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Ronald B. Byrnes, Anthony J. Healey, 
Robert B. McGhee, Michael L. Nelson, Se-Hung Kwak, 
and Donald R Brutzman 

The Rational Behavior 
Software Architecture for 
Intelligent Ships 

An Approach to Mission and Motion Control 

ABSTRACT The solutions to the 
power projection, transportation, and 
operational needs of the Navy as it faces 
the 21st century must account for 
reduced manning levels. This leads natu- 
rally to increased use of computers, 
automation, and intelligent systems in the 
concept and design of the next genera- 
tion of ships. In addition to the 
acknowledged hardware needs, the prob- 
lem of autonomic and autonomous control 
of shipboard systems and missions are 
amenable to and will, in fact, require 
software solutions. Despite current tech- 
nolom, large, reliable software systems 
are difficult to achieve because correct- 
ness in requirements analysis, design, 
implementation, testing, modification, 
and maintenance of software are difficult. 
Software is also difficult to quantize and 
display; hence, the effort and costs 
involved in its development are easily 
underestimated. This paper describes an 
approach to the problem of providing 
structure, in the form of a software 
architecture, to the software performing 
autonomous control of missions and their 
related tasks. In concert with the need 
to reduce complexity, the architecture 
must support simple, rapid reconfigura- 
tion of code should vehicle capabilities or 
mission requirements change. Building 
upon recent efforts with control of 
Autonomous Underwater Vehicles 
(AUVs), we propose a tri-level control 
system architecture called the Rational 
Behavior Model (RBM) as an approach 
to autonomous and autonomic control of 
surface ship missions and systems. 

S 
Introduction 

ince 1987, the Naval Postgraduate School has been involved in re- 
search into advanced control concepts for robotics as applied to Au- 
tonomous Underwater Vehicles (AUVs). Early on, it was perceived 
that the future needs of the US Navy would require more use of 

autonomous and autonomic systems, especially where increased reliance on on- 
board computer-based decision making was required to meet requirements for 
decreased response times and overall reduced manning. Whde we have been 
concentrating on the uses of AUVs in a mine hunting mission scenario [33,36], 
the general structure and capabilities of an intelligent mission level controller 
for an AUV would have s d a r  application and use for a future intelligent ship. 

In either case, a particular concern is the requirement to join mission level 
decision making with modular task (or behavior) level coordination and finally 
low level vehicle subsystem control. These levels are well suited to an overall 
software structure, called a software architecture, in which the control problem 
is viewed from different levels of abstraction. Two notable earlier proposed 
software architectures for vehicle control are described in [34,351. 

The Rational Behavior Model (RBM) is based on three levels of abstraction, 
called the Strategic, the Tactical, and the Execution levels, respectively. The 
first of these, conceptually the “top” level, contains a rule-based strategy for 
the accomplishment of the mission, contingent on variations in the internal, ex- 
ternal, and operational environments. The intermediate tactical level consists 
of objects, in an object-oriented software sense, which represent the natural 
division of operations in the staff of a manned ship. Included herein are the nav- 
igator, engineer, weapons officer, and sonar section, all under the management 
of the Officer of the Deck (OOD). The lowest level of the model, the execution 
level, provides the data and control required by the automated servo systems 
of the vehicle that are responsible for the basic mobility of the vehicle and its 
controllable Hull, Mechanical, and Electrical (HM&E) subsystems. 

This paper presents a brief description of the Rational Behavior Model and 
the constraints placed on its implementation followed by a discussion of an in- 
stantiation for a specific vehicle with a particular mission. Finally, lessons 
learned and plans for future research are presented. While our work has been 
concerned with control of autonomous underwater vehicles, we strongly be- 
lieve that RBM has direct applicability to the problems faced by the surface ship 
community. 

The Rational Behavior Model 
The Rational Behavior Model is a tri-level architecture for the intelligent control 
of autonomous and autonomic vehicles. For the purpose of this paper, we deline 
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autonomic as “having an involuntary reflexive capability” 
and autonomous as “responding and reacting indepen- 
dently” [22]. RBM uses the principle of abstraction to 
simplify the problem of mission control, and as such rep- 
resents a specialization of the SSS architecture (symbolic, 
subsumption, servo) [ll. In particular, in RBM, the top 
level is entirely symbolic and has no global variables, the 
bottom level is synchronous and entirely numerical, and 
the middle level provides an asynchronous interface be- 
tween the other two levels. This division reflects the ap- 
proach to the control problem typically employed on 
manned vehicles, such as surface ships. In these cases, 
control is viewed from different levels of abstraction in 
which the highest level (the commanding officer or Cap- 
tain) designates and sequences goals through a delibera- 
tive process, the lowest level (the crew) operates vehicle 
actuators and sensors in response to commands, and the 
middle level (the commander’s staff) decomposes tasks so 
as to produce commands to the Execution level in support 
of goal achievement. 

