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Abstract 
 

We model the struggle between terrorist and conventional forces as a Colonel Blotto 
game, replacing Powers and Shen’s (2006) mathematical expression for the probability of target 
destruction by a more rigorously derived approximation from a diffusion-based Lanchester 
analysis.  We then use the resulting equilibrium solutions for force allocations and attack 
probabilities to make inferences about terrorist attackers and government defenders that are 
roughly consistent with empirical findings.  Our analysis reveals that the loss function of a 
government/society plays a central role in determining the types of targets likely to be attacked 
by terrorists in “peacetime” and “wartime”, leading to a much more frequent selection of 
“trophy” targets in peacetime. 
 
Keywords – Terrorism risk, force allocations, attack probabilities, game theory, Lanchester 
equations, power-law distributions. 
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1.  Introduction 

To study the problem of terrorism risk, we model the struggle between terrorist and 

conventional forces as a Colonel Blotto game.  This approach arises from the confluence of three 

distinct research streams:  (1) the game-theoretic analyses of terrorism provided by Major (2002) 

and Powers and Shen (2006); (2) the introduction of diffusion processes into Lanchester-like 

combat analyses, first proposed by Perla and Lehoczky (1977), and more recently developed by 

Powers (2008) and Gudmundsson et al. (2008); and (3) the empirical analysis of terrorist-

destroyed-target distributions conducted by Johnson et al. (2005).  Given that many of the 

relevant mathematical theorems are published elsewhere, we confine the present study primarily 

to the implications of those results, and provide all new derivations in a technical appendix. 

Most significantly, we replace Powers and Shen’s (2006) mathematical expression for the 

conditional probability of destruction of a target, given that that target is selected for attack by 

terrorists, by a more rigorously derived approximation from a diffusion-based Lanchester 

analysis.  We then use the resulting equilibrium solutions for force allocations and attack 

probabilities to make inferences about terrorist attackers and government defenders that are 

roughly consistent with the empirical findings of Johnson et al. (2005).  In addition to providing 

explicit forms for the force-allocation and attack-probability strategies, our analysis reveals that 

the loss function of a government (qua society) plays a central role in determining the actions of 

attackers.  Distinguishing between the risk attitudes of “peacetime” and “wartime” governments, 

we find that there is a much more frequent selection of “trophy” targets in peacetime. 
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2.  Prior Work 

2.1.  The Colonel Blotto Game 

Given a finite set of potential targets, let W  denote the combined monetary/human-life 

value[1] of a particular target, which is assumed to be directly proportional to that target’s (three-

dimensional) physical volume, V ; that is, W �V .  Next, let A  and D denote the sizes of the 

forces allocated to the target by the terrorist attackers and government defenders, respectively, 

where the attackers’ (but not the defenders’) total forces are assumed to be fixed a priori. 

In the Colonel Blotto game, the attackers and the defenders must allocate their total 

forces across the various targets without knowing their opponents’ strategies.  In the simplest 

version of the game, the player that assigns the higher level of force to a given target prevails at 

that target; in a more sophisticated version, a player’s probability of prevailing would be an 

increasing function of the player’s force allocation (for a fixed allocation made by the player’s 

opponent).  For our purposes, we will say that the attackers prevail at a given target if they 

succeed in destroying the target, and that the defenders prevail by preserving the target, while 

explicitly acknowledging that any target that is attacked is partially damaged.  A player’s payoff 

from the game is then the expected value of that player’s total gain or loss from the outcomes at 

the various targets. 

