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Abstract— Increasing unmanned aerial vehicle (UAV) capa-
bilities and decreasing costs have facilitated growing interest
in the development of large, multi-UAV systems, or swarms.
The constrained communications environments in which these
swarms operate, however, have limited the development of
behaviors that require a high degree of deliberative coordina-
tion. This work presents two algorithms that use a consensus-
algorithm approach to reliably exchange information through-
out large swarms as a means of facilitating swarm behavior
coordination. Results from experiments conducted in simulation
and live-fly exercises are presented and discussed.

I. INTRODUCTION

In recent years robotic and unmanned systems have been
considered to meet the demands of an increasing number of
military and civilian applications. Not surprisingly, this trend
has only accelerated as robot capabilities have increased and
system costs have decreased. The maturation of unmanned
systems technology has been particularly evident in the area
of unmanned aerial vehicles (UAVs), with low-cost vehicles
possessing significant capabilities now available to hobbyists,
researchers, corporations, and governments alike.

As individual UAV cost has decreased, interest in cooper-
ative multi-vehicle systems of low-cost UAVs has increased.
Much of the current research into these multi-UAV swarms
focuses on quad-rotor UAVs, but a number of research efforts
are specifically directed at outdoor field experimentation
with systems of fixed-wing vehicles. By necessity, many
of these research efforts have emphasized platform develop-
ment [1], [2], [3], use cases [4], [5], and control algorithms
for coordinated behaviors [6], [7], [8]. As the numbers of
coordinating UAVs has increased, however, additional factors
affecting UAV swarms have received increasing attention
including human factors associated with control of large
swarms [9], [10], logistical aspects of maintaining and de-
ploying these systems [11], and multi-vehicle coordination in
the face of communications limits [12], [13]. Inter-vehicle
communication can be a particularly vexing problem with
regards to coordination for UAV swarms. Issues of latency,
synchronization, and reliability can significantly affect the
performance of distributed swarm algorithms [13].

Consensus-based approaches have been proposed for a
number of multi-UAV coordination problems such as re-
source and task allocation [14], [15], [16], formation con-
trol [17], [18], and determination of agreed-upon coordi-
nation variables (e.g., rendezvous time) [19], [20]. These
problems share a common thread of requiring eventual
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convergence to an agreed-upon solution. Many additional
coordination problems, however, do not require formal agree-
ment but can still utilize consensus-algorithm semantics
in their solutions. Distributed sorting, for instance, can be
applied to swarm behaviors where swarm participants self
organize according to criteria derived from individual UAV
state characteristics. Rather than relying on an agreed-upon
solution, distributed sorting relies on an eventually-consistent
swarm-wide understanding of the values being sorted.

As an example, the Naval Postgraduate School (NPS)
Advanced Robotic Systems Engineering Laboratory’s (AR-
SENL) multi-UAV system ensures in-flight deconfliction
by vertically separating individual UAVs. Each UAV’s po-
sition during formation flight is also determined by the
commanded altitudes [11]. Actual UAV altitude, however,
varies from commanded altitude (due to autopilot limitations,
environmental perturbations, etc.) by enough that UAVs
occasionally cross altitudes, so current state information
is insufficient for reliable sorting. Correct individual UAV
positioning within the formation, then, requires swarm-wide
exchange of individual commanded altitudes. Unfortunately,
one-time or periodic broadcast over lossy communication
links will not ensure consistency across the swarm. That is,
the ARSENL formation behavior and many other potential
behaviors (e.g., search area assignment or rendezvous point
based on UAV locations or prioritized landing order based on
remaining power) require shared situational awareness that
is not provided through unreliable state broadcasts or low
cost, on-board sensors typically available to small UAVs.
Rather, a reliable and efficient mechanism for behavior-
specific information exchange is required to ensure swarm-
wide situational awareness sufficient for these behavior-
related calculations.

This work proposes a consensus algorithm approach to
information sharing to ensure convergence upon a swarm-
wide solution for problems relying on distributed UAV-state
information. The main contributions of this paper include
algorithms that will converge upon swarm-wide agreement
on all individual UAV-specific values. These algorithms allow
for individual swarm UAVs to reliably determine not only
their own roles in a planned swarm behavior, but that of
all other swarm UAVs as well. Further, the paper provides
an analysis of algorithm performance in real-world and
simulated environments and discusses implementation in fail-
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stop and fail-silent systems.