We believe that implementation of the RBM architecture 
is best accomplished with programming languages and op- 
erating systems tailored to each level [XI. In particular, 
imperative languages with multitasking operating systems 
utlllzing timed interrupts are preferred for the bottom 
level, rule-based languages are preferred for the top level, 
and languages supporting object hierarchies and event- 
driven multitasking are preferred for the middle level. 
These choices naturally fit the backgrounds and education 
of mission specialists at the top, computer scientists in 
the middle, and control engineers at the bottom. This 
facilitates the team development and modification of large 
software systems and promotes the reuse of software 
modules across vehicles and applications. Current com- 
mercial off the shelf (COTS) programming languages, op- 
erating systems, and computing hardware platforms are 
adequate for effective realization of RBM systems. The 
major characteristics of all three levels of RBM are sum- 
marized in Table 1. 

STRATEGIC LEVEL 
The commander of an autonomous/autonomic ship must 
have an effective means of expressing the desired mission 
to the vehicle, along with procedures for the replanning of 
missions due to the unrecoverable degradation of one or 
more subsystems. It is the Strategic level that addresses 
this need by encapsulating the explicit, high-level logic 
required to perform these activities. Indeed, it was in 
response to the concern of users that an intelligent vehicle 
behave rationally, that the name Rational Behavior Model 
was chosen. The basis for the Strategic level design is the 
top-down decomposition of the mission based on goal- 
directed reasoning. This process involves the successive 
refinement of a root goal into constituent subgoals, contin- 
uing until simple, primitive goals are identified. When goals 

TABLE 1 

Characteristics of RBM (from 141) 
~ _ _ _ _ ~  ~ 

Strategic Level 
Symbolic computation only; contains mission doctrine/ 
specification 
No storage of internal vehicle or external world state 
variables 
Rule-based implementation, incorporating rule set, 
inference engine, and working memory (if required) 
Non-interruptible, not event-driven 

m Directs the Tactical level through asynchronous message 

Messages may be either commands or queries requiring 

Operates in discrete (Boolean) domain independently of 

Building block: the goal 
Abstraction mechanisms: goal decomposition (RBM-B) 

passing 

Y ES/NO responses 

time 

and rule partitioning (RBM-F); both based on goal-driven 
reasoning 

Tactical Level 
Provides asynchronous interface between Strategic and 

Behaviors (tasks) reside here and may execute 

Behaviors are implemented as methods of objects 
m Primitive goals activate one or more behaviors 

External interface of the model consists of two parts: the 
behavior activations from the Strategic level and the 
command/telemetry paths to/from the Execution level 

Execution levels 

concurrently 

Workd and Mission models maintained here 
Responds to Strategic level with logical TRUEFALSE 

D Setpoints, modes, active sensor commands, and non- 
routine data requests are output to the Execution level 
Not interruptible except for data transfers; hard deadlines 
can not be guaranteed 
Operates in discrete eventkontinuous time domains 
Building block: objects with behaviors 
Abstraction mechanisms: class and composition 
hierarchies 

Execution Level 
D Numeric processing only 

Responsible for software to hardware interface, 

All synchronous (hard real-time) processes reside at this 

Sensor data processed to specification of Tactical level 
Servo!oops run continuously and concurrently, 

Operates in continuous space/time domains 
Building block: servo loops and signal processing 

m Abstraction mechanisms: loop composition, sampling 

underlying vehicle stability 

level 

synchronized by timed interrupts 

algorithms 

frequency, and data smoothing 

are not amenable to further simphfication, direct imple- 
mentation via messages to the Tactical level occurs. We 
have used mostly goal decomposition in Prolog for the 
Strategic level. However, we have also had success with 
rule partitioning in the C-based forward chaining language 
Clips [3,4,51. 
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For the purpose of autonomous and autonomic vehicle 
control, the Strategic level incorporates mission-level con- 
trol logic. With respect to this level, the following restric- 
tions are imposed 

(1) The Strategic level is based on goal-driven (top 
down) rather than data-driven (bottom up) reasoning. 

(2) The Strategic level contains no state other than the 
state of the reasoning process itself. World models, vehicle 
states, and numerical mission parameters are maintained 
by the Tactical level. The purpose for this is to support 
determinism and hence predictable (rational) responses 
from the vehicle. 

(3) The Strategic level is implemented or specified in a 
commercially available rule-based language. 

(4) As in SSS, the Strategic level operates asynchron- 
ously in discrete (boolean) space. However, we further 
speclfy that it is non-interruptible. That is, the Strategic 
level is explicitly not event driven. Rather, it obtains mfor- 
mation from the Tactical level by polling during mission 
execution and selects paths of reasoning based on this 
information. 

These restrictions are derived from our practical ex- 
perience in the development of autonomous vehicle control 
software [33]. As such, these conditions allow us to use 
a commercially available Prolog interpreter (Quintus 
Prolog [32]) to realize a backward chaining [6] version of 
the Strategic level [3]. Because Prolog directly imple- 
ments depth first search of a dynamic AND/OR goal tree 
[6,7] and has a very clean syntax for the description of 
such trees [8], this language is very appropriate for the 
development of top level control software. 