Powers and Shen (2006) proposed that the attackers’ conditional probability of 

destroying a particular target, given that that target is selected for attack, be written as 

p = exp �
A
s
D

s

V
s

� 

� 
� 

� 

� 
� 

A
c

A
c

+ D
c

� 

� 
� 

� 

� 
� ,                                                                                  (1) 

                                                
[1] The use of a hybrid monetary and human-life value scale is a quantitative simplification that bears further study.  
For the present, one could think of W  as consisting of two components, one for monetary worth and one for human 
lives, and simply assume that the two components always increase or decrease in direct proportion to each other. 
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where the first factor on the right-hand side of equation (1) represents the probability that the 

attackers avoid detection prior to their attack (derived from a simple search model), and the 

second factor represents the probability that the attackers are then successful in destroying the 

target (derived from a classical gambler’s ruin model).  In the above expression, the constants 

s >1 and 0 < c <1 are scale parameters.  Powers and Shen (2006) also assumed that the 

attackers’ gain associated with damage to, and/or destruction of, a target of physical volume V  is 

given by Gain
A
V( )�V � , for some positive constant � , and that the game is zero-sum (so that 

the defenders’ corresponding loss is given by Loss
D
V( )�V � ).  They then used equation (1) to 

prove three theorems. 

The first theorem addresses the case in which terrorists attack all of the targets 

simultaneously, and shows that there exists a Cournot-Nash equilibrium in which both the 

attackers and defenders allocate their forces to each target in direct proportion to the square root 

of the target’s volume.  The second theorem addresses the case in which terrorists attack only 

one target, selected at random, and shows that there exists a Cournot-Nash equilibrium in which 

both sides again allocate their forces in direct proportion to the square roots of a target’s volume.  

Finally, the third theorem reveals that if the probability with which the attackers select a target at 

random (in the setting of the second theorem) is treated as a strategic decision of the attackers, 

then no Cournot-Nash equilibrium with pure-strategy force allocations can exist. 

Given that the setting of the second theorem appears more relevant to today’s War on 

Terror, we will work with that model in the present study.  However, because of potential 

weaknesses with the expression in equation (1) (e.g., the right-hand side approaches zero as A  
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tends to infinity)[2], we will replace that probability with a more rigorously derived expression 

based upon a stochastic Lanchester model tailored specifically to terrorism combat. 

2.2.  The Lanchester Paradigm 

The most widely studied mathematical model of military combat is that proposed by 

Lanchester (1916), which may be described by a system of differential equations of the form 

dA = �k
1
A
�
1D

�
1dt                                                                                                   (2) 

dD = �k
2
A
�
2D

�
2dt ,                                                                                                (3) 

where:  A = A t( ) and D = D t( ) denote, respectively, the sizes of the attackers’ and defenders’ 

forces at time t � 0; k
1
,  k

2
 are positive constants denoting, respectively, the defenders’ and 

attackers’ effective destruction rates; and �
1
,  �

2
 and �

1
,  �

2
 are real-valued constants reflecting 

the fundamental nature of the combat under study.  In his original formulation, Lanchester 

(1916) considered two cases – one for “ancient” warfare, in which �
1
=1, �

1
=1, �

2
=1, �

2
=1, 

and one for “modern” warfare, in which �
1
= 0, �

1
=1, �

2
=1, �

2
= 0 . 

Gudmundsson et al. (2008) considered a special case of (2) and (3) designed specifically 

for terrorism combat: 

dA = �
� k 
1

V
q

ADdt                                                                                                      (4) 

dD = �k
2
Adt ,                                                                                                         (5) 

where:  V  (as before) denotes the physical volume of the target under attack; q denotes a 

positive power-transformation constant used to recognize the appropriate domain of combat 

(e.g., q =1 3 if a building can be attacked through only its ground-level perimeter, q = 2 3 if a 

                                                
[2] This means that as the terrorists’ forces increase in magnitude, the disadvantage of size in terms of avoiding 
detection eventually outweighs the benefit of size in combat.  While this implication may be realistic in certain 
scenarios, it is easily challenged.  For example, the September 11 attacks suggest a small role for detection in even 
the boldest of attacks when the target is inadequately defended. 
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building can be attacked anywhere along its surface, as by a fuel-filled airplane, and q =1 if a 

bomb can be planted anywhere within a building); and � k 
1

= k
1
V

q .  Rewriting A  and D in terms 

of a single variable, U A,D( ) , Gudmundsson et al. (2008) replaced the system (4), (5) with the 

