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Ridge subduction sparked reorganization of the Pacific plate-mantle system
60-50 million years ago

Abstract

A reorganization centered on the Pacific plate occurred ~53-47 million years ago. A "top-down" plate
tectonic mechanism, complete subduction of the Izanagi plate, as opposed to a "bottom-up" mantle flow
mechanism, has been proposed as the main driver. Verification based on marine geophysical
observations is impossible as most ocean crust recording this event has been subducted. Using a
forward modeling approach, which assimilates surface plate velocities and shallow thermal structure of
slabs into mantle flow models, we show that complete Izanagi plate subduction and margin-wide slab
detachment induced a major change in sub-Pacific mantle flow, from dominantly southward before 60 Ma
to north-northeastward after 50 Ma. Our results agree with onshore geology, mantle tomography, and the
inferred motion of the Hawaiian hot spot and are consistent with a plate tectonic process driving the rapid
plate-mantle reorganization in the Pacific hemisphere between 60 and 50 Ma. This reorganization is
reflected in tectonic changes in the Pacific and surrounding ocean basins.

Publication Details

Seton, M., Flament, N., Whittaker, J., Muller, R. Dietmar., Gurnis, M. & Bower, D. J. (2015). Ridge subduction
sparked reorganization of the Pacific plate-mantle system 60-50 million years ago. Geophysical Research
Letters, 42 (6), 1732-1740.

Authors
Maria Seton, Nicolas Flament, Joanne Whittaker, R Dietmar Muller, Michael Gurnis, and Dan J. Bower

This journal article is available at Research Online: https://ro.uow.edu.au/smhpapers/4200


https://ro.uow.edu.au/smhpapers/4200

QAGU

| B

Geophysical Research Letters

RESEARCH LETTER

10.1002/2015GL063057

Key Points:

« Pacific Eocene reorganization was
triggered by a ridge subduction event

« |zanagi plate subduction and slab
detachment altered Pacific mantle flow

« Our geodynamic models agree with
seismic tomography and onshore
geology

Supporting Information:
« Text S1 and Figures S1-S4

Correspondence to:
M. Seton,
maria.seton@sydney.edu.au

Citation:

Seton, M., N. Flament, J. Whittaker, R. D.
Mdiller, M. Gurnis, and D. J. Bower (2015),
Ridge subduction sparked reorganization
of the Pacific plate-mantle system
60-50 million years ago, Geophys. Res.
Lett., 42, 1732-1740, doi:10.1002/
2015GL063057.

Received 6 JAN 2015

Accepted 23 FEB 2015

Accepted article online 24 FEB 2015
Published online 24 MAR 2015

Ridge subduction sparked reorganization of the Pacific
plate-mantle system 60-50 million years ago

Maria Seton’, Nicolas Flament', Joanne Whittaker?, R. Dietmar Miiller', Michael Gurnis?,
and Dan J. Bower®

'EarthByte Group, School of Geosciences, University of Sydney, Sydney, New South Wales, Australia, *Institute for Marine
and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia, 3Seismological Laboratory, California Institute of
Technology, Pasadena, California, USA

Abstract A reorganization centered on the Pacific plate occurred ~53-47 million years ago. A “top-down”
plate tectonic mechanism, complete subduction of the Izanagi plate, as opposed to a “bottom-up” mantle flow
mechanism, has been proposed as the main driver. Verification based on marine geophysical observations is
impossible as most ocean crust recording this event has been subducted. Using a forward modeling approach,
which assimilates surface plate velocities and shallow thermal structure of slabs into mantle flow models, we show
that complete Izanagi plate subduction and margin-wide slab detachment induced a major change in sub-Pacific
mantle flow, from dominantly southward before 60 Ma to north-northeastward after 50 Ma. Our results agree
with onshore geology, mantle tomography, and the inferred motion of the Hawaiian hot spot and are consistent
with a plate tectonic process driving the rapid plate-mantle reorganization in the Pacific hemisphere between
60 and 50 Ma. This reorganization is reflected in tectonic changes in the Pacific and surrounding ocean basins.