While RBM uses goal-driven reasoning at the Strategic 
level, it does not follow that a backward chaining language 
is required for this purpose. An attractive alternative is 
to use Prolog as a specification language, which could be 
either translated into some other language or compiled 
into a corresponding h t e  state machine [5,9,10]. We have 
ourselves accomplished manual translation of Prolog into 
Lisp for wallung machine control [lo]. We have also trans- 
lated Prolog into CLIPS, a forward chaining language, as 
an alternative means to implement the Strategic level for 
our AUV [3,5]. 

TACTICAL LEVEL 
The Tactical (middle) level acts as an interface between 
the knowledge-based Strategic level and the hardware- 
controlled subsystems of the Execution level. In object- 
oriented terms, we have implemented the behaviors of the 
Tactical level as methods of software objects. These meth- 
ods may call other methods at the Tactical level or send 
commands to the Execution level. The Tactical level is also 
responsible for data collection during the mission and for 
contingency planning should the need arise. Hence, detec- 
tion of and automatic recovery from machinery faults not 
affecting the overall mission are accomplished at this level. 

The Tactical level also maintains the numerical aspects of 
the mission model and internal and external world models. 

The Tactical level of RBM manages the interface be- 
tween the goals specified by the Strategic level and the 
actions performed by the Execution level. To this end, the 
following attributes characterize the Tactical level: 

(1) As in the definition of SSS, the Tactical level operates 
in a discrete event space and in continuous time. That is, 
at this level, decisions are made in response to queries or 
commands which can arrive from the Strategic level at any 
time. On the other hand, the Tactical level receives mfor- 
mation from the Execution level only on a timed interrupt 
basis. Thus, it is not directly triggered by events occurring 
at the Execution level, but nevertheless may at any time 
detect an event based on stored data from the Execution 
level. 

(2) Outputs from the Tactical level to the Execution level 
are of three types: discrete mode changes, non-routine 
data requests, and continuous set points [l l l .  

(3) To enhance modularity and maintainability, and to 
provide precise accepted terminologx the Tactical level is 
implemented as a software object hierarchy [9,12,13,141. 
The methods [12] of these objects constitute the behav- 
iors of this level. Child (dependent) objects are compo- 
nents of their parent objects and can be accessed only by 
parent methods. The single root object of the hierarchy is 
responsible both for asynchronous communications with 
the Strategic level and for transmission of orders to the 
Execution level, thereby avoiding the issuance of confict- 
ing vehicle control commands. 
(4) Each input to the Execution level comes from just 

one object at the Tactical level. This constraint ensures 
that competition for vehicle resources is resolved at the 
Tactical level. 

(5) In order to facilitate portability and understandability 
of code, we prefer that concurrency at the Tactical level, 
when needed,.be supported by the programming language 
rather than solely by the operating system. In light of 
condition (3) above, we also believe that the programming 
language selected for implementation of the Tactical level 
should be at least object-based, and preferably object-ori- 
ented [12,13]. 

Having imposed all of the above conditions on the Tac- 
tical level, it becomes difficult to find a suitable language. 
In [lo] and [14], we used CLOS, the object-oriented facil- 
ity of Common Lisp [15]. This means that, in this exam- 
ple, our Tactical level allowed for no concurrency. It is our 
belief that this succeeded because the vehicle under study 
(the ASV walking machine) actually implemented supervi- 
sory control [16], with a human operator in the loop, 
thereby lirmting the use of RBM to leg coordination, a 
relatively simple function compared to autonomous mis- 
sion control. In [31, we implemented the Tactical level in 
C, which has neither objects nor t a s h g  constructs. This 
made codmg rather difficult and, as of now, we have aban- 
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doned C and have instead chosen Ada [17,18] and C + + 
151 as the languages of choice. Ada is, of course, the 
Department of Defense standard language for embedded 
systems, and possesses both objects and tasking capabil- 
ities. Furthermore, with the introduction of Ada 95 [37], 
it includes the notion of class inheritance, making it a true 
object-oriented language. Because Ada 95 was not yet 
available to us, we obtained this latter feature through an 
Ada extension called Classic-Ada [19]. 

EXECUTION LEVEL 
The Execution (bottom) level is responsible for controlling 
the machmev, sensors, and control surfaces. It du-ectly 
controls the vehicle’s heachg and speed in response to 
commands from the Tactical level. It also sends sensory 
mformation back to the Tactical level and is the final chance 
for vehicle safety, so commands that would otherwise en- 
danger the vehicle are ovemdden here. For example, the 
vehicle would execute reflexive evasive maneuvers rather 
than run into an obstacle. Similarly, other autonomic ac- 
tions, such as a “hch” prior to receiving an incoming 
missile, are implemented here. Most of the algorithms 
used at this level have their basis in modem control theory 
and as such involve strictly numerical computation. 

This level, called the “servo” level in 111, and the “ex- 
ecution” level in [20], is c e r t d y  the best understood of 
the three levels of RBM. Indeed, despite the existence of 
many important problems at this level such as rudder roll 
stabilization [21], it is often taken more or less for granted 
by researchers concentrating on the upper levels of con- 
trol. 