stochastic differential equation 

dU =Udt +�U� 2
dZ , 

where:  dZ  is a standard Brownian motion; �  is the associated infinitesimal standard deviation; 

and � � 0,2[ ].  They then identified the attackers’ probability of victory with the probability of 

first-passage to the state D = 0�U =1, and derived the following approximation for the 

attackers’ conditional probability of destroying a particular target, given that that target is 

selected for attack: 

p =

1�
� k 
1
D

2

2k
2
V

q
A

  for  A >
� k 
1
D

2

2k
2
V

q

0  for  A �
� k 
1
D

2

2k
2
V

q

� 

� 

� � 

� 

� 
� 

.                                                                         (6) 

 

3.  Analytical Results 

Substituting equation (6) for equation (1) in a modified version[3] of Powers and Shen’s 

(2006) second theorem, we obtain the following result.  (The proof is provided in the appendix.) 

Theorem 1:  There exists a Cournot-Nash equilibrium in which the attackers’ and defenders’ 

force allocations to a particular target are given by A�W a  and D�W d , respectively, and the 

attackers’ probability of selecting the target is given by � �W r , for constants a , d , and r  such 

that the probability of target destruction ( p) is 0. 

                                                
[3] In addition to the stated revision of the target-destruction probability, our analysis differs from Powers and 
Shen’s (2006) in that (1) the defenders’ total forces are not fixed a priori, and (2) every target that is attacked is 
assumed to be partially damaged. 
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Although Theorem 1 states that no target can be destroyed in equilibrium, it is important 

to recall our assumption that any target attacked will be partially damaged.  Obviously, the 

occurrence of another September 11-like event, in which major targets are destroyed completely, 

would cast serious doubt on the validity of the above result.[4]  However, any attack with only 

partial damage would be consistent with it. 

From the first-order conditions of the optimization problem underlying Theorem 1 

(shown in the proof), we know that the result is subject to the constraints 

2d + r + � = q + 2a                                                                                                 (7) 

and 

d = q + a( ) 2 .                                                                                                         (8) 

Assuming that q and �  are known, this leaves three unknown constants – d , a , and r  – but only 

two equations – (7) and (8) – to specify them. 

Fortunately, there is one additional piece of information that we have not yet used – the 

fact that in a real-world multi-period setting, the attackers are able to move first (e.g., with the 

September 11 strikes), and thus are able to select the equilibrium constant r  (which the 

defenders then are forced to follow in all subsequent plays of the game).  Given the privilege of 

selecting this constant, the attackers will do so in a way that maximizes the expected value (or 

average value) of their gain – that is, the weighted sum of Gain
A

 over all of the targets, where 

each target is weighted by its corresponding probability of partial damage (i.e., its probability of 

being attacked, since there is no chance of target destruction under Theorem 1). 

                                                
[4] In fact, for Theorem 1 to be consistent with reality, one must view the September 11 attacks as a formal initiation 
of hostilities, only after which the Colonel Blotto game actually began. 
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Assuming, as suggested by the empirical work of Kaizoji and Kaizoji (2008), that the 

distribution of available target values follows a continuous power law with positive constant 

t ,[5] it is not difficult to derive the following result (proved in the appendix). 

Theorem 2:  For the Cournot-Nash equilibrium described in Theorem 1, the attackers can 

maximize their expected gain by choosing 

r = � t �1� � ,                                                                                                          (9) 

for any constant � t  that is greater than or equal to t . 

Substituting equation (9) into equations (7) and (8) then yields 

a = � t �1                                                                                                               (10) 

and 

d = q + � t �1( ) 2 .                                                                                                  (11) 

 

4.  Discussion 

In light of equations (9) through (11), our Cournot-Nash-equilibrium result may be 

restated as follows. 

Corollary 1:  There exists a Cournot-Nash equilibrium in which the attackers’ and defenders’ 

pure-strategy force allocations to a particular target are given by A�W
� t �1 and D�W

q + � t �1( ) 2, 

respectively, and the attackers’ probability of selecting the target is given by � �W
� t �1��. 