1. Introduction

A plate reorganization around the Pacific at approximately 53-47 Ma [O'Connor et al., 2013; Whittaker et al.,
20071 is observed via a range of tectonic events including changes in direction of motion of the Pacific
[Caress et al., 1988; Lonsdale, 1988; O'Connor et al.,, 2013] and Australian [Whittaker et al., 2007] plates, a
reorganization of the Pacific triple junction [Cande et al., 1982], cessation of spreading in the Tasman and
Coral Seas [Gaina et al., 1998], and initiation of Izu-Bonin [Ishizuka et al., 2011] and Tonga-Kermadec
[Bloomer et al,, 1995] subduction (Figure 1). The bend in the Hawaii-Emperor chain has been attributed to this
reorganization [Sharp and Clague, 2006]; however, recent studies have suggested a more localized event may
explain this bend [Tarduno et al.,, 2009]. The geodynamic processes and consequences as well as its ultimate
driver (either a plate tectonic [Whittaker et al,, 2007] or mantle flow mechanism [Finn et al,, 2005]) remain poorly
understood. Plate-driven mechanisms often invoke a readjustment in plate-driving forces, especially at plate
margins, such as the spontaneous nucleation of subduction along a fracture zone [Stern, 2004], complete
subduction of an oceanic plate [Whittaker et al, 2007], or continent-continent collision [Molnar and Tapponnier,
1975; Patriat and Achache, 1984], to explain global plate motion changes. In contrast, mantle-driven mechanisms
require sudden changes in mantle flow, predominately influenced by plume interactions, such as plume-ridge
capture [Tarduno et al,, 2009] or the arrival of a plume head [Cande and Stegman, 2011], but may also be thought
of in terms of mantle overturning events, such as a slab avalanche [Goes et al., 2008]. These events, which occur
in the mantle, then propagate to changes in plate motions at the surface.

A plate-driven mechanism in the form of subparallel intersection of the Izanagi-Pacific ridge along the East
Asia subduction zone between 60 and 50 Ma [Whittaker et al., 2007] (Figure 2) has been postulated as the
cause of the Eocene Pacific plate reorganization. Although plate reconstructions and island arc geochemistry
predict the intersection of a mid-ocean ridge with the East Asian margin some time from the Cretaceous to
the Eocene [Straub et al., 2009] (Figure 1), the absence of large swaths of Pacific-lzanagi ocean floor and
fragmented geochemical, volcanic and heat flow data sets from East Asia make it impossible to verify this
plate tectonic scenario using geological and geophysical constraints alone. Instead, we use a method
that compares the history of subduction predicted by a coupled plate kinematic-geodynamic model with
present-day mantle structure imaged in seismic tomographic inversions. This approach allows us to place
constraints on the geodynamic implications of whole-scale detachment of the Izanagi slab and examine
the effect of this end-member model on mantle flow in the Pacific hemisphere between ~53 and 47 Ma.
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Figure 1. Plate tectonic setting for East Asia and evidence for an Eocene reorganization around the Pacific. Free-air gravity
anomalies of the northwest Pacific, with island arc geochemistry [Straub et al., 2009], South Korean granite ages [Sagong
et al., 2005], ages of Japanese metamorphic province protoliths [Nakajima, 1996], seafloor-spreading isochrons [Seton et al.,
2012], and fracture zones traces [Matthews et al., 2011]. Seafloor-spreading isochrons are labeled based on magnetic
anomaly chron. The Hawaii-Emperor Seamount Chain is highlighted by a purple polygon. ET = Emperor Trough. Globe
insert is centered on the Pacific hemisphere with numbers denoting regions where tectonic events have been mapped:
(1) Major change in spreading direction between Australia and Antarctica at chron 21 (~48 Ma) [Whittaker et al., 2007];
(2) cessation of spreading in the Tasman and Coral Seas, east of Australia at ~52 Ma [Gaina et al., 1998]; (3) reorganization of
the triple junction in the South Pacific between chrons 22-21 (~50-48 Ma) [Cande et al., 1982]; (4) change in spreading
direction between the Farallon and Pacific plates between chrons 24-21 (~53-48 Ma) [Caress et al., 1988]; (5) major change
in spreading direction between the Kula and Pacifc plates at chron 24 (~53 Ma) and eventual cessation of spreading at
about 41 Ma [Lonsdale, 1988]; (6) initiation of arc volcanism along Izu-Bonin-Mariana Arc [Ishizuka et al., 2011]; (7) initiation
of subduction along the Tonga-Kermadec Arc [Bloomer et al., 1995]; (8) bend in the Hawaii-Emperor chain starting at 50 Ma
[O'Connor et al., 2013; Sharp and Clague, 2006]. Red lines indicate subduction zones, black lines transform faults and
mid-ocean ridges, blue lines fracture zones, green lines extinct ridges, and purple polygons seamounts and Large Igneous
Provinces that erupted between 60 and 40 Ma.