W e  our research to date has been concerned princi- 
pally with fully autonomous vehicles [24], it is important 
to realize that a continuous spectrum of human involve- 
ment in sparsely manned vehicle control is possible. That 
is, human control can range from no on-line interaction 
(complete autonomy), through supervisory control [161, to 
direct control of a subsystem. Thus, we believe that at 
least the following functions should be provided at the 
Execution level for any autonomousiautonomic vehicle em- 
ploying the RBM architecture: 

(1) steering autopilot for heading control (heading mode) 
or for yaw rate control (rate mode), including rudder roll 
stabilization where effective. 

(2) a speed control autopilot, includmg integrated pro- 
pulsion control, to adjust the vehicle speed on command, 
either in vehicle speed control mode or propeller rateipitch 
control mode. 

(3) integrated damage control systems. 
(4) integrated machinery monitoring and control. 
Of course, the achievement of this software function- 

ality is dependent upon the existence of a local area net- 
work connecting all major subsystems throughout the 
ship. 

In addition to insuring basic vehicle stability of the ve- 
hicle, the Execution level of the vehicle control system 

also includes the operation of sensing systems and suffi- 
cient data processing to provide interpreted data to the 
Tactical level for situation assessment. Thus, for example, 
it is important to determine how much sonar data must be 
made available within the framework of the vehicle auto- 
pilot update rate so that a reflexive capability for obstacle 
avoidance resides within this level [24]. 

Due to the numerical nature of the computations asso- 
ciated with these systems, the Execution level of RBM is 
written in an imperative programming language. We have 
used C for our experiments, but C +  + and Ada provide 
viable alternatives. Of course, when using C or C + + , it 
is necessary to relegate tasking to the operating system, 
since neither language provides this feature. 

WMe asynchronous multitasking constitutes an impor- 
tant research area at the Tactical level, it appears to us 
that processes at the Execution level need not be event 
dnven, but rather can run on a fixed schedule triggered 
by a timed interrupt from a real-time clock. Rate mono- 
tonic scheduhg guarantees efficient use of processor ca- 
pacity in such circumstances [281. 

Implementation of the Model 
The major portion of RBM is mission independent. In fact, 
many software components developed for one system can 
be shared among a wide variety of vehicles with minimal 
modhzation [29]. However, in order to instantiate a com- 
plete, correctly working RBM architecture, a specific mis- 
sion and vehicle must exist. In th~s paper, the test mission 
is the Florida mission, so-called because demonstrations 
were originally scheduled to take place off the Florida coast 
[30]. In addition, the Naval Postgraduate School (NPS) 
“PHOENIX’ AUV is chosen as the target vehicle E331. 
This section will discuss the specific implementation of 
RI3M used for thls configuration. While we are not pro- 
posing that a surface ship be fully autonomous with re- 
spect to communications and control, much of the discus- 
sion that follows is pertinent to the unmanned portions of 
the autonomic ship concept. 

All on-board computer hardware, languages, and op- 
erating systems for the PHOENIX AUV were dictated by 
practical considerations. Specifically, Ada and Prolog are 
not available for the real-time operating system 099 ,  
while DOS does not support the multitasking features we 
desire in our Execution level software, presently written 
in C. We believe that situations like this WIU arise fre- 
quently in the development of RBM software for autono- 
mous and autonomic vehicles, and that heterogenous com- 
puters therefore represent an effective type of host. On 
the other hand, there is no reason why a homogeneous 
distributed system could not also be used, if available. In 
fact, our development environment is homogeneous in that 
it uses three Unix workstations, one for each level of 
RBM, communicating over an ethernet local area network 
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[4]. The following discussion reflects a version of RBM 
applicable to either scenario. 

PHOENIX AUV STRATEGIC LEVEL 
The Strategic level software of RBM is divided into two 
sections: a mission-specific part called the Mission Spec- 
ification and a mission-independent part called the PHOE- 
NIX AW Doctrine. For this study, the Mission Specifi- 
cation implements the Florida mission whde the Doctrine 
contains rules specific to the operation of the PHOENIX 
AW Figure 1 contains the implemented Strategic level 
written in the Prolog programming language. 

Each Prolog rule follows the general format of Figure 2 
and represents an $-then relation. The rule is divided into 
a head and a body. The head of a rule corresponds to the 
then part of the rule and the body part is equivalent to the 
if part. With respect to mission accomplishment, the 
Prolog rule can be interpreted as a goal decomposed into 
constituent subgoals. Therefore, if all subgoals are satis- 
fied, then the corresponding goal at the left of “.-” is 
satisfied. A characteristic of Prolog syntax is to relate 
expressions separated by a comma through the logical 
AND operator. If a logical OR relationship exists between 
subgoals, the OR is expressed by writing multiple Prolog 
rules with identical heads. In Figure 1, the two “initialize’’ 
rules represent such a relationship. In this way, the “ini- 
tialize” goal can be achieved by either accomplishing the 
subgoals in the first rule or satisfying the subgoals in the 
second rule. 