An overview of the NPS ARSENL multi-UAV system
is provided in Section II, to include a discussion of the
system’s communications architecture. This system success-
fully demonstrated the ability to support coordinated UAV
swarms of up to 50 UAVs in field exercises [11]. Section III
describes the proposed algorithms and the assumptions upon
which they rely. The implementation of an Eventually-Perfect
Failure Detector ({'P) to facilitate algorithm fault tolerance
is also discussed in this section. Analysis of algorithm perfor-
mance in noise-free simulation, multi-UAV software-in-the-
loop (SITL) simulation, and real-world field experiments is
provided in Section IV. Finally, conclusions and envisioned
avenues of future work are provided in Section V.

II. THE ADVANCED ROBOTICS SYSTEMS ENGINEERING
LABORATORY MULTI-UAV SYSTEM

A. System Description

The NPS-designed-and-built Zephyr II UAV is depicted
in Figure 1. With a wingspan of 1.45 meters and a takeoff
weight of 2.5 kilograms, the Zephyr II has a nominal flight
endurance of 50 minutes at a cruise speed of approximately
18 meters per second. To meet cost and performance goals,
the airframe relies heavily on open-source and off-the-shelf
hobby equipment for flight, avionics, navigation, and com-
munication systems.

Fig. 1. Picture of NPS Zephyr II UAV, a low-cost yet capable system
leveraging open-source and commercially available components [11].

Swarm behavior deliberative planning and control is con-
ducted on the ODroid companion computer. The ODroid U3
provides computational power similar to that of a modern
smartphone and runs the Ubuntu 14.04 Linux operating
system. Swarm behaviors are implemented as independent
Robot Operating System (ROS) nodes and controlled by
a separate swarm-control node. All inter-component com-
munication on the companion computer relies on ROS ser-
vices and message topics. An autopilot-bridge node pro-
vides direction to the Pixhawk Autopilot using the Micro
Air Vehicle Link (MAVLink) protocol via a serial link.
Network communication between the UAV, ground stations,
and other UAVs is handled by a network-bridge node us-
ing an ARSENL-developed application-layer protocol. This
companion-computer control and communications architec-
ture is depicted in Figure 2.
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Fig. 2. The ARSENL UAV on-board companion-computer architecture for
network communications and swarm behavior activation and deativation.

IE

The NPS ARSENL team also utilizes an enhanced SITL
simulation system for development and testing of single- and
multi-UAV algorithms. The SITL environment provides for
realistic testing with actual vehicle software in a rigorous,
physically-based simulation [21]. The SITL environment
also provides the ability to simulate lossy communications
environments that are likely to be encountered in real-world
scenarios.

B. Communications Environment

Swarm-wide network communication is implemented over
an 802.11n ad hoc network using custom application layer
messages implemented on top of UDP/IP. Each UAV trans-
mits vehicle-state messages with GPS position, altitude,
and linear and angular velocity information at a rate of
10Hz and status messages with subswarm assignment, active
swarm behavior, and other information at a rate of 2Hz. The
ground control station broadcasts a heartbeat message at a
rate of 2Hz. In addition to a set of fixed-format special-
purpose messages, customizable swarm-behavior and swarm-
data messages are provided to parameterize and initiate
swarm behaviors and to conduct inter-vehicle messaging
during swarm-behavior execution respectively.

All messages are transmitted as broadcast messages using
UDP. As such, all transmitted messages can potentially be
received and processed by any swarm UAV, however there
is no guarantee of receipt by any UAV. Despite the inherent
unreliability of broadcast messaging, it has advantages in
the areas of latency and scalability that make it an attractive
option for multi-UAV systems. Although it is possible to
implement more robust communications primitives such as
synchrony, reliable point-to-point, and reliable broadcast [22]
using UDP/IP broadcasts, the decision was made to forgo
these additions in order to limit additional overhead on the
communications infrastructure [11].

