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Hairpin completion is an operation on formal languages that has been inspired by hairpin
formation in DNA biochemistry and by DNA computing. In this paper we investigate the
one- and two-sided hairpin completion of regular languages. We solve an open problem
from the literature by showing that the regularity problem for hairpin completions is
decidable. Actually, we show that the problem is decidable in polynomial time if the input
is specified by DFAs.
Furthermore, we prove that the hairpin completion of regular languages is an unambiguous
linear context-free language. Beforehand, it was known only that it is linear context-free.
Unambiguity is a strong additional property because it allows to compute the growth
function or the topological entropy. In particular, we can compare the growth of the hairpin
completion with the growth of the defining regular languages. We show that the growth of
the hairpin completion is exponential if and only if the growth of the underlying languages
is exponential. Even if both growth functions are exponential, they can be as far apart as
2Θ(

√
n ) for the hairpin completion and 2Θ(n) for the defining regular languages. However,

if the hairpin completion is still regular, then the hairpin completion and its underlying
language have essentially the same growth and same topological entropy.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

A DNA strand can be seen as a word over the four-letter alphabet {A,C,G,T} where the letters represent the nucleobases
Adenine, Cytosine, Guanine, and Thymine, respectively. By a Watson–Crick base pairing two strands may bond to each other
if they have opposite orientation and their bases are pairwise complementary, where A is complementary to T and C to G;
see Fig. 1 for a picture. Throughout, we use a bar-notation for the Watson–Crick complement and its language theoretic
pendant; thus A = T and C = G. For base sequences we extend the bar-notation to strings by a1 · · ·am = am · · ·a1. This yields
an involution which is an anti-morphism.

The polymerase chain reaction (PCR) is a technique which is used in DNA computing to amplify a template strand or a
fragment of the template strand. Short DNA sequences, so-called primers, bond to parts of the template. After bonding, the
primer is extended to a strand which is complementary to a fragment of the template. A particular case of this process is
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Fig. 1. Bonding leads to base-wise complementary strands. Reading both strands in 5′-to-3′ orientation we can write them as σ and σ .

Fig. 2. Hairpin completion of a strand.

the hairpin completion of a strand, which may develop during the PCR. Suppose a strand σ can be written as σ = γαβα.
Its suffix α can act as a primer to the strand and form an intramolecular base-pairing which is called hairpin or hairpin
formation. During the extension process we obtain strands of the form γαβαγ ′ , where γ ′ is a prefix of γ . In this paper we
are interested in the situation where the extension is completed; this means γ ′ = γ . Thus, γαβα may form a hairpin which
leads to its hairpin completion γαβαγ , see Fig. 2. The primer α should consist of several bases, otherwise the bond between
α and α is too weak. The length of the primer depends on the reaction conditions, like temperature, e.g., [1] suggests that
α should have 9 bases. The actual value of |α| is not very important for the following. However, in our algorithms we must
pay attention to the fact that α and α may overlap.

Hairpin completions are often seen as undesirable byproducts that occur during DNA computations and, therefore, sets
of DNA strands have been investigated that do not tend to form hairpins or other undesired hybridizations, see e.g., [2–6]
and the references within. On the other hand, DNA algorithms have been designed that make positive use of hairpins
and hairpin completions. For example, the whiplash PCR is a technique where a single DNA strand computes one run of a
non-deterministic GOTO-machine by repetitive hairpin completions, where the length of the extended part is controlled by
stopper sequences. Starting with a huge set of strands, all runs of such a machine can be computed in parallel. The whiplash
PCR was proposed as a computational model which, in theory, is able solve NP-complete problems like the Hamiltonian
path problem [7,8]. The practical implementation of whiplash PCR is discussed in [9].

Motivated by the hairpin formation in biochemistry, the hairpin completion of formal languages has been introduced in
2006 by Cheptea, Martín-Vide, and Mitrana [10]. Our paper continues the investigation of hairpin formation from a purely
formal language theoretical viewpoint. The hairpin completion of languages L1 and L2 contains all right hairpin completions
(as in Fig. 2) of all words in L1 and all left hairpin completions (a word αβαγ is extended to the left by γ ) of all words
in L2. Thus, L1 and L2 can be viewed as generators for the hairpin completion. It turns out to be best to work with
two languages simultaneously, whereas the original definitions used only one language. A formal definition of the hairpin
completion is given in Section 2.1. The hairpin completion and some related operations have been investigated in a series
of papers, see e.g. [11–18]. It is known from [10] that hairpin completions of regular languages are linear context-free, and
it has been asked whether the regularity problem for hairpin completions. In the original setting the input to the problem
is given by some regular language L. The question is whether the one-sided (tow-sided respectively) hairpin completion of
L is regular.