To interpret this result, we must know something about the positive constants q, � t , and 

� .  For simplicity, we will assume that q =1 – that is, that the domain of combat includes the 

entire three-dimensional volumes of the targets.  Furthermore, consistent with Kaizoji and 

                                                
[5] Formally, this means that the probability density function of available target values is given by f W( ) ~W � t . 
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Kaizoji (2008), we will assume that t = 2.35 for industrially developed nations,[6] and further 

that � t = t = 2.35 .  (In less-developed nations, one would expect the value of � t  to be somewhat 

larger, since the distribution of property values would tend to have a thinner tail.)  This leaves 

the gain/loss-function constant, � , for further investigation. 

Consider then the government defenders’ loss function, Loss
D
W( )�W � .  Figure 1 shows 

that this function is:  (1) concave downward for values of �  between 0 and 1; (2) linear for 

� =1; and (3) concave upward for values of �  greater than 1.  At first blush, it seems reasonable 

that the loss function should be concave downward, since a government would tend to 

experience decreasing marginal losses as the monetary/human-life values of the terrorists’ targets 

increase.  For example, one might argue that for the U.S. government’s September 11 losses to 

be doubled, the terrorists would have to destroy a target of more than twice the monetary/human-

life value of the September 11 targets. 

 

 

 

 

 

 

 

 

 

Figure 1.  Government’s Loss Function for Various Values of �  

                                                
[6] Kaizoji and Kaizoji (2008) provided annual estimates of t  for Japanese land values during the period 1981-2002.  
Those estimates vary from a low of about 2.0 to a high of about 2.7.  We have selected the approximate sample 
mean (2.35) of the estimates for our analysis. 

� = 1 

� > 1, 
“Wartime” 

0 < � < 1, 
“Peacetime” 

W 

LossD(W) 
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Note, however, that a concave-downward function corresponds to an assumption of risk 

proneness on the part of the government defenders (i.e., given the choice between any random 

lottery and a fixed amount equal to the lottery’s expected value, they would prefer the lottery 

itself).  Thus, such an assumption appears somewhat inconsistent with the generally observed 

risk-averse nature of governments (e.g., their seemingly cautious behavior in responding to life-

threatening crises). 

To place this issue in some perspective, one might distinguish between two distinctly 

different societies, one – like the U.S. – that has enjoyed a long period of domestic peacetime, 

and another – like Israel – that has experienced an extensive period of terrorist activity.  While it 

is true that all governments, in moments of crisis, manifest risk-averse tendencies, such behavior 

is not necessarily characteristic of more mundane periods.  More precisely, in a nation used to 

peace, it is quite likely that – apart from specific moments of crisis – both the populace and 

government tend to “take chances” by preferring an abundance of personal liberty and relaxed 

government security.  In a nation used to war, however, a more restrictive, security-conscious 

view would tend to prevail even in the best of times. 

For these reasons, it makes sense to model the U.S. and other “peacetime” governments 

as risk-prone decision makers (with concave-downward loss functions; i.e., 0 < � <1), while 

modeling the Israeli and other “wartime” governments as risk-averse decision makers (with 

concave-upward loss functions; i.e., � >1).  Hypothetically, we will select � = 0.5 for peacetime 

nations and � =1.5 for wartime nations.[7] 

                                                
[7] Note that, under our zero-sum assumption, the selection of the defenders’ loss function immediately implies the 
form of the attackers’ gain function.  This is quite reasonable if the attackers’ utility (gratification) arises directly 
from the defenders’ disutility (frustration). 
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We now return to the above Cournot-Nash-equilibrium result and suggest that, in 

practice, one should expect to find results similar to the following (in industrially developed 

nations): 

A�W
� t �1

= W
1.35 ,                                                                                                (12) 

D�W
q + � t �1( ) 2 = W

1.175,                                                                                        (13) 