2. Methodology
2.1. Tectonic Reconstructions
We implement an Izanagi plate motion model by reconstructing the now-subducted ocean floor of the Pacific

and proto-Pacific/Panthalassa based on the preserved seafloor-spreading record and deriving full-stage
rotations by assuming spreading symmetry [Seton et al., 2012] when only one flank of the spreading system is
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Figure 2. Palaeo-agegrids of the northwest Pacific before (60 Ma), during (50 Ma), and after (40 Ma) the slab break-off
event, and at the present day. Absolute plate velocity vectors at 60 Ma (magenta), 50 Ma (blue), 40 Ma (red), and present
day (green). Mid-ocean ridges and transforms are plotted as thin black lines, and subduction zones as red lines. Thick black
lines denote the location of the profiles used in Figures 4 and S1-S3. EUR = Eurasian plate, IZA = Izanagi plate, KUL = Kula plate,
PAC = Pacific plate, and PIR = Pacific-lzanagi Ridge.

preserved or when both flanks are missing. Spreading symmetry is a simple and reasonable assumption since
~95% of all present-day seafloor is characterized by spreading symmetry [Miiller et al., 1998]. We construct
topological plate polygons with evolving plate boundaries [Gurnis et al., 2012], compute palaeo-age grids, and
extract velocity fields in 1 Myr intervals (Figure 2).

2.2. Geodynamic Models

In order to predict the mantle structure implied by the plate reconstruction, we use an approach that links plate
tectonic modeling using GPlates [Boyden et al., 2011] with spherical mantle convection using the finite-element
software CitcomS [Tan et al,, 2007] by assimilating plate kinematics, the thermal structure of the oceanic lithosphere,
and the shallow portion of slabs at 1 Myr increments into forward mantle flow models [Bower et al., 2015].

The incompressible, global mantle flow models start at 230 Ma. The mesh consists of 12 caps, each with
128 x 128 x 64 elements, for a total of ~12.6 million elements and an average lateral resolution of ~ 50 km at
the surface and ~ 28 km at the core-mantle boundary. Using vertical mesh refinement, we obtain a radial
resolution of 15 km in the surface boundary layer, 27 km in the lower boundary layer, and an average radial
resolution of 62 km. The Rayleigh number, defined using the thickness of the mantle, is ~ 7.8 x 107, and
internal heat production is neglected. Viscosity varies by 1000 due to temperature dependence following

_ .
=" X &P (RAT(T +T,) RAT(T, + T,7)>’

where no=1 X 102! Pa s is the reference viscosity, E;= 100 kJ mol ™" (upper mantle) or ;=33 kJ mol ™"
(lower mantle) is the activation energy, R=8.31Jmol™" K~ is the universal gas constant, AT=2800°C is the
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Figure 3. Temperature and velocity fields at 48°N predicted by Models 1 and 2, with kinematic boundary conditions, before
(60 Ma), during (50 Ma), and after (40 Ma) the slab break-off event, and at present day. Black contours indicate material 10%
colder than the ambient mantle, associated with subducted slabs. Orange line denotes the depth of the map shown in
Figures 4 and S1-S3.

temperature drop across the mantle, Tis the temperature, T, = 225°C is a temperature offset, and T, = 1400°C
is the ambient mantle temperature.