An important characteristic of the Strategic level of 
RJ3M is that an explicit sequence of goal achievement de- 
fines mission success or failure. Prolog always attempts 
to satisfy a subgoal by matching it to a fact (essentially a 
rule without a body) or a rule head in textual order; i. e., 
from top-to-bottom (for OR-related rules) and left-to-right 
(for AND-related subgoals). When a subgoal-rule head 
match is found, the search process proceeds to the first 
subgoal in the matched rule and another match is at- 
tempted. The algorithm guiding that search, called the 
inference engine, marks each goal to provide a reference 
should the current mference chain fail. If a match cannot 
be made given the existing circumstances, an attempt is 
made to resatisfy the most recent successful subgoal 
through a control mechanism called backtracking [311. If 
no subgoal can be satisfied, the correspondmg rule is 
skipped and an alternative rule is selected, if available. 
Rule and subgoal placement are therefore critical if the 
proper response from the AUV is to be achieved. 

In the Prolog code of Figure 1, a subset of the full 
features of Prolog is utilized to suit the restriction that 
the Strategic level contain no storage of internal vehicle or 
external world state variables. Thus, Prolog clauses are 
used as rules without the application of the unification 
feature of Prolog. As a result, the Prolog rule heads do 
not contain variables. This greatly simplifies the modifi- 

cation of code resulting from mission reconfiguration and 
prevents the introduction of undesired side effects which 
characterize software systems employing global data 
structures. 

Prolog provides the built-in control primitive “repeat” 
which, when used in concert with backtracking, allows for 
the creation of loops. When first encountered, the repeat 
predicate succeeds and the loop is entered. Repeat sub- 
sequently succeeds when encountered through backtrack- 
ing. This provides for multiple attempts to satisfy those 
subgoals lying to the right of the repeat. Another control 
primitive required to insure the strict, iterative execution 
of the loop is the cut, denoted by I ‘ ! ’ ’ ,  which acts to block 
backtracking. In the context of RBM, the cut is used to 
eliminate unnecessary search paths and to force a specific 
sequence of subgoal testing [31]. 

The program in Figure 1 is initiated when the query “?- 
execute-auv-mission.” is issued to the Prolog inference 
engine. Scanning the heads of each rule starting from the 
top of the rule set, the rule “execute auv mission :- ini- 
tialize, repeat, mission.” is encountered. Prolog will first 
attempt to satisfy the subgoal “initialize”. After marking 
this subgoal, the rule set is again scanned from the top in 
an attempt to find a matching rule head. A match is made 
with the first “initialize” rule. The first subgoal of this 
rule, “vehicle - ready -for - launch-p(ANSl),” is then en- 
countered. This subgoal is a primitive goal in that it cannot 
be decomposed any further. When the Strategic level 
reaches such a primitive goal, it generates either a predi- 
cate query or a command to the Tactical level. A predicate 
query expects a TRUE/FALSE response from the Tactical 
level, and the returned value influences the subsequent 
reasoning path of the inference engine. A command, on 
the other hand, is a directive that initiates an action in the 
Tactical level. The primitive goal “vehicle ready -for - 
launch” is a predicate query, because its argument ANSl 
is bound to TRUE or FALSE by the Tactical level. This 
value is then determined at the Strategic level through the 
test “ANSI = = I”. If the value of ANSl is 1 (representing 
TRUE), then “ANSI = = 1” succeeds. The next subgoal, 
“select-first-waypoint(ANS2)” is then reached. This 
primitive subgoal is an example of a command, and as 
such, directs the Tactical level to select the first waypoint 
from the list of waypoints maintained at the Tactical level. 

If, on the other hand, the value of ANSl is 0 (repre- 
senting FALSE), “ANS1 = = 1” fails. In this case, the 
Prolog inference engine initiates backtracking and tries to 
re-satisfy the subgoal “vehicle-ready-for-launch- 
p(ANS1)”. However, this attempt fails because there is no 
other way to satisfy the “vehicle-ready-for-launch- 
p(ANS1)” subgoal. Consequently, the first “initialize” rule 
fads, and the second “initiahze” rule is invoked, resulting 
in mission termination. 