Actual network performance for an aerial ad hoc network
is affected by a number of factors including atmospherics,
transmitter strength, transmitter-receiver separation, and rel-
ative antenna orientation [13]. Figure 3 provides an exemplar
snapshot of UAV-to-UAV packet delivery rates during a 50-
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UAV field experiment! [11]. At the time depicted, the 50
airborne UAVs were divided into two subswarms of 25
UAVs (subswarm 1 was UAVO01-25 and subswarm 2 UAV26-
50), each of which was executing ordered swarm behav-
iors. Same-subswarm UAVs were vertically separated by 15
meters with no lateral deconfliction while inter-subswarm
lateral separation varied between approximately 200 and
1000 meters as the subswarms independently executed their
ordered behaviors. The figure clearly depicts reduced (but
nonzero) delivery rates between subswarms and higher (but
not perfect) delivery rates within subswarms.
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Fig. 3. Aloft network performance as measured by packet rate between

aircraft, i.e., packet rate observed at UAV ¢ (row) received from UAV j
(column) during a 50-UAV flight test. For the period depicted, all 50 UAVs
are aloft and operating in two subswarms of 25 UAVs each [11]. Note
the communication partitioning between subswarms reflected by the largely
green and largely red quadrants.

III. CONSENSUS-BASED INFORMATION SHARING
ALGORITHM DEVELOPMENT

A. Networking Model and Underlying Assumptions

Given the observed communications characteristics, it
is reasonable to model communication between individual
swarm UAVs as fair-loss links. That is, for any particular
message transmitted by a UAV, j, there is a nonzero prob-
ability that the message is received by a recipient UAV, 1.
This swarm-wide communications model can be expressed in
graph form for a swarm of n UAVs as a weighted adjacency
matrix A = [o;] € R™*" where «;; is the probability that
a message transmitted by UAV j is received by UAV ¢ [20].
Since network characteristics of an airborne ad hoc network
vary with individual UAV states, expression of network
connectivity as a function of time is appropriate: A(t) =
[@vij(r)]. Using this time-varying model, individual UAV-to-
UAV communications still behave as fair-loss links over time
even with a;;(;) values of zero if it can be assumed that all
A(t) entries are at least occasionally nonzero. Further, it is

'Note that UAV0O5 was manually landed and no longer transmitting
or receiving state information after being powered down. For further
discussion, the reader is referred to [11].

possible, without loss of generality, to discretize the com-
munication model by considering individual communication
rounds wherein each UAV may transmit a single message
with individual probabilities of receipt for each round ¢
described by A(t).

This synchronous, discrete communications model is
clearly an abstraction of the actual communications char-
acteristics since swarm communications are not formally
conducted as fixed-interval rounds. Further, the ARSENL
messaging protocol does not enforce message ordering or
synchrony [11]. In fact, given the inherent unreliability
of UDP/IP broadcast messages, it is unlikely that swarm
behavior orders from the ground control station will be re-
ceived by all swarm UAVs simultaneously. Consequently, the
information exchange algorithm cannot implicitly depend on
simultaneous swarm-wide initiation or synchronous message
exchange. Fortunately, the requirement for the algorithm
to be lossy-communications-tolerant also implies tolerance
for the lack of synchrony described here. That is, for the
purposes of individual UAV execution, rounds occurring
before algorithm initiation can be ignored and all other-UAV
activity occurring during a single communication cycle can
be treated as part of that cycle. Using the time-variant, fair-
loss communications model described, the algorithm can be
considered active for the entire swarm from the time it is
initiated on the first UAV until it is terminated on the last
UAV by allowing nonzero adjacency matrix values, ),
only if the algorithm is active on UAVs ¢ and j at time t.

Two types of variable-length, inter-vehicle swarm-data
messages are utilized by the algorithms described in this
work: a request message and a data message. The request
message consists of a list of swarm UAV identifiers (2-
byte unsigned integers) for which the sending UAV does
not have data. The data message consists of a list of UAV-
identifier/UAV-data (32-bit floating point) tuples. During
each communications round, each UAV has an opportunity
to send one request message and one data message and can
process all data and request messages received from other
UAVs during that round.

