertices. At first we should exclude certain degenerate situations.
For every $I<J$ in $S$ there is a complementary simplex $J\backslash I\in S$ . In other

words, $J\backslash I$ is the face of $J$ complementary to the face $I$ . Define a link of a
simplex $I\in S$ as a partially ordered set $1ink_{S}I=\{J\backslash I|J\in S, J\geq I\}$ with
the order relation induced from $S$ . Define an open star of a simplex $I\in S$ as

a subset $star_{S}^{o}$ $I$ $def=\{J\in S|J\geq I\}$ . There is a natural surjective map of sets
$D_{I}:star_{S}^{o}Iarrow 1ink_{S}$ $I$ sending $J$ to $J\backslash I$ . We call a simplex I admissible if $D_{I}$ is
injective.

Note that in a simplicial complex every simplex is admissible. One can view
admissibility as the property of being “locally a simplicial complex

Let us define the connected sum of two simplicial posets $S_{1}$ and $S_{2}$ along admis-
sible vertices. Let $i_{1}\in S_{1}$ and $i_{2}\in S_{2}$ be admissible vertices, and suppose there
exists an isomorphism of posets $\xi:1ink_{S_{1}}i_{1}arrow 1ink_{S_{2}}i_{2}$ (thus an isomorphism of
open stars, by admissibility). Consider a poset

(2.1) $S_{1i_{1}}\#_{i_{2}}S_{2}^{d}=^{ef}(S_{1}\backslash star_{\mathring{S}_{1}}i_{1})\sqcup(S_{2}\backslash star_{S_{2}}^{o}i_{2})/\sim,$

where $I_{1}\in 1ink_{S_{1}}i_{1}\subset S_{1}$ is identified with $I_{2}\in 1ink_{S_{2}}i_{2}\subset S_{2}$ whenever $I_{2}=\xi(I_{1})$ .
The order relation on $S_{1i_{1}}\#_{i_{2}}S_{2}$ is induced from $S_{1}$ and $S_{2}$ in a natural way. The
poset $S_{1i_{1}}\# i_{2}S_{2}$ is simplicial. If $S_{1},$ $S_{2}$ are simplicial spheres, then so is $S_{1i_{1}}\#_{i_{2}}S_{2}$

(this property may break for non-admissible vertices).

Definition 2.3. Let $S$ be a pure simplicial poset of dimension $n-1$ . A map
$\Lambda:Vert(S)arrow \mathbb{Z}^{n}/\pm is$ called a weighting if, for every simplex $I\in S$ with vertices
$i_{1}$ , . . . , $i_{n}$ , the vectors $\Lambda(i_{1})$ , . . . , $\Lambda(i_{n})$ span $\mathbb{Z}^{n}$ . The pair $(S, \Lambda)$ is called a weighted

simplicial poset.

Definition 2.4. Let $(S_{1}, \Lambda_{1})$ and $(S_{2}, \Lambda_{2})$ be weighted simplicial posets. Let $i_{1},$ $i_{2}$

be admissible vertices of $S_{1},$ $S_{2}$ such that there exists an isomorphism $\xi:1ink_{S_{1}}i_{1}arrow$
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$1ink_{S_{2}}i_{2}$ preserving weights: $(\Lambda_{2}\circ\xi)|_{1inks_{1}^{i_{1}}}=\Lambda_{1}|_{1ink_{S_{1}}i_{1}}$ . Then $\Lambda_{1},$ $\Lambda_{2}$ induce the
weight $\Lambda$ on the connected sum $S_{1i_{1}}\# i_{2}S_{2}$ . The weighted simplicial poset $(S_{1i_{1}}\#_{i_{2}}$

$S_{2},$ $\Lambda)$ is called a weighted connected sum of $(S_{1}, \Lambda_{1})$ and $(S_{2}, \Lambda_{2})$ .

Construction 2.5. Let $(P, \Lambda)$ be a characteristic pair (see section 1). Let $K_{P}=$

$\partial P^{*}$ be the dual simplicial sphere to a simple polytope $P$ . Since there is a natural
correspondence Vert $(K_{P})=\mathcal{F}(P)$ we get the weighting $\Lambda:Vert(K_{P})arrow \mathbb{Z}^{n}/\pm.$

This defines a weighted sphere $(K_{P}, \Lambda)$ . In particular, any Delzant polytope $P$

defines a weighted sphere $(K_{P}, \nu)$ , where $\nu(F)$ is the normal vector to $F\in \mathcal{F}(P)=$

$Vert(K_{P})$ modulo sign (construction 1.4).