This process continues in similar fashion for the re- 
maining rules in an attempt to satisfy the original query 
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MISSION SPECIFICATION FOR SEARCH AND RESCUE--------- */ * -_______ 

initialize :- vehicle-ready-for_lanchg(ANS l),ANS 1 = 1, SeleCt-~t-WaypOint(ANS2). 
initialize :- alert-user(ANS), fail. 

mission :- in-transitg(ANS1). ANSl == 1, transit, !, transit-doneg(ANS2). ANS2 = 1, fail. 
mission :- in-searchq(ANSl), ANSl= 1 ,  search, !, search_doneg(ANS2), ANS2 = 1, fail. 
mission :- in-task-p(ANS1). ANSl == 1, task, !, task_done_p(ANS2),ANS2 = 1, fail. 
mission :- in-return-p(ANSl), ANSl == 1, return, !, retum_done-p(ANS2), ANS2 = 1, wait-for-recovery(ANS3). 

transit :- waypoint-control. 
transit : - surface( ANS 1) , wait-for-recovery( ANS2). 

search :- do-searchqattern(ANS), A N S  = 1. 
search :- surface(ANS I), wait-for-recovery(ANS2). 

task :- homing(ANSl), ANSl == 1, dropqackage(ANS2), ANS2 == 1, get~ps_fix(ANS3), ANS3 == 1, 

task :- surface(ANS l), wait-for-recovery(ANS2). 
get_next_waypoint(ANS4), ANS4 = 1. 

return :- waypoint-control. 
return :- surface(ANS 1). wait-for-recovery(ANS2). 

execute-auv-mission :- initialize, repeat, mission. 

waypoint-control : - not(critical-systemqb), get-waypoint-status, plan, send-setpoints-and-modes(ANS). 

get-waypoint-status :- gps-check, reach-waypoint-p(ANS 1). A N S  1 = 1, get-next-waypoint(ANS2). 
get-waypoint-status. 

gps-check :- gps-needed-p(ANSl), ANS 1 = 1, get_gps-fix(ANSl). 
gps-check. 

plan :- reduced-capacity-system-prob, global-replan. 
plan :- near-uncharted-obstacle, local-replan. 
Plan. 

near-uncharted-obstacle :- unknown-obstacle-p(ANSI), ANS 1 = l,log-new-obstacle(ANS2). 

local-replan :- loiter(ANS l), start_local_replanner(ANS2). 

global-replan :- loiter(ANS l), start~lobd-replanner(ANS2). 

critical-system-prob :- power_gone-p(ANS), ANS == 1. 
critical-systemgrob :- computer-system-inopq(ANS), A N S  = 1. 
critical-system-prob :- propulsion-systemq(ANS), ANS = 1. 
critical-system-prob :- steering-system-hop-p(ANS), ANS = 1. 

reduced-capacity-system-prob :- diving-systemq(ANS), A N S  == 1. 
reduced-capacity-system-prob :- bouyancy-systemg(ANS), ANS = 1. 
reduced-capacity-system-prob :- thruster-system-p(ANS), A N S  = 1. 
reduced-capacity-system-prob :- leak-testg(ANS), A N S  == 1. 

F I G U R E 1. The Florida Mission in Prolog 
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if 

head\ goal i :- subgoall, subgoa12, ...) subgoal,. 

F I G U R E 2. A Prolog Rule 

This particular rule set is collectively referred to as the 
Florida mission and consists of four distinct phases called 
“transit”, “search”, “task”, and “return”. Each phase has 
two rules associated with it. The first rule specifies the 
sequence of goals which occur in normal circumstances. 
A second rule is included for each phase to act as a soft- 
ware fail-safe or “exception” should a condition arise re- 
sulting in the failure of the current phase. For this mission, 
each fail-safe consists of the two commands “sur- 
face(ANS1)” and “wait-for-recovery(ANS2)”. Post-mis- 
sion analysis of telemetry and status data, continuously 
recorded by the Tactical level, would presumably yield in- 
formation about the cause of the failure. Again, the nom- 
inal rule is placed textually before the fail-safe rule so as 
to insure that the nominal rule is attempted first. 

PHOENIX AUV TACTICAL LEVEL 
The Tactical level is composed of software objects that 
communicate via message passing. A sigrdicant provision 
is that some (or all) of the objects may be active at a given 
time; that is, several objects may embody separate, dis- 
t i c t  threads of control. On a single processor, logical 
concurrency of these objects is realzed through the “in- 
terleaving‘’ of each task’s execution under the guidance of 
a time-sharing or priority-based algorithm. If multiple pro- 
cessors are available to support true parallel execution, 
objects may run simultaneously In either case, the actions 
of each are coordinated through the sending of messages 
to one another. Concurrency may be provided in several 
ways, including control constructs provided by a concur- 
rent programming language. This allows for the explicit 
identification of potential parallelism within the program. 
This was one of the reasons that we chose Ada for h s  
implementation. Although we have not yet used this fea- 
ture, it is expected that future extensions will call for 
concurrent processing. 

The Tactical level developed for the PHOENIX AUV is 
shown in Figure 3. Each block in the diagram represents 
a distinct entity and corresponds to a software object. 
Most of the objects rearranged into a (composition) hier- 
archy, as indicated by the solid lines linkng them together. 

The AUV Officer of the Deck (OOD) resides at the top of 
the hierarchy and assumes overall control of the operation. 
In addition, the OOD provides the single interface between 
the Strategic and Tactical levels. Primitive goals from the 
top level are passed to the OOD who in turn activates 
behaviors within the Tactical level designed to satisfy 
those goals. Returning to the analogy of the manned crew, 
the Captain of the submarine (the Strategic level) issues 
commands to, or asks for, status reports from the OOD 
(the root object in the Tactical level). The OOD then issues 
the appropriate orders to satisfy the goal or query pre- 
sented by the Captain. 