Two data sharing algorithms are implemented and tested
for this work. Both algorithms require two initialization
variables: a swarm set, and a data_avail set. The first is a
set of all swarm UAV identifiers for which data is required.
The second is a set of identifier/data tuples for which the
UAV has the required data. At initialization, the data_avail
set contains only the executing UAV’s own identifier/data
tuple. Both algorithms remain active on all swarm UAVs
until all UAVs in the swarm have received all required data.

B. Lazy Consensus Data Sharing

The first implemented algorithm is referred to as the
lazy consensus data sharing algorithm, or simply the lazy
algorithm. Depicted in Figure 4, the lazy algorithm operates
in four basic steps, the first two of which are only required
until the executing UAV has identifier/data tuples from all
swarm UAVs.
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1: swarm < swarm_uav_ids

2: data-avail < {own_data}

3: repeat

4 if Juav € swarm A uav ¢ data_avail then
S: new-data <— NET_-RECV_DATA

6: data_avail = data_avail U new_data

7: own_request < swarm \ data_avail

8 NET_SEND_REQUEST(own_request)

9

: end if
10: requests <— NET_RECV_REQUESTS
11: if own_data € requests then
12: data_to_send < {own_data}
13: else
14: data_to_send + ()
15: end if
16: NET_SEND_DATA(data_to_send)

17: until terminated

Fig. 4. The lazy-consensus data sharing algorithm which allows UAVs to
provide data in response to requests from other swarm UAVs only when the
request is for the responding UAV’s own data.

At the beginning of each communications cycle, the lazy
algorithm determines whether or not there are swarm UAVs
for which the data_avail set does not contain an identi-
fier/data tuple. If this is the case, any data messages received
since the last communication cycle are processed and the
data_avail set is updated as applicable. It is worth noting
that since all messages utilize UDP/IP broadcasts to the entire
swarm, individual messages may contain identifier/data tu-
ples that are not required by a particular recipient. After pro-
cessing all data messages, the algorithm determines which,
if any, UAV tuples are still missing from the data_avail
set. It then constructs and broadcasts an appropriate request
message as required.

Regardless of whether or not all required data are con-
tained in the data_avail set, the lazy algorithm processes all
newly-received request messages during every communica-
tions cycle. If the executing UAV’s identifier is present in any
of the received request messages, a data message containing
the executing UAV’s identifier/data tuple is constructed and
transmitted to the swarm.

During the first communication cycle, each UAV’s
data_avail set contains only its own identifier/data tuple,
so a swarm of size n will require n request messages, each
containing n — 1 identifiers. After the first communications
cycle, executing UAVs will broadcast both request messages
and data messages as prescribed by the algorithm. Since
the lazy algorithm provides a data response only when its
own data is requested, all data messages will include exactly
one identifier/data tuple. Worst case performance for this
algorithm occurs when all UAV requests are received by
every swarm UAV, but no data messages are received by
any swarm UAV (i.e., a;j¢) = 1 and ay;¢41) = 0 for all
i # j and a request cycle ¢ and response cycle ¢ + 1). For
n UAVs, this will require n request messages containing
n — 1 UAV identifiers and n data messages containing a
single identifier/data tuple (2n total messages). The total
number of per-round message payload bytes required for the
ARSENL implementation of 2-byte UAV identifiers and 8-
byte identifier/data tuples for the general case and worst-case

instances is described by Equations 1 and 2 respectively:

PB=>) 2r;+» 8d; (1)
=1 =1
PB!2Y — 212 4 6n (2)

where n is the number of swarm UAVs, r; is the number
of swarm UAVs for which UAV ¢ is requesting data and
d; is the number of identifier/data tuples to be provided in
response (1 or O for the lazy algorithm). Equation 3 describes
the probability that a particular request-response interaction
between UAVs ¢ and j will be successful (i.e., the probability
that UAV i receives requested UAV j data as a direct result
of the request) given matrices A(t) and A(t + 1):

P (i« j) = aijji(t) = aijey - iy (3)

In reality o; j;(¢) actually represents the minimum prob-
ability that UAV ¢ will receive the requested UAV j; data.
The broadcast communications architecture implies that the
actual probability may be somewhat higher since other UAVs
may also require UAV j’s data, and UAV j will broadcast
a data message in response to any relevant request. Nev-
ertheless, since the round-trip probabilities represented by
a;;_;i(t) are themselves semantically equivalent to fair-loss
links, the lazy consensus data exchange algorithm will prob-
abilistically converge on a state where all UAV data_avail
sets contain identifier/data tuples from all swarm UAVs.
Eventual swarm-wide convergence is, however, dependent
on a successful directed data exchange between all UAV
pairs (n? exchanges), so each value in the A(t) matrix is
effectively a potential single point of failure. Thus, links with
low (cv;;_j;(t)) values for extended periods can delay arrival
at a final solution for individual UAVs.