We present three models that differ in the viscosity of the asthenosphere and of the lower mantle and use
Model 1 as reference. In Models 1 and 3, the viscosity of the lower mantle is 100 times greater than that
of the upper mantle, and 7, is reduced by a factor of 10 between 160 and 310 km depth to include the
influence of a weak asthenosphere. In Model 3, this asthenosphere is only present under oceans: numerical
tracers 10 times more viscous than ambient mantle are used to offset the viscosity drop under the continents.
In Model 2, which does not include an asthenosphere, viscosity increases by a factor of 10 at the upper to
lower mantle and linearly increases across the lower mantle by a factor of 10 (as in case TC7 of Flament et al.
[2014]). To inhibit plume development (since our objective is to focus on the effect of subduction), all models
include an initially 113 km thick layer 3.6% denser than ambient (with reference to po=4000kgm™ 3) at

the base of the mantle (as in cases HH1-HH3 of Flament et al. [2014]).
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Figure 4. Seismic tomography with geodynamic model output. Perspective view (looking north) of P wave seismic
tomography [Li et al., 2008] at 1445 km depth and along three vertical cross sections at 48°N, 40°N, and 32°N. Magenta
contours correspond to model slabs (mantle 10% colder than ambient) from Model 1, green from Model 2, and blue from
Model 3. The horizontal black lines on the vertical cross sections denote the depth shown in the map. Pacific = subducted
Pacific oceanic lithosphere. Izanagi = subducted Izanagi oceanic lithosphere.

We compare the present-day mantle temperature field predicted by Models 1-3 with seismic tomography,
qualitatively (Figures 3, 4 and S1-S3 in the supporting information) and quantitatively (Figure S4). Finally, we
examine the evolution of the predicted mantle flow (Figures 3 and 5) to assess whether our tectonic scenario
could induce a change in the entire plate-mantle system.

3. Geological Constraints

The intersection of an active mid-ocean ridge with a subduction zone commonly results in the opening of a
slab window [Thorkelson, 1996]. Typically, the surface manifestations include, but are not limited to cessation
of arc volcanism, geochemically distinct magmatism, increased volume and extended range of volcanism,
and elevated geothermal gradients and deformation on the overriding plate [Thorkelson, 1996]. Geological
evidence across Japan, Korea, and China support ridge subduction intersection along East Asia between 55
and 43 Ma (see supporting information Text S1). A detailed structural interpretation of the Shimanto Belt, a
Late Cretaceous to Miocene accretionary complex in southeast Japan [Raimbourg et al., 2014] (Figure 1),
indicates an erosional and extensional phase in the early to middle Eocene consistent with trench-parallel
subduction of the Pacific-lzanagi ridge. Additionally, this belt records high levels of thermal maturity within
Eocene strata [Taira et al., 1988] and a decrease in the age gap between Eocene basaltic rocks and overlying
turbidite sediments [Underwood et al., 1993]. The trimodal distribution of Andean-type granodioritic
batholiths across Japan, Korea, and China [Nakajima, 1996; Sagong et al., 2005] (Figure 1) indicates a final
phase of plutonism in East Asia started 135-100 Ma and continued until about 55-50 Ma [Nakajima, 1996;
Sagong et al., 2005]. Following a hiatus, the system restarted with normal arc magmatism between 43 and
42 Ma [Nakajima, 1996; Sagong et al., 2005]. This disruption of normal arc magmatic processes is typical for
areas above a slab window [Thorkelson, 1996].
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Figure 5. Time-dependent mantle flow field from geodynamic models at 1500 km depth. The lateral mantle flow field from
Model 1 (magenta) and Model 2 (green) are shown for each time step, highlighting the change from southward directed
mantle flow to the dramatic shift in mantle flow at 50 Ma. (top row) Results with kinematic boundary conditions; (bottom row)
results with free-slip boundary conditions. The temperature field is shown for Model 1. Red lines indicate subduction zones,
blue indicate transforms and mid-ocean ridges, and the profile plotted in Figure 3 is marked as an orange line.