The problem is far from being trivial, because the regularity problem is undecidable for linear context-free languages.
The regularity problem for hairpin completions has been shown to be decidable in a preliminary conference abstract of the
present paper in [19]. Actually, we proved that the problem is decidable in polynomial time if the input is given by DFAs. In
this first approach we did not spend efforts in optimization; the degree of the polynomial for the time bound was about 20.
In a second approach, which was presented as conference abstract in [20], we improved the decision algorithm and provided
the time bounds which are presented here, i.e., the regularity problem can be decided in time O(n8), where n denotes an
upper bound for the sizes of the two input DFAs accepting L1 and L2, respectively. Furthermore, for L2 = ∅ we provided
a time complexity of O(n2) and for L1 = L2 we provided O(n6). In the second abstract we also showed that the problem
is NL-complete. NL is the class of problems that are solvable by a non-deterministic Turing machine using logarithmic
space, only. Since NL belongs to Nick’s Class NC, the regularity problem is efficiently solvable in parallel. Since NL ⊆ NC
(see e.g. [21]), the regularity problem is efficiently solvable in parallel. Moreover, we proved that the hairpin completion of
regular languages is an unambiguous linear context-free language. Thus, its generating function is an effectively computable
rational function.

A full proof for the NL-completeness result can be found in [22]. The present paper gives full proofs for the time bounds
mentioned above and deals with our results about unambiguity.
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This paper is organized as follows. In Section 2 we formally define the hairpin completion operation, we lay down our
notation, and we briefly recall the some concepts of formal language theory. In Section 3 we start our investigation of
hairpin completions of regular languages by providing an unambiguous linear context-free grammar generating the hairpin
completion of two given regular languages. Section 4 is devoted to explain the algorithm which solves the regularity problem
for hairpin completions of regular languages in time O(n8) for the general case and in time O(n2) for the one-sided case.
In Section 5 we discuss the relation of the growths of hairpin completions with the growths of their underlying regular
languages.

The paper is a journal version for results which have been presented at ICTAC 2009 and at CIAA 2010. It contains some
additional results, too.

2. Preliminaries and notation

We assume the reader to be familiar with the fundamental concepts of formal language theory and automata theory as
it can be found e.g. in the textbook [23]. By Σ we denote a finite alphabet with at least two letters which is equipped with
an involution : Σ → Σ . An involution is a bijection such that a = a for all a ∈ Σ . (In a biological setting we may think of
Σ = {A, C, G, T } with A = T and C = G .) We extend this involution to words a1 · · ·an by a1 · · ·an = an · · ·a1, just like taking
inverses in groups. Note that the involution on words is an anti-morphism since uv = vu. For languages, L denotes the set
{w | w ∈ L}. The set of words over Σ is denoted by Σ∗; and the empty word is denoted by 1. By Σ�m we mean the set of
all words with length of at most m.

Given a word w , we denote by |w| its length, by w[i] ∈ Σ its i-th letter, and by w[i, j] the factor w[i] · · · w[ j]. A factor
w[1, j] is called a prefix, and a factor w[i, |w|] is called a suffix. A prefix or suffix x of w is said to be proper if x 	= w . The
prefix relation (respectively proper prefix relation) between words x and w is denoted by x � w (respectively x < w).

2.1. Hairpin completion

Let L1 and L2 be languages in Σ∗ . By κ we denote a (small) constant that gives the minimal length of primers. We
define the hairpin completion Hκ (L1, L2) as an abstract operation by

Hκ (L1, L2) = {
γ αβαγ

∣∣ (γ αβα ∈ L1 ∨ αβαγ ∈ L2) ∧ |α| = κ
}
.