Construction 2.6. Let $O=(\Gamma, \Psi_{V}, \Psi_{E})$ be an origami template and $M_{O}$ be the
corresponding toric origami manifold. Suppose that $\Gamma$ is a tree. The orbit space
$Q=M_{O}/T^{n}$ is homeomorphic to an $n$-dimensional disc. The face structure of $Q$

defines a poset $S_{Q}$ , whose elements are faces of $Q$ ordered by reversed inclusion
(it is easy to show that such poset is simplicial). In particular, Vert $(S_{Q})=\mathcal{F}(Q)$ .
Normal vectors to facets of $Q$ (construction 1.8) determine the characteristic func-
tion $\nu:\mathcal{F}(Q)arrow \mathbb{Z}^{n}/\pm,$ $\nu([F])=\nu(F)$ . Thus there is a weighted simplicial poset
$(S_{Q}, \nu)$ associated with a toric origami manifold $M_{O}.$

Construction 2.7. If $\Gamma$ is a tree, then the simplicial poset $S_{Q}$ is the connected
sum of simplicial spheres $K_{\Psi_{V}(v)}$ along vertices, corresponding to fold facets:

(2.2)
$S_{Q}\cong\# K_{\Psi_{V}(v)}\Gamma^{\cdot}$

Let us introduce a notation to make this precise. Let $e$ be an edge of $\Gamma$ , and
$v$ be its endpoint. Let $i_{v,e}$ be the vertex of $K_{\Psi_{V}(v)}$ corresponding to the facet
$\Psi_{E}(e)\subset\Psi_{V}(v)$ . Then (2.2) denotes the connected sum of all simplicial spheres
$K_{\Psi_{V}(v)}$ along vertices $i_{v,e},$ $i_{u,e}$ for all edges $e=\{v, u\}$ of graph $\Gamma$ . This simultaneous
connected sum is well defined. Indeed, if $e_{1}\neq e_{2}\in E$ are two edges emanating
from $v\in V$ , then vertices $i_{v,e_{1}}$ and $i_{v,e_{2}}$ are not adjacent in $K_{\Psi_{V}(v)}$ by pt.2 of
Definition 1.5. Therefore, open stars $star_{K_{\Psi_{V}(v)}}^{o}i_{v,e_{1}}$ and $star_{K_{\Psi_{V}(v)}}^{o}i_{v,e_{2}}$ , which we
remove in (2.1), do not intersect. Also note that all vertices $i_{v,e}$ are admissible,
since the spheres $K_{\Psi_{V}(v)}$ are simplicial complexes.

Each sphere $K_{\Psi_{V}(v)}$ comes equipped with a weighting $v_{v}:Vert(K_{\Psi_{V}(v)})arrow$

$\mathbb{Z}^{n}/\pm$ , since $\Psi_{V}(v)$ is Delzant. By pt.1 of Definition 1.5 these weightings agree
on identified links. Therefore we have an isomorphism of weighted spheres

(2.3)
$(S_{Q}, v)\cong\#(K_{\Psi_{V}(v)}, \nu_{v})\Gamma^{\cdot}$

3. PROOF OF THEOREM 2

Suppose that a quasitoric manifold $M_{(P,\Lambda)}$ is equivariantly homeomorphic to
the origami manifold $M_{(\Gamma,\Psi_{V},\Psi_{E})},$

$\Gamma$ is a tree. First, the orbit spaces should be

isomorphic as manifolds with corners: $P\cong Q=M_{O}/T^{n}$ . Second, $M_{(P,\Lambda)}\cong T$

$M_{O}$ implies that stabilizers of the torus actions coincide for the corresponding
faces of orbit spaces. Thus characteristic functions on $P$ and $Q$ taking values in
$\mathbb{Z}^{n}/\pm are$ the same. Hence, the weighted simplicial spheres $(K_{P}, \Lambda)$ and $(S_{Q}, \nu)\cong$

$\#_{\Gamma}(K_{\Psi_{V}(v)}, \nu)$ are isomorphic. So far to prove Theorem 2 it is suficient to prove

Proposition 3.1. There exists a simple 3-dimensional polytope $P$ and a character-
istic function $\Lambda:\mathcal{F}(P)arrow \mathbb{Z}^{3}/\pm such$ that the dual weighted sphere $(K_{P}, \Lambda)$ cannot
be represented as a connected sum, along a tree, of weighted spheres dual to Delzant
polytopes.
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We proceed by steps. At first notice that any simplicia12-sphere, which is a
simplicial complex, is dual to some simple 3-polytope by Steinitz’s theorem (see

e.g. [10]). Thus it is sufficient to prove the statement for weighted simplicial

complexes-spheres of dimension 2.