4. Seismic Tomography and Geodynamic Models

The geodynamic calculations show that the reconstructed plate boundary configuration and plate motions
produce a margin-wide slab window and slab detachment associated with the complete subduction of the
Izanagi plate beneath East Asia before 50 Ma (Figure 3). The resultant present-day temperature fields reveal
a good first-order match with seismic tomography models (Figures 4 and S1-S3), where two distinct
structures corresponding to the two major phases of subduction are observed for all three models despite
their different viscosity structures. In Model 3 the low-viscosity asthenosphere between 160 and 310 km is
offset under the continents using tracers, in order to minimize the net rotation induced to the lower mantle
[Rudolph and Zhong, 2014]. Indeed, despite the advection of viscous tracers, lower mantle structures are
longitudinally shifted in Model 3 that predicts slabs to be ~ 10° farther east in the lower mantle than
Models 1 and 2 (Figure 4). Visual inspection reveals that Model 3 does not match tomography as well as
Models 1 and 2 (Figures 4 and S1-S3), and we limit further analyses to Models 1 and 2. This result for Model
3 suggests that some net rotation of the lower mantle could have occurred under East Asia since the
breakup of Pangea. Slabs are a few tens of kilometers deeper and farther to the west in Model 2 compared
to Model 1, which respectively reflects the lesser viscosities in the lower mantle and the absence of an
asthenosphere in Model 2.

In all models and tomography, the shallowest slab (Pacific in Figures 4 and S1-S3) reflects the most recent, post
50 Ma westward dipping subduction of Pacific oceanic lithosphere along the Japan-Kuril Trench and corresponds
to the shallowest, coldest anomaly in the flow models (Pacific in Figures 4 and S1-S3). We consider the

midmantle high-seismic velocity anomaly, located at depths of 1000-2500 km in both geodynamic models
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and seismic tomography (Izanagi in Figures 4 and S1-S3) to be representative of material subducted prior
to the arrival of the Pacific-lzanagi ridge (that is, the subducted Izanagi plate). Although this anomaly has
previously been attributed to a middle to late Mesozoic subducted slab [van der Meer et al., 2009], our
geodynamic models reveal that this material subducted from 110 to 60 Ma (Figure 2), consistent with the
final phase of plutonism in Korea [Sagong et al., 2005].

We use a simple, quantitative approach to assess the correlation between predicted temperature from our
geodynamic models and three P wave [Li et al., 2008; Montelli et al., 2004; Obayashi et al., 2013] and one

S wave [Grand et al., 1997] seismic tomography models (Figure S4) by calculating the area of intersecting
polygons in both data sets [Shephard et al., 2012]. For mantle > 10% colder than ambient and positive

P wave anomalies > 0.02% [van der Meer et al., 2009], we find that our models produce intersection scores
between 70 and 84% for midmantle depths (Figure S4). This suggests the degree of correlation between
our model and tomography is good, particularly considering that intersection scores across P and S wave
models themselves for this area are between 50 and 77% (Figure S4). Intersections with tomography are
marginally better for Model 1 than for Model 2, making it difficult to find a preferred model.

5. Pacific Midmantle Flow

Coincident with evidence for plate motion changes between 53 and 47 Ma is an indication of a major change
in middle to lower mantle flow beneath the Pacific. In order to isolate the contributions of kinematic boundary
conditions from flow driven solely by the deeply seated temperature field, we investigate sub-Pacific
midmantle flow for kinematic and free-slip boundary conditions (Figure 5). For both sets of boundary
conditions, a major mantle flow pattern reorganization occurs between 60 and 50 Ma (Figures 3 and 5).
Flow directions are broadly consistent between both models, and small differences in azimuth and
amplitude reflect different viscosity structures between models.