� �W
� t �1��

=
W

0.85 for peacetime nations

W
�0.15 for wartime nations

� 
� 
� 

.                                                        (14) 

To compare these implications with the empirical distributions of destroyed (rather than 

simply available) target values estimated by Johnson et al. (2005),[8] one first must multiply �  

(for wartime nations) by the probability density function associated with a power-law constant of 

t .  This yields 

g W( )�� f W( ) ~ W
� t �1��� t = W

�2.5 .                                                                     (15) 

Interestingly, the constant in the power-law distribution implied by approximation (15), � = 2.5, 

happens to be identical to the constant estimated by Johnson et al. (2005) for less-developed 

wartime nations.  However, our figure is substantially higher than Johnson et al.’s (2005) 

estimate for industrially developed wartime nations (� =1.71) (although the latter estimate could 

be obtained quite readily by changing the assumption of � t = 2.35  to the equally permissible 

� t = 3.14 ). 

Given the highly subjective procedure for selecting the various model constants (q, � t , 

and � ), one should not read too much into either of these comparisons.  Rather, we simply 

would observe that our results appear to be in the same ballpark as Johnson et al.’s (2005), which 

                                                
[8] Johnson et al. (2005) argued that the distribution of destroyed target values follows a continuous power law with 
positive constant �  (i.e., the probability density function is given by g W( ) ~W �� ).  They further estimated the 
values of �  for both industrially developed nations and less-developed nations. 
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affords some support for the following qualitative observations from approximations (12) 

through (14): 

• In both peacetime and wartime, government defenders tend to allocate forces in slightly 

lower proportion to high-value targets than do terrorist attackers. 

• In peacetime, terrorist attackers tend to give substantial weight to high-value targets; 

however, such targets actually are avoided in wartime. 

 

5.  Conclusions 

In the present study, we have modeled the struggle between terrorist and conventional 

forces as a Colonel Blotto game.  We first replaced Powers and Shen’s (2006) mathematical 

expression for the conditional probability of destruction of a particular target, given that that 

target is selected for attack by terrorists, by a more rigorously derived approximation from a 

diffusion-based Lanchester analysis, and then used the resulting equilibrium solutions for force 

allocations and attack probabilities to make inferences about terrorist attackers and government 

defenders.  A brief analysis showed that these solutions are roughly consistent with the empirical 

findings of Johnson et al. (2005). 

Our analysis revealed that the loss function of a government plays a central role in 

determining the types of targets likely to be attacked by terrorists in “peacetime” and “wartime”, 

respectively.  Specifically, we found that terrorists tend to select high-value (“trophy”) targets 

much more frequently in peacetime than in wartime. 

Investigating how a government’s loss function depends on its society’s perception of 

conflict-related risk is crucial to a thorough understanding of the behavior of both governments 

and terrorists.  We believe this is a promising area for further research. 
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Appendix 

Proof of Theorem 1: 

Let   i =1,2,K,n  be the index for the various targets, and let 

E GainA[ ] = � i �A + pikA( )Vi

�

i=1

n

� = � i �A + pikA( )��
Wi

�

i=1

n

�  and 

E LossD[ ] = � i �D + pikD( )Vi

�

i=1

n

� = � i �D + pikD( )��
Wi

�

i=1

n

� , 

where:  �
A
,  �

D
 are positive constants reflecting the amount of partial damage sustained by any 

target that is attacked; k
A
,  k

D
 are positive constants reflecting the additional damage sustained by 

a target that is destroyed; �  is a positive constant such that �W
i
=V

i
; and 

pi =1�
� k 
1
Di

2

2k
2
Vi

q
Ai

=1�
� k 
1
Di

2

2k
2
� q

Wi

q
Ai

.  To solve the joint optimization problem 

  

Max
A1 ,K,A

n

E Gain
A[ ]  s.t.  A

i

i=1

n

� = A* and 

  