FIGURE 3. Connected sum of spheres along a tree

Construction 3.2. We introduce some notation in addition to that of construc-
tion 2.7, see Fig. 3. As before, let $\Gamma=(V, E)$ be a tree. Suppose that a simplicial
$(n-1)$-sphere $S_{v}$ is associated with each node $v\in V$ , and for each edge $e\in E$ with

an endpoint $v\in V$ there is an admissible vertex $i_{v,e}\in S_{v}$ subject to the following

conditions: (1) $1ink_{S_{v}}i_{v,e}$ is isomorphic to $1ink_{S_{u}}i_{u,e}$ for any edge $e$ with endpoints
$v,$ $u;(2)$ Vertices $i_{v,e_{1}},$ $i_{v,e_{2}}$ are different and not adjacent in $S_{v}$ for any two edges
$e_{1}\neq e_{2}$ emanating from $v$ . Then we can form a connected sum along $\Gamma$ as in
construction 2.7: $K=\#_{\Gamma}S_{v}$ . For each $v\in V$ consider the simplicial subposet

(3.1) $R_{v}=S_{v}\backslash _{e\in E}\sqcup_{v\in e}star_{S_{v}}^{o}i_{v,e}.$

This subposet will be called a region. Denote $1ink_{S_{v}}i_{v,e}$ by $C_{v,e}$ . By construction,
$C_{v,e}$ is attached to $C_{u,e}$ if $e=\{v, u\}$ . The resulting $(n-2)$-dimensional simplicial
subposet of $K$ is denoted by $C_{e}$ . Since $i_{v,e}$ is admissible, the subposet $C_{e}\cong C_{v,e}=$

$1ink_{S_{v}}i_{v,e}$ is a simplicial $(n-2)$-sphere.
We get a collection of $(n-2)$-dimensional cycles $C_{e},$ $e\in E$ , dividing the $(n-1)-$

sphere $K$ into regions $R_{v},$ $v\in V$ . If $e=\{v, u\}$ , then $R_{v}$ and $R_{u}$ share a common
border $C_{e}$ . Note that cycles $C_{e}$ are mutually ordered, meaning that each $C_{e}$ lies
at one side of any other cycle. Though the cycles may have common points (as

schematically shown on Fig. 3) and even coincide (in this case the region between
them coincides with both of them).

On the other hand, any collection of mutually ordered $(n-2)$-dimensional spher-
ical cycles in $K$ defines the representation of $K$ as a connected sum of smaller
simplicial spheres. A representation $K=\#{}_{\Gamma} S_{v}$ will be called a slicing.

Define the width of a slicing $\Theta$ to be the maximal number of vertices in its
regions:

(3.2) wid$( \Theta)^{d}=^{ef}\max\{|$ Vert $(R_{v})||v\in V\}.$

Define the fatness of a sphere $K$ as the minimal width of all its possible slicings:

(3.3) $ft(K)def=\min${ $wid(\Theta)|\Theta$ is a slicing of $K$ }.
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The essential step in the proof of Proposition 3.1 is the following.

Lemma 3.3. Let $K$ be an $(n-1)$ -dimensional simplicial sphere and $\Lambda:Vert(K)arrow$

$\mathbb{Z}^{n}/\pm a$ weighting. Let $r$ denote the number of different values of this weighting,
$r=|\Lambda(Vert(K))|$ . Suppose that $ft(K)>2r$ . Then $(K, \Lambda)$ cannot be represented as
a connected sum, along a tree, of simplicial spheres dual to Delzant polytopes.