C. Eager Consensus Data Sharing

The second implemented algorithm, referred to as the
eager consensus data sharing algorithm or simply the eager
algorithm, is described in Figure 5. The eager algorithm
relies upon the same basic steps as the lazy algorithm. In
fact, the only difference between the two algorithms is in
the response to request messages. Rather than broadcasting
a single identifier/data tuple data message only when the
executing UAV’s data has been requested by another swarm
UAV, the eager algorithm will construct and broadcast a
data message containing all requested identifier/data tuples
that are available in its own data_avail set. This algorithm
attempts to leverage overall communications graph connec-
tivity to overcome problematic individual links. The potential
improved data flow of the eager algorithm comes at the cost
of increased per-round broadcast requirements.

The first request-response cycle of the eager algorithm
proceeds in exactly the same manner as the lazy algorithm
since each UAV’s data_avail set initially contains only its
own identifier/data tuple. In later rounds, data messages
will grow in size as some individual UAVS’ data_avail
sets grow faster than others. Per-round message payload
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1: swarm < swarm_uav_ids
2: data-avail < {own_data}
3: repeat

4 if Juav € swarm A uav ¢ data_avail then
S: new-data <— NET_-RECV_DATA

6: data_avail = data_avail U new_data

7 own_request < swarm \ data_avail

8 NET_SEND_REQUEST(own_request)

0 00

end if
10: requests <— NET_RECV_REQUESTS
11: data-to_send < requests N data_-avail
12: NET_SEND_DATA(data_to_send)

13: until terminated

Fig. 5. The eager-consensus data sharing algorithm which allows any
swarm UAV to provide any requested data that it has available regardless
of which UAV the data pertains to or which UAV made the request.

bytes required by the eager algorithm can be obtained from
Equation 1 with d; values from 0 to n — 1. Worst-case per-
round performance occurs in the pathological case where
requests by an individual UAV ¢ are always received by all
swarm UAVs, but no data messages are ever received by
UAV ¢ (ie., oy; = 1 and aj; = 0 for j # 4). In this case,
data_avazil sets for all UAVs but one will eventually contain
all required tuples. This results in one request message and
n — 1 data messages per round with required payload bytes
computed with Equation 4:

PB&9e™ = 8n? — 14n + 6 4)

Unlike the lazy algorithm, when the data_avail set for a
UAV, i, does not contain a tuple for a UAV, j, any swarm
UAV whose data_avail set does contain the requested tuple
may answer the request. Thus, through inclusion-exclusion,
the probability that UAV i receives one or more responses
to a request for UAV j data is provided by Equation 5:

Bl

Peaser (i « j) = Z<_1)k_1 Z H g ()

k=1 DCJ,|j|=k deD

where J is the set of UAVs with data_avail sets containing
the requested tuple and av;q_q; is computed from Equation 3.
As with the lazy algorithm, Equation 5 actually represents a
minimum probability. The actual probability will be some-
what higher if multiple UAVs request the identifier/data tuple
for UAV j. Since the A(t) matrix describes an eventually-
strongly-connected graph over time (an outcome of the fair-
loss link model), individual identifier/data tuples for all
UAVs, 4, will eventually become available to all other swarm
UAVs. Further, because there is no reliance on individual
links, swarm-wide convergence can be expected to occur
more quickly than with the lazy algorithm.