All the behaviors that are capable of being performed 
by the vehicle are embodied with the various objects of 
the Tactical level. The OOD must coordinate the actions 
of each object to ensure that each task is accomplished as 
expected. The behaviors, for their part, are reflected in 
the methods contained within the applicable objectts). 
When a behavior involves the interaction of multiple ob- 
jects, communications are provided through the passing 
of messages. As depicted in the figure, &ect communi- 
cations between members of the hierarchy is restricted to 
parent-child links. While this comes at the expense of 
efficiency, the benefits include the avoidance of uncon- 
strained communication paths and a greater degree of 
modularity These characteristics support RBMs empha- 
sis on providing a framework to the user that aids in the 
understanding and maintenance of the software at this 
level. 

Communication with the Execution level is also re- 
stricted. Commands, in the form of packets containing 
numerical set points, non-routine data requests, and dis- 
crete mode changes, are issued only from the command 
sender object. Similarly, telemetry data from the Execu- 
tion level is received solely by the sensory receiver object. 
By constraining these interfaces, command conflicts and 
data inconsistency are avoided. 

Several objects in the Tactical level are not explicitly 
connected to the object hierarchy These represent data 
stores (databases) intended to be accessed by any re- 
questing object. The state of the mission, the environ- 
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F I G U R E 3. Tactical Level Object Hierarchy for the NPS AUV Florida Mission (from 141) 

Experimentation mental model, current sensor readings, and mission his- 
tory a re  maintained and encapsulated within the 
corresponding object. Requests for information and data 
updates are handled as they arrive. Note that these ob- 
jects do not directly participate in task accomplishment. 
Details of all objects in the Tactical level are given in 
[4,271. 

PHOENIX AUV EXECUTION LEVEL 
RBM makes no contribution to this level. Most of the 
control concepts implemented here, such as sliding mode 
control, are well documented [23]. The current Execution 
level controls either the PHOENM itself or a highly accu- 
rate real-time graphic simulator [36]. The language of 
choice for this level, based on its run-time efficiency, is C. 
Specifics of this and the PHOENIX AUV Integrated Sim- 
ulator are discussed in the next section. Naturallx the 
application of RBM to surface ships would require that 
the complete implementation of appropriate execution level 
software be in place. 

The instantiation of RBM just described has been imple- 
mented in the laboratory on the PHOENIX AUV Inte- 
grated Simulator, a network consisting of an actual AUV 
computer system, a three-dimensional graphical simda- 
tion workstation, and appropriate support equipment [261. 
The simulation experiments center around the search and 
rescue (Florida) mission, with the Strategic and Tactical 
levels of RBM hosted by the AUV computer and the Ex- 
ecution level residing on a Silicon Graphics Iris worksta- 
tion. The findings of these experiments are summarized 
in the following paragraphs. 

SOFTWARE DEVELOPMENT ENVIRONMENT 
While the development of RBM is simplified by its use of 
abstraction and separation of problem-solving responsibil- 
ities into three distinct levels, testing of the complete 
model is complicated by the expense of field testing and 
frequent nonavailability of the target vehicle due to hard- 
ware modification or rebuild. Integrated simulation pro- 
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vides a means of testing and evaluating vehicle control 
software despite these constraints. Readers interested in 
the concepts involved in this approach to AUV software 
development and testing are referred to [26]. 

Figure 4 portrays the configuration of the components 
of the Integrated Simulator used in the experiments to be 
discussed in this paper [25]. At the heart of the network 
is a Gespac card cage containing two microprocessor 
boards. The Gespac 80386, running DOS, hosts the Stra- 
tegic and Tactical level of the PHOENIX AUV Rational 
Behavior Model. The Gespac 68030, running the 0s-9 
operating system, hosts the Execution level. The two pro- 
cessors are linked by a parallel and a serial connection, 
each designed to route data in a single dxection; i.e., 
commands are passed from the Tactical to the Execution 
level over the parallel link, and telemetry data is sent in 
the reverse direction over a serial path. This telemetry 
data is received by the Execution level from the graphical 
workstation of the integrated simulator representing the 
vehicle and its operating environment (world model). The 
simulated vehicle’s Execution level in turn receives mes- 
sages from the Tactical level containing numerical set 
points, operational mode changes, and non-routine data 
requests. The 68030 and graphical workstation are linked 
to each other by an Ethernet connection. 

Direct connections can be made between the Gespac 
68030 and physical hardware components, as denoted by 
the solid arrow. In this way, sensors, actuators, and other 
vehicular subsystems can be tested in the lab prior to their 
installation. Finally, an additional senal port is available on 
the 68030 board which, when connected to an external 
monitor, allows for the creation, debugging, and modiiica- 
tion of Execution level software. Furthermore, this port 
may be used to connect, via modem, a terminal collocated 
with the actual AUX This allows for easy transfer and 
downloading of Execution level software and experimental 
data between the lab and test site. 