Proof. Assume the converse. Then $(K, \Lambda)\cong\#_{\Gamma}(K_{\Psi_{V}(v)}, \nu_{v})$ , where $\Psi_{V}(v)$ are
Delzant polytopes. If we forget the weights, this defines a slicing $\Theta$ of $K$ . The width
of every slicing of $K$ is greater than $2r$ by the definition of fatness. In particular,
$wid(\Theta)>2r$ . Thus there exists a node $v$ of $\Gamma$ such that $|Vert(R_{v})|>2r.$

The region $R_{v}$ is a subcomplex of $K_{\Psi_{V}(v)}$ . The restriction of $\Lambda$ to the subset
Vert $(R_{v})$ coincides with the restriction of $\nu:Vert(K_{\Psi_{V}(v)})arrow \mathbb{Z}^{n}/\pm toVert(R_{v})$ .
Recall, that $\tilde{\nu}(F)\in \mathbb{Z}^{n}$ is the outward normal vector to the facet $F\in \mathcal{F}(\Psi_{V}(v))=$

Vert $(K_{\Psi_{V}(v)})$ , and $\nu(F)\in \mathbb{Z}^{n}/\pm is$ its class modulo sign. The outward normal
vectors to facets of a convex polytope are mutually distinct, thus $|\tilde{\nu}($Vert R $)|=$

$|Vert(R_{v})|$ and, therefore, $|\nu(Vert(R_{v}))|\geq|Vert(R_{v})|/2$ . Thus $|\Lambda(Vert(R_{v}))|=$

$|\nu(Vert(R_{v}))|>r$ , – the contradiction, since $r$ is the total number of values of $\Lambda.$

$\square$

So far we may find counterexamples to origami realizability among polytopes,
which are $\mathbb{Z}^{n}$-colored with a small number of colors, but whose dual simplicial
spheres have large fatness. Of course such examples do not exist for $n=2$ –

this would contradict Theorem 1. The existence of 2-spheres satisfying conditions
of Lemma 3.3 is thus our next and primary goal. At first, we prove that any 2-
sphere admits a characteristic function with few values; then construct 2-spheres of
arbitrarily large fatness.

Lemma 3.4. Any simplicial 2-sphere $K$ admits a weighting $\Lambda:Vert(K)arrow \mathbb{Z}^{3}/\pm$

such that $|\Lambda(Vert(K))|\leq 4.$

Proof. Four color theorem states that there exists a proper vertex-coloring: Vert $(K)arrow$

$\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\}$ . Now replace colors by integral vectors $\alpha_{1}\mapsto(1,0,0)$ , $\alpha_{2}\mapsto(0,1,0)$ ,
$\alpha_{3}\mapsto(0,0,1)$ , $\alpha_{4}\mapsto(1,1,1)$ . This gives the required characteristic function. $\square$

Proposition 3.5. For any $N>0$ there exists a simplicial 2-sphere $K$ such that
$ft(K)>N.$

Proof
Construction 3.6. Let $K$ be a simplicia12-comp1ex. Define $a$ (piecewise Riemann-
ian) metric $g$ and measure $\mu$ on $|K|$ in such a way that each triangle $|I|\subset|K|$ be-
comes an equilateral Euclidian triangle with the standard metric and edge length 1.
Thus the area of each triangle is $\sqrt{3}/4.$

Let $L(\gamma)$ denote the length of a piecewise smooth curve $\gamma$ in $|K|$ . If $C\subset K$ is a
closed 1-dimensional cycle (simplicial subcomplex), then, obviously,

(3.4) $L(|C|)=|Vert(C)|.$

A cycle $C$ divides $K$ into two subcomplexes $K+andK_{-}$ , each homeomorphic to
a closed 2-disc (we suppose $C\subset K_{+},$ $K$ Let us estimate the number of vertices
in $K_{-}$ in terms of its area ($K_{+}$ is similar). Let $\mathcal{V}_{-},$ $\mathcal{E}_{-},$ $\mathcal{T}$-denote the number of
vertices, edges and triangles in $K_{-}$ . By the definition of measure, $\mathcal{T}_{-}=\frac{4}{\sqrt{3}}\mu(|K_{-}|)$ .

We have $\mathcal{V}_{-}-\mathcal{E}_{-}+\mathcal{T}_{-}=1$ (Euler characteristic of $K_{-}$ ) and $\mathcal{E}_{-}<3\mathcal{T}_{-}$ (by counting
pairs $e\subset t$ , where $e$ is an edge and $t$ is a triangle). Therefore,