D. UAV Failure Handling

As described thus far, neither the lazy algorithm nor the
eager algorithm provide any fault tolerance. Given a set of
swarm UAVs, each swarm UAV continues executing either
algorithm until the data_avail set contains an identifier/data
tuple for every swarm UAV. If even a single UAV were to fail
after initialization of the swarm set and before completion
of the algorithm, the algorithm may not terminate. More

specifically, if the failed UAV’s identifier/data tuple has not
been received by every non-failed UAV in the case of the
lazy algorithm or at least one non-failed UAV in the case of
the eager algorithm, then the algorithm will not terminate.
Moreover, even if the failed UAV’s tuple is eventually
received by all other swarm UAVs, their data_avail sets
will not accurately represent the current state of the swarm
since they will each contain a tuple for the failed UAV. A
capability to detect UAV failures, either before algorithm
initiation or during execution, would be a clear improvement
in the algorithm’s robustness.

Reliable failure detection in an asynchronous system
such as the communication architecture described here is
inherently difficult, primarily because of the difficulty in
differentiating between a process that has failed and one
that is just slow to respond. The periodic state and status
messages broadcast by all UAVs, however, can be utilized
to implement an Eventually-Perfect Failure Detector (OP)
meeting certain criteria [22]:

o Completeness: Every failed process is eventually per-
manently suspected of failure by every correct process.

o Accuracy: After some period of time, no correct process
is suspected of failure by any correct process.

The set of QP failure detectors has been shown to be
sufficient for achieving consensus in a distributed system as
long as the majority of processes are correct [22].

The QP failure detector implemented in support of this
work utilizes the periodic state and status messages trans-
mitted by each swarm UAV as described in Subsection II-
B. Considering the fair-loss model of the communications
architecture, every active UAV can be assumed to receive
these messages from every other active UAV at a rate
described by the matrix A. Upon receipt of a state or
status message, the message timestamp is associated with the
source UAV’s identifier. Periodically, the set of timestamps
is tested, and any UAVs for which the time-since-last-update
exceeds a time_out value are placed in a suspect_crash set.
If a state or status message is received from a suspect_crash
set UAV, the UAV is removed from the set, and the time_out
value is updated to the observed between-message duration.
False suspected crash indications can be expected early
in a mission, but over time the time_out values should
stabilize to appropriate values for the actual communications
environment in which the swarm is operating. This failure
detector is equivalent to the time-out based (P failure
detector described in [23] and is implemented within the
swarm_tracker node on each UAV in the ARSENL multi-
UAV system [11].

Incorporation of the failure detector described here into the
lazy and eager data exchange algorithms is fairly straightfor-
ward, requiring only removal of suspect_crash set members
from the completion test (line 4 of Figures 4 and 5), the re-
quest composition (line 7), and the data_avazil set of the final
solution. Since failure detector false positives are possible,
and suspect_crash set members may be removed, identi-
fier/data tuples associated with suspect_crash set members
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should not be removed from the data_avail set until the
final solution is obtained. Implemented as described, this OP
failure detector reliably accounts for UAV failures that occur
before initiation of the algorithm, and failures occurring after
commencement of the algorithm are appropriately accounted
for if post-failure algorithm execution time exceeds the
largest swarm UAV failure detector time_out duration.

Unfortunately, this does leave two potential erroneous ter-
mination states. The first is associated with a post-initiation
failure of UAV i, where at least one UAV, j, has received
1’s identifier/data tuple prior to the failure. In this case,
lazy algorithm semantics will prevent premature swarm-wide
termination unless all UAVs received the failed UAV’s tuple.
The termination state of individual UAVs, however, may
differ if some include the failed UAV tuple and others do
not. The eager algorithm, on the other hand, will forward
the failed UAV’s tuple among remaining UAVs until it is
included in all of their final data_avail sets, resulting in a
swarm-wide conclusion that includes the failed UAV.

The second potential erroneous outcome is associated with
failure detector false positives. As described in [22] and [23],
there is a nonzero probability that a live UAV’s state and
status messages are not received within an arbitrarily long
time_out duration. In the pathological case, both the lazy
and eager algorithms can terminate on one or more UAVs
without that UAV including the identifier/data tuple for at
least one valid swarm UAV.