We can think that L1 and L2 are generators of the hairpin completion Hκ (L1, L2). The language Hκ (L1, L2) clearly depends
on L1, L2, but also on κ . Indeed, it might happen that Hκ+1(L1,∅) = ∅ whereas Hκ (L1,∅) is not regular, even if L1 is
regular; e.g., consider L1 = a∗bb, then H1(L1,∅) = {aibbai | i ∈ N}, but H2(L1,∅) = ∅. In our examples we will always
choose κ = 1 for simplicity. However, e.g., due to possible overlaps between α and α, the general case is more complicated.
Therefore we allow κ � 1. The definition of Hκ (L1, L2) does not change if we replace |α| = κ by |α| � κ . This reflects the
fact that the primer should have at least length κ .

Three cases are of main interest:

1. L2 = L1,
2. L2 = L1,
3. L1 = ∅ or L2 = ∅.

Compared to the definition of the hairpin completion in [10,17] Case 1 corresponds to the two-sided hairpin completion
and Case 3 to the one-sided hairpin completion. In biochemistry the hairpin completion is obtained in 5′-to-3′ direction only,
which corresponds to the one-sided case Hκ (L1,∅). So, strictly speaking, the general study of Hκ (L1, L2) is less supported
by the biochemical motivation.

However, due to the complementary structure in DNA double strands, it is natural to assume that a strand and its
complement co-occur. For a single language L we consider Hκ (L, L) in Case 2. Hence we obtain an operator Hκ by Hκ (L) =
Hκ (L, L). The construction Hκ (L) is closer to the biochemistry setting than the traditional two-sided hairpin completion
Hκ (L) = Hκ (L, L) which has been investigated in earlier papers. Indeed, we always have Hκ (L) = Hκ (L,∅) ∪ Hκ (∅, L) =
Hκ (L,∅) ∪Hκ (L,∅). Hence Hκ (L) is the “Watson–Crick-complementary closure” (or closure by involution) of the one-sided
hairpin completion Hκ (L,∅). Interesting enough, it may happen that L = L and hairpin completion Hκ (L,∅) is neither
closed by involution nor regular, but Hκ (L) is both: it is regular and clearly closed by involution. For example, let L =
{anbba, abban | n � 1}; obviously, L = L. We obtain H1(L,∅) = {anbbam | 1 � m � n ∨ n = 1}, which is not regular, but
H1(L) = a+bba+ is regular.

In any case, to work with two languages L1 and L2 simultaneously is the convenient framework to study various special
cases in a unified way. It gives the best results, solves an open problem from the literature, and from the formal language
viewpoint the two-sided hairpin completion is the most challenging and interesting one. It also leads in a natural way the
language operator L 
→Hκ (L) which yields the desirable closure under involution.
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2.2. Linear context-free grammars and unambiguity

A grammar G is a tuple G = (V ,Σ, P ,S) where V is the finite set of non-terminals, Σ is the terminal alphabet, P is the
finite set of production rules, and S ⊆ V is the set of axioms. We allow a set of axioms rather than the more usual restriction
to have exactly one axiom S . The size of a grammar G is defined to be the sum

∑
	→r∈P (|	| + |r|). A grammar is called

context-free, if every rule in P is of the form A → w where A ∈ V and w ∈ (V ∪Σ)∗; a grammar is called linear context-free,
or simply linear, if, in addition, w contains at most one non-terminal. For a context-free grammar G , a derivation step is
denoted by u Av �⇒

G
uw v , where A → w is a production rule in P and u, v ∈ (V ∪ Σ)∗ . By

∗�⇒
G

, we denote the reflexive

and transitive closure of �⇒
G

and we call u
∗�⇒
G

v (with u, v ∈ (V ∪ Σ)∗) a derivation. The language generated by G is the

set of terminal words

L(G) = {
w ∈ Σ∗ ∣∣ ∃A ∈ S: A

∗�⇒
G

w
}
.

A linear grammar G is said to be unambiguous if for every word w ∈ L(G), there is exactly one derivation A
∗�⇒
G

w where

A ∈ S; in particular, there is only one axiom A that yields w . For general context-free grammars we would require that
there is exactly one left-most derivation A

∗�⇒
G

w; but for linear grammars all derivations are left-most. A language L is called

(unambiguous) linear if it is generated by an (unambiguous) linear grammar.