Prior to the reorganization (60 Ma), our calculations show a southward directed midmantle lateral flow
beneath the Pacific plate (Figure 5) at a rate of between 0.5 and 1.7 cm/yr (0.1-1.2 cm/yr for free-slip
boundary conditions). A contribution to this lateral flow under the northwest Pacific may be due to return
flow from the coherent slab structures along the East Asian margin. This is followed by a major shift in the
direction of mantle flow toward the north and northeast at 50 Ma, which may be related to a weakening of
the return flow after ridge subduction and slab break off. This major shift in mantle flow indicates the
onset of a reorganization of the Pacific mantle and is accompanied by a slight decrease in mantle flow rate
to a maximum of 1.4 cm/yr (Figure 5) (1.4 cm/yr for free-slip boundary conditions). The reorganization of
Pacific mantle flow was likely complete by 40 Ma with a return to slower, north to northwest directed flow of
between 0.1 and 1.1 cm/yr (0.4-1.2 cm/yr for free-slip boundary conditions) (Figures 3 and 5). Interestingly,
our mantle flow velocities prior to 50 Ma are consistent with the southward directed mantle flow implied
by studies of the motion of the Hawaiian hot spot [Tarduno et al., 2009].

6. Discussion

Numerical models designed to investigate the effects of the complete subduction of an oceanic plate
indicate that the arrival of a mid-ocean ridge at the trench is preceded by slab detachment, due to a
reduction in strength and negative buoyancy of approaching oceanic lithosphere and the loss of
transmission of slab pull force to the surface [Burkett and Billen, 2009]. The clear break in structure evident
in seismic tomographic images under eastern Eurasia at depths between 500 and 1000 km (Figure 4) and
replicated at similar depths in models (Figure 3) reflects slab detachment and short-lived quiescence in
subduction associated with the subparallel arrival of the Pacific-lzanagi ridge to the East Asian margin
between 60 and 50 Ma. In our calculations, the formation of the gap in the continuity of the slab occurred
between 60 and 40 Ma (Figure 3). A decrease in slab pull force would be expected to result in a major
change in the rate and direction of plate motion [Stadler et al., 2010], characteristic of plate reorganizations
[Conrad et al., 2004]. In the case of East Asia, the margin-wide slab detachment would have led to a
marked change in the forces acting on the Pacific plate, from being surrounded by mid-ocean ridges prior
to 55-50 Ma to the establishment of a major subduction system along its western boundary. Indeed, a
study of the slab pull acting on the Pacific plate before, during, and after 50 Ma [Faccenna et al., 2012]
support a change that increases a slab pull westward after 50 Ma.
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We suggest that the subparallel arrival of the Izanagi-Pacific ridge to the East Asian subduction zone 55-50 Ma
led to a cascade of events that culminated in a reorganization of Pacific mantle flow, triggering tectonic
changes around the Pacific Ocean basin. Slab detachment and slab window formation resulted in a change in
plate-driving forces acting along the western Pacific due to the progressive decrease in buoyancy of the
downgoing plate and eventual loss of slab pull. The overall change in the forces on the Pacific plate may have
led to a change of stress on the nascent boundary [Leng and Gurnis, 2011] between the Pacific and West
Philippine plates that initiated subduction along the Izu-Bonin-Mariana margin at 52 Ma [Ishizuka et al., 2011].
We suggest that the rapid reorganization of Pacific midmantle lateral flow between 60 and 50 Ma, replicated
in our models, was a consequence of surface plate motion changes, consistent with the hypothesis that
the reorganization of the Pacific plate-mantle system was a plate tectonically driven, mantle-scale process.
The reorganization, which occurred over a period of ~7 Myr (between ~53 and 47 Ma), is consistent with the
timing of tectonic events throughout the Pacific hemisphere around this time. This scenario should be
testable with new generation of high-resolution, fully dynamic, global models, particularly in assessing the
geodynamic processes associated with ridge-trench intersection events.
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