It should be noted that during testing in simulation,
erroneous termination states (all of which were of the fail-
ure detector false positive variety) were observed on only
three UAVs of a total of 200 tested over the course of 20
experiments with communications loss rates of 90 percent.
Further, the real-world communications characteristics ob-
served in [11] indicate that eventual failure detector teme_out
values are such that false positives among airborne UAVs
are unlikely. Specifically, the worst UAV-to-UAV character-
istics are observed between airborne and grounded UAVs
(i.e., communication is significantly worse between launched
UAVs and yet-to-be-launched UAVs than between airborne
UAVs). Empirical evidence suggests that time-out based OP
failure detector false positives are unlikely once all UAVs
are airborne.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. Synchronous, Noise-Free Simulation

Both the lazy and eager algorithms were implemented and
tested in a MATLAB simulation. Unlike the real-world and
SITL simulation tests of the next section, the MATLAB
implementation intentionally maintained perfect synchrony
among all agents. Thus, with each experiment the tested
algorithm was started simultaneously on all executing agents
and each communication cycle was allowed to complete for
all agents before commencement of the next cycle. This
arrangement provided a noise-free environment for assessing
algorithm characteristics, performance, and scalability prior
to real-world and SITL experiments. The MATLAB simu-

lation was used to test both algorithms with swarm sizes
of between 10 and 1000 and communications packet loss
rates of 0.25, 0.50, 0.75 and 0.90. Because individual agents
were not permitted to fail, the (P failure detector was not
incorporated into the MATLAB simulation.

Figure 6 (a) and (b) depict average rounds to algorithm
convergence for the MATLAB simulation for the eager and
lazy algorithms respectively. Not unexpectedly, the eager
algorithm reliably converged much more quickly than the
lazy algorithm for the same swarm size and packet loss rate.
In fact, eager algorithm convergence at the 0.90 packet loss
rate met or exceeded lazy algorithm convergence at even
the lowest packet loss rates. Intuitively, this is a result of the
eager algorithm data propagation scheme; even if a particular
identifier/data tuple is successfully passed to a relative few
swarm UAVs in early cycles, the number of UAVs from
which it can be passed in later cycles is increased. On
the other hand, the ability of the lazy algorithm to pass a
particular tuple to swarm UAVs that need it remains constant
for the duration of the algorithm.

Lazy Algorithm Rounds to Converge vs Number of Agents
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Fig. 6. Number of communications rounds required for eager (a) and lazy
(b) algorithm convergence in a MATLAB simulation. Results are depicted
for swarm sizes of 10 to 1000 and communications packet loss rates of
0.25, 0.50, 0.75 and 0.90.

It is also evident from Figure 6 that communications
packet loss rate only slightly affects eager algorithm con-
vergence and has no discernible effect loss rates above 0.50
(although loss rates above 0.90 may have more significant ef-
fects). Lazy algorithm convergence, however, is significantly
affected by packet loss rate (showing polynomial growth)
and is slightly affected by increasing swarm size.

As described in Section III-C, eager algorithm message
payload requirements per round can be higher despite its
faster convergence. Figure 7 provides a summary of average
message payload per round for 1000-agent simulations of
both the lazy and eager algorithms. As expected, the first
communication round is identical for both algorithms, as
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each agent initially transmits a request message for all
other identifier/data tuples and responds with a data message
containing only its own tuple. As the algorithm progresses,
lazy algorithm message payload requirements decrease con-
sistently over time and approach zero at a rate commensurate
with the communications packet loss rate.

Average Bytes Transmitted per Agent vs Round (1000 Agent simulation)
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Fig. 7. Average message payload bytes per agent (combined request and
data) by round for 1000-agent lazy and eager algorithm simulations with
communications packet loss rates of 0.25, 0.50, 0.75 and 0.90.

Eager algorithm experiments with lower communications
packet loss rates (i.e., 0.25 and 0.50) indicate a high volume
of payload data transmission in the second communication
cycle. This can be accounted for by noting that a higher num-
ber of tuples are successfully exchanged in the first round, but
it is unlikely that any tuple is successfully exchanged with
every swarm UAV. More agents will thus be in a position
to respond to request messages in round two. Interestingly,
at higher packet loss rates (i.e., 0.75 and 0.90), per-agent
round-two message payload requirements are actually lower
with the eager algorithm than with the lazy algorithm. When
compared to lower packet loss rate simulations, fewer agents
successfully receive a specific UAV’s identifier/data tuple,
so the number of agents that are able provide that tuple
in response to round-two requests is smaller. As previously
observed, this phenomenon does not appear to impact the
algorithm’s convergence rate.