(3.5) $\mathcal{V}_{-}\leq\frac{8}{\sqrt{3}}\mu(|K_{-}|)$ .
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Let $\mathbb{S}_{R}$ be a 2-dimensional round sphere of radius $R$ , with the standard metric $g_{s}$

and measure $\mu_{s}$ . A piecewise smooth closed curve $\gamma\subset \mathbb{S}_{R}$ without self-intersections
divides $\mathbb{S}_{R}$ into two regions $A_{+},$ $A_{-}$ . The isoperimetric inequality on a sphere (see

e.g. [8, Ch.4]) has the form $R^{2}L_{s}(\gamma)^{2}\geq\mu_{s}(A_{+})\mu_{s}(A_{-})$ , where $L_{s}(\gamma)$ is the length of
$\gamma$ . Since $\mu_{s}(\mathbb{S}_{R})=4\pi R^{2}$ we may assume that $\mu_{s}(A_{+})\geq 2\pi R^{2}$ (otherwise consider
$A_{-}$ instead), thus

(3.6) $\mu_{\mathcal{S}}(A_{-})\leq\frac{L_{s}(\gamma)^{2}}{2\pi}.$

Let $K$ be a 2-dimensional simplicial sphere and $R,$ $c_{1},$ $c_{2},$ $c_{3},$ $c_{4}$ be positive real
numbers. Suppose there exists a bijective piecewise smooth map $f:|K|arrow \mathbb{S}_{R}$ such
that

(3.7) $c_{1}L(\gamma)\leq L_{s}(f(\gamma))\leq c_{2}L(\gamma)$ ,

(3.8) $c_{3}\mu(\Omega)\leq\mu_{s}(f(\Omega))\leq c_{4}\mu(\Omega)$ ,

for each piecewise smooth curve $\gamma\subset|K|$ and measurable set $\Omega\subset|K|$ . Numbers
$c_{1},$ $c_{2},$ $c_{3},$ $c_{4}$ will be called Lipschitz constants of the map $f.$

Lemma 3.7. In the above setting, suppose the cycle $C\subset K$ contains at most $N$

vertices. Then either $K_{+}$ or $K_{-}$ contains at most
$\underline{4N^{2}c^{2}}$

vertices.
$\sqrt{3}\pi c_{3}$

Proof. Among two regions $f(|K_{-}|)$ , $f(|K+|)\subset \mathbb{S}_{R}$ let $f(|K_{-}|)$ be the one with the
smaller area. Combine (3.4), (3.5), (3.6), (3.7), and (3.8):

(3.9) $V_{-} \leq\frac{8}{\sqrt{3}}\mu(|K_{-}|)\leq\frac{8\mu_{s}(f(|K_{-}|))}{\sqrt{3}c_{3}}\leq\frac{8L_{s}(f(|C|))^{2}}{2\sqrt{3}\pi c_{3}}\leq\frac{4N^{2}c_{2}^{2}}{\sqrt{3}\pi c_{3}}.$

$\square$

Lemma 3.8. If $\Theta$ is a slicing $K=\#_{\Gamma}S_{v}$ and $wid(\Theta)\leq N$ , then $\deg v\leq 2(N-2)$

for any node $v$ of $\Gamma.$

Proof. Denote the degree of $v$ by $d$ . By construction, the region $R_{v}$ is obtained
from a sphere $S_{v}$ by removing $d$ open stars which correspond to the edges of $\Gamma$

emanating from $v$ . The complex $R_{v}$ itself can be considered as a plane graph.
Denote the numbers of its vertices, edges and faces by $\mathcal{V},$ $\mathcal{E},$

$\mathcal{R}$ respectively. By the
definition of the width, we have $\mathcal{V}\leq N$ . We also have $\mathcal{V}-\mathcal{E}+\mathcal{R}=2$ , and $2\mathcal{E}\geq 3\mathcal{R}$

(each region has at least 3 edges). Thus, $\mathcal{V}\geq 2+\frac{1}{2}\mathcal{R}$ . Notice that each removed
open star represents a face of graph $R_{v}$ , therefore, $d\leq \mathcal{R}\leq 2(\mathcal{V}-2)\leq 2(N-2)$ . $\square$