The Gespac 80386 also provides a great deal of flexi- 
bility to the RBM software developer. An external EGA 
monitor is available for developing and testing the Strategic 
and Tactical level software. A dedicated modem is also 
available to allow for software development from remote 
sites removed from the lab. For experiments involving re- 
ceipt and analysis of GPS data, a serial port with GPS 
receiver is available. The potential for parallelism at the 
Tactical level may be explored with an available transputer 
board. 

In sum, the Integrated Simulator greatly facilitates the 
design, development, and integration of the many hard- 
ware and software components of the PHOENIX AUX 
Each interface can potentially represent a source of bugs; 
however, these problems can often be detected and fixed 
in the lab, thus avoiding the expense and frustration of 
field test failure. 

THE SEARCH AND RESCUE MISSION 
The search and rescue (Florida) mission provides an ideal 
test case for observing the global behavior of an autono- 
mous vehicle and the capabilities of its control software 
architecture. Following an initialization sequence, the mis- 
sion is composed of four phases: transit from the launch 
site to the search area by achieving a series of predeter- 
mined waypoints; performance of the search algorithm; 
execution of an appropriate task subsequent to locating 
the target; and returning or transiting to a final location. 
In the experiment, this scenario was implemented using a 
figure-8 path. The first half of the path constituted the 
transit phase. When the mid-point of the figure-8 was 
reached, the search and task phases were entered in 
succession. Neither the search nor the task phase was 
implemented in detail since the purpose of this exercise 
was to test the logical and behavioral aspects of the control 
architecture, and not specific algorithms or methods. The 
final phase of the mission, the return phase, required the 
attainment of waypoints malung up the second half of the 
figure-8 path. Upon reaching the final goal, the AUV was 
then directed to secure its subsystems, surface, and await 
recovery. 

The first test was designed to provide a basis for com- 
parison and as such included no anomalies. The second 
test was identical to the first except that a failure in the 
vehicle’s power subsystem was introduced midway 
through the transit phase. The third and fourth tests rep- 
licated the first two tests but utilized a forward chaining 
Strategic level implemented in CLIPS instead of the 
Prolog-based backward c l m m g  version [3,4,51. 

RESULTS 
Three classes of data were obtained for each test. First, 
visual observations of the graphical simulation were used 
to investigate the global behavior of the AUV mamfested 
by the executing RBM. Second, time stamps were taken 
whenever a waypoint was attained. Third, a trace was 
taken which recorded the sequence of primitive goals 
achieved directed by the Strategic level of RBM. Figure 
5 shows the PHOENIX AUV simulation in progress. White 
spheres represent waypoints and the dark sphere repre- 
sents the final goal point (recovery site). 

Visual observation of the simulation proved valuable in 
two important ways. The logic used by the Strategic level 
could be validated by comparing the resulting behavior of 
the vehicle with the requirements specified by the mission 
specialist. If the vehicle failed unexpectedly or performed 
an undesired action, faulty logic in the Strategic level or 
an erroneous method in a Tactical level object was indi- 
cated. Additionallx even though the vehicle performed as 
expected, an operational parameter beyond the control of 
RBM could have contributed to a failure state. For ex- 
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F I G U R E 4. NPS AUV Integrated Simulator Configuration (from [25]) 
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F I G U R E 5. The NPS AUV Simulation 

ample, if the vehicle speed is set at a value beyond some 
threshold, the AUV can be made to collide with a known 
object. These examples highhght the advantages of sim- 
ulation testing prior to system integration. 

A more precise check of Strategic level logic can be 
made with the execution traces. Each primitive goal, when 
successfully completed, is written to a file. Because the 
goals are listed sequentially, a chain of reasoning used by 
the Strategic level can be reconstructed. 

The time stamped data was used to compare the rela- 
tive execution speeds of the backward and forward chain- 
ing implementations of the Strategic level. These data, 
which are included in [4], were statistically identical, lead- 
ing to the conclusion that both versions of the Strategic 

level performed sufficiently to satisfy the 2 Hz update rate 
required by the Execution level. This implies that the 
complexity of the Strategic level may increase up to the 
point at which the time taken by the Strategic level to 
reason about the next goal exceeds the minimum accept- 
able update rate between the Tactical and Execution 
levels. 

Conclusions and Future Research 
From the results of this research, we have drawn several 
corxlusions. Prolog, with its backtracking facility and tex- 
tual ordering, is ideal for the specification of missions ame- 
nable to goal driven decomposition. Ada has proved to be 
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useful for the implementation of the Tactical level, because 
taslung and data encapsulation is provided by the language. 
C +  + is being investigated for its object-oriented con- 
structs, in combination with the real-time operating sys- 
tem VxWorks [381. 

Future testing of RBM is scheduled to be done on the 
PHOENIX AUV and will involve extensions of the mission 
replanning logic at the Strategic level and automatic fault 
recovery at the Tactical level. This research wiU have di- 
rect applicability to all intelligent vehicles, autonomous, 
autonomic, or otherwise. 
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