B. Software-in-the-Loop and Field Experimentation

SITL simulation and in live-fly experiments were con-
ducted with a swarm of 10 UAVs?. SITL simulations were
conducted with communication packet loss rates of 0.25,
0.50, 0.75, and 0.90. Because live and simulated UAV’s
interact asynchronously, SITL simulation and real-world
experiments introduced a number of realistic factors that
were not present in synchronous, noise-free tests, such as
asynchronous behavior activation and termination and irreg-
ular communications cycles in particular.

In addition to testing in isolation, both algorithms were
incorporated into more robust swarm behaviors. Specifically,
formation flight and a swarm landing behaviors were devel-
oped that sort the ordered altitudes of all UAVs to determine

2Swarm size for the live-fly experiment was dictated by larger exercise
objectives. SITL experiments have been conducted with swarms of up to 50
UAVs, but results are presented for 10-UAV swarms to maintain consistency
with the live-fly experiments.

individual UAV formation and landing positions respectively.
Both behaviors have been successfully demonstrated in SITL
simulations and live-fly experiments [11].

Algorithm convergence and total message payload bytes
required are depicted in Figure 8 (a) and (b) respectively.
Algorithm convergence aligns with results of 10-UAV noise-
free simulations; however, slower eager-algorithm conver-
gence with high packet loss rates, while evident in the
synchronous simulation, is more pronounced in SITL exper-
iments. System asynchrony, particularly regarding algorithm
initiation, provides a partial explanation (i.e., high loss rates
will require more ground-to-air swarm behavior message
transmissions before swarm-wide receipt).
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Fig. 8. Average lazy and eager algorithm convergence (a) and total payload
message bytes required (b) for Software-in-the-Loop simulation and real-
world experiments for a 10-UAV swarm.

Observed message payload requirements also align with
synchronous simulation results. In particular, the total num-
ber of message payload bytes required for eager algorithm
convergence can exceed that of the lazy algorithm for
low data loss rates. At higher communications packet loss
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rates, however, lazy algorithm messaging requirements far
exceed those of the eager algorithm. Per-round message
requirements were similar to those observed in 10-UAV syn-
chronous simulations; however, due to asynchronous SITL
and real-world algorithm initiation, lazy and eager algorithm
messaging is not identical for the first two rounds as it was
in the synchronous tests.

As a final observation, live-fly results seem to correspond
to a higher communication packet loss rate than the em-
pirical evidence of Figure 3 implies. Previously discussed
asynchrony issues provide a possible explanation; however,
rigorous study of this phenomenon remains elusive due
to measurement challenges in physical embedded systems.
Moreover, the communications environment is but one of
many factors affecting swarm scalability [11], so the en-
couraging synchronous simulation results may or may not
be borne out with substantial swarm-size increases.

V. CONCLUSION

This paper presented a consensus approach to reliable data
sharing among UAVs operating in large, cooperative swarms.
Inter-vehicle coordination in these systems is hampered
by inherently unreliable communications architectures that
preclude the exclusive use of periodic broadcasts to exchange
required information. Two algorithms were presented: a lazy
algorithm that passes information only in direct vehicle-
to-vehicle exchange of source vehicle data and an eager
algorithm that forwards all available requested information
regardless of source. Of these two, the eager algorithm
showed faster convergence in both low-loss and high-loss
communications environments. Surprisingly, the eager algo-
rithm also required a lower per-round volume of transmitted
data in high-loss communications environments. The lazy
algorithm required less data transmission per round in low-
loss communications environments.

Initial experimentation with these algorithms has been
encouraging, but a number of areas of further research are
apparent. Algorithms such as these are potentially applicable
to a large array of swarm behaviors, and their incorporation
into more robust behaviors, possibly in support of or in
combination with other distributed algorithms, will be worth-
while. In addition, since reliability was emphasized in their
development, improvements to the algorithms themselves can
be explored, particularly in efficiency and fault tolerance. Fi-
nally, this work will benefit from SITL and real-world testing
with larger swarms and more thorough characterization of the
communication environments in which multi-UAV swarms
are intended to operate.
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