Lemma 3.9. Let $K$ be a 2-dimensional simplicial sphere endowed with the map
$f$ to the round sphere, satisfying Lipschitz bounds (3.7) and (3.8). For a natural

number $N$ set $A= \frac{4N^{2}c^{2}}{\sqrt{3}\pi c_{3}}$ and $B=2(N-2)$ . If $| Vert(K)|>\max(AB+N, 2A)$ ,

then $ft(K)>N.$

Proof. Assume the contrary: $ft(K)\leq N$ . Then there is a slicing $K=\#_{\Gamma}S_{v}$ in
which every region $R_{v}$ has at most $N$ vertices. Consequently, any cycle $C_{e},$ $e\in E$

has at most $N$ vertices. By Lemma 3.7, the cycle $C_{e}$ divides $K$ into two parts, one
of which has $\leq A$ vertices. Since $|Vert(K)|>2A$ , the other part has $>A$ vertices.
Assign a direction to each edge $e$ of $\Gamma$ in such a way that $e$ points from the larger

component of $K\backslash C_{e}$ to the smaller, where the siz$e’$ means the number of vertices,
$\Gamma$ is a tree, therefore there exists a source $u$ , i.e. a node from which all adja-

cent edges emanate. Let $d$ denote the degree of $u$ and $\Gamma_{1}$ , . . . , $\Gamma_{d}$ the connected
components of $\Gamma\backslash u$ . By Lemma 3.8 we have $d\leq B$ . By the construction
of the directions of edges, $|Vert(\sqcup_{\Gamma_{i}}R_{v})|\leq A$ for each $\Gamma_{i}$ . Thus $|Vert(K)|<$

$| Vert(R_{u})|+\sum_{i=1}^{d}|Vert(\sqcup_{\Gamma_{i}}R_{v})|\leq N+AB$ – the contradiction. $\square$
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Lemma 3.10. For any $N>0$ there exists a 2-dimensional simplicial sphere $K$

such that:

(1) There exists a piecewise smooth map $f:|K|arrow \mathbb{S}_{R}$ satisfying Lipschitz

bounds (3.7) and (3.8) for some constants $c_{1},$ $c_{2},$ $c_{3},$ $c_{4},$ $R>0$

(2) $| Vert(K)|>\max(AB+N, 2A)$ , where $A$ and $B$ are defined in Lemma 3.9.

Proof. Start with the boundary of a regular tetrahedron with edge length 1: $L=$

$\partial\Delta^{3}$ . The projection from the center of $L$ to the circumsphere $f:Larrow \mathbb{S}_{R}$ is obvi-
ously Lipschitz for some constants $c_{1},$ $c_{2},$ $c_{3},$ $c_{4}>0$ . Now subdivide each triangle of
$|L|$ into $q^{2}$ smaller regular triangles as shown on Fig. 4.

FIGURE 4. Subdivision of a regular triangle.

This results in a simplicial complex $L_{(q)}$ . As a space with metric and measure
$|L_{(q)}|$ is homothetic to $|L|$ with a linear scaling factor $q$ . Thus there exists a map
$f_{(q)}:|L_{(q)}|arrow \mathbb{S}_{qR}$ with the same Lipschitz constants as $f$ . The number of vertices
$|Vert(L_{(q)})|$ can be made arbitrarily large. $\square$

Lemmas 3.10 and 3.9 conclude the proof of Proposition 3.5. $\square$

Remark 3.11. Actually, in the proof of Lemma 3.10 we could have started with any
simplicial sphere $L$ , take any piecewise smooth map $f:|L|arrow \mathbb{S}_{R}$ , find Lipschitz

constants $c_{2},$ $c_{3}>0$ (they exist by the standard calculus arguments), and then
apply the same subdivision procedure. We used the boundary of a regular simplex,

because in this case Lipschitz map is constructed easily and admits an explicit

computation.
We give a concrete example of a quasitoric manifold which is not toric origami,

by performing this computation. The calculations themselves are elementary thus
omitted. It is sufficient to construct a simplicial sphere for $N=8$. For a projection
map from the boundary of a regular tetrahedron to the circumscribed sphere we
have Lipschitz constants $c_{2}=3,$ $c_{3}= \frac{1}{3}$ . Thus $ma[x(AB+N, 2A)\approx 15251.14$ . Sub-
divide each triangle in the boundary of a regular tetrahedron in $q^{2}$ small triangles
where $q\geq 88$ . This gives a simplicial sphere $K$ with at least 15490 vertices and

the same Lipschitz constants as $\partial\Delta^{3}$ . Thus $ft(K)>8$ . Now take the dual simple
polytope $P$ of $K$ , consider any proper facet-coloring in four colors and assign a
characteristic function $\Lambda$ , as described in Lemma 3.4. This gives a characteristic
pair $(P, \Lambda)$ , whose corresponding quasitoric manifold is not toric origami.

Of course, all our estimations are very rough, and, probably, there are better
ways to construct fat spheres. For sure, there exist 2-spheres of fatness 9 with less
than 15490 vertices.
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