Min
D1 ,K,D

n

E Loss
D[ ]  s.t.  D

i

i=1

n

� <� , 

where A* is a positive constant denoting the attackers’ total forces (fixed a priori), we seek 

solutions satisfying  

grad E GainA[ ]( ) �μAgrad Ai

i=1

n

�
� 

� 
� 

� 

� 
� = 0  and 

�E Loss
D[ ]

�D
i

= 0  for   i =1,2,K,n , 

where   μA is a Lagrange multiplier.  In other words, we wish to solve the system of first-order 

equations 
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�pi

�Ai

� ikA�
�
Wi

� = μA  and                                                                                      (A1) 

�pi

�Di

� ikD�
�
Wi

�
= 0                                                                                               (A2) 

for   i =1,2,K,n , subject to the second-order conditions 

�
2
E GainA[ ]
�Ai

2
=
� 2pi

�Ai

2
� ikA�

�
Wi

� < 0  and                                                              (A3) 

�
2
E LossD[ ]
�Di

2
=
� 2pi

�Di

2
� ikD�

�
Wi

� > 0                                                                      (A4) 

for   i =1,2,K,n . 

Now let A
i
=�W

i

a  and D
i
= �W

i

d  denote the equilibrium-allocation solutions, where  

� = A* W j

a

j=1

n

� , 

and let �
i
= �W

i

r  denote the attackers’ probability of selecting target i , where 

� = 1 W j

r

j=1

n

� . 

Since 

�pi

�Ai

=
� k 
1
Di

2

2k
2
� q

Wi

q
Ai

2
, 

it follows from equation (A1) that 

� k 
1
Di

2

2k
2
� q

Wi

q
Ai

2
�Wi

r
kA�

�
Wi

� =
� k 
1
� 2Wi

2d

2k
2
� q

Wi

q� 2
Wi

2a
�Wi

r
kA�

�
Wi

� = μA .                     (A5) 

Then, since inequality (A3) always holds, we can collect the exponents of W
i
 in equation (A5) to 

conclude 

2d + r + � = q + 2a. 
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Turning to the defenders’ allocations, we note that 

�pi

�Di

= �
� k 
1
Di

k
2
� q

Wi

q
Ai

 

is negative for all D
i
> 0 , and so there is no internal solution to equation (A2) (and indeed, 

inequality (A4) also fails).  Consequently, the values of D
i
 that minimize E Loss

D[ ]  must lie at 

the boundary provided by equation (6); that is, 

Di =
2k

2
� q

Wi

q
Ai

� k 
1

=
2k

2
� q�

� k 
1

Wi

q +a( ) 2 , 

for which pi = 0.  This implies 

� =
2k

2
� q�

� k 
1

 and 

d = q + a( ) 2 . 

 

Proof of Theorem 2: 

From the proof of Theorem 1, we know that 

E GainA[ ] = � i �A + pikA( )��
Wi

�

i=1

n

� = �Wi

r�A�
�
Wi

�

i=1

n

� = �A�
�

W j

r

j=1

n

�
� 

� 
� � 

	 


 
� � Wi

r+�

i=1

n

� . 

Given that the distribution of W
i
 is continuous with probability density function 

f W( ) ~W � t , 

it follows that 

f W( )� W + c( )
� t  

for some positive constant c , and 

E Gain
A[ ] = �

A
��

nE W
i

r[ ]( )nE W
i

r+�[ ] = �A��
E W

i

r+�[ ] E W
i

r[ ]( )  
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                = �
A
��

W
r+�

W + c( )
� t
dW

0

�

�
W

r
W + c( )

� t
dW

0

�

�
, 

which is finite for r < t �1� �  and diverges to positive infinity for r � t �1� � .  (Actually, the 

above ratio of integrals possesses the indeterminate form � �  for r � t �1, but one can interpret 

this as divergence to positive infinity by viewing 
W

r+�
W + c( )

� t
dW

0

�

�
W

r
W + c( )

� t
dW

0

�

�
 as 

lim
z��

W
r+�

W + c( )
�t
dW

0

z

�
W

r
W + c( )

�t
dW

0

z

�
 and applying l’Hôpital’s rule.) 