2.3. Generating functions, growth, and topological entropy

For a profound discussion of formal power series and how the growth of regular and unambiguous linear languages can
be calculated we refer to [24–27]. We content ourselves with a few basic facts. The growth or generating function gL of a
formal language L is defined as

gL(z) =
∑
m�0

∣∣L ∩ Σm
∣∣zm.

We can view gL as a formal power series or as an analytic function in one complex variable where the radius of convergence
is strictly positive. The radius of convergence is at least 1/|Σ |.

It is well known that the growth of a regular language L is effectively rational, i.e., it can be written as a quotient of
two polynomials, and this holds more generally for unambiguous linear languages, see e.g., [24]. In particular, the growth is
either polynomial or exponential. If the growth is exponential, then there exists an algebraic number λL ∈ R

�0, its growth
indicator, such that |L ∩ Σm| behaves essentially like λm

L . More precisely, for a language L, its growth indicator is defined as
the non-negative real number λL where

λL = inf
{
λ ∈R

�0
∣∣ ∃c > 0, ∀m ∈ N:

∣∣L ∩ Σm
∣∣ � cλm}

.

The topological entropy of a language L ⊆ Σ∗ has been defined in [28] as

lim
m→∞ sup

log2 |L ∩ Σm|
m

.

Thus, the topological entropy is equal to log2(λL).
The growth of a language L is

1. exponential if 1 < λL � |Σ |, i.e., the topological entropy is positive,
2. sub-exponential but infinite if λL = 1, i.e., the topological entropy is zero,
3. finite if λL = 0, i.e., the topological entropy is equal to −∞.

Note that other values for λL do not occur and that λL is the inverse of the convergence radius of gL(z). As we discussed
above, the growth of an unambiguous linear language L is either polynomial or exponential; thus, if λL = 1, the growth of L
can be considered to be polynomial. Regular languages of polynomial growth have a very restricted form. Indeed, a regular
language has polynomial growth if and only if it can be written as a finite union of languages of the form u0u∗

1u2 · · · u∗
2k−1u2k

where ui are words, see e.g., [29]. Thus, the more interesting situation occurs when a language has exponential growth. It
is then when the growth indicator and the topological entropy become significant.

2.4. Regular languages and finite automata

Regular languages can be specified by non-deterministic finite automata (NFA) A= (Q,Σ, E,I,F), where Q is the finite
set of states, I ⊆ Q is the set of initial states, and F ⊆ Q is the set of final states. The set E contains labeled transitions (or
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arcs), it is a subset of Q×Σ ×Q. For a word w ∈ Σ∗ we write p
w−→ q, if there is a path from state p to q which is labeled

by w . Thus, the accepted language becomes

L(A) = {
w ∈ Σ∗ ∣∣ ∃p ∈ I, ∃q ∈ F : p

w−→ q
}
.

Later it will be crucial to use also paths which avoid final states. Let us write p
w�⇒ q, if there is a path from state p to

q which is labeled by the word w and which never enters a final state. Note that for such a path p
w�⇒ q we allow p ∈F .

An NFA is called a deterministic finite automaton (DFA), if it has one initial state and for every state p ∈ Q and every
letter a ∈ Σ there is exactly one arc (p,a,q) ∈ E . In particular, a DFA in this paper is always complete, thus we can read

every word to its end. We also write p · w = q, if p
w−→ q. This yields a (totally defined) function Q × Σ∗ → Q, which

defines an action of Σ∗ on Q on the right.

2.5. Specification of the input

Throughout the paper, L1 and L2 denote regular languages inside Σ∗ . We use a DFA accepting L1 as well as a DFA
accepting L2. The latter automaton has the same number of states as (and is structurally isomorphic to) a DFA accepting
the reversal language of L2. Our input is therefore given by two DFAs Ai = (Qi,Σ, Ei, {q0i},Fi) for i = 1,2 which accept the
languages L1 and L2, respectively. We let n1 = |Q1|, n2 = |Q2|, and we let n = max{n1,n2} be the input size.

We do not require that A1 and A2 are minimal, however for convenience, we assume that every state is essential. This
means that for i = 1,2 every state in Qi is reachable from the initial state q0i and there is at most one dead state ti ∈ Qi
from which no final state can be reached.

In terms of complexity, a situation L2 = L1 behaves better than L2 = L1. For L2 = L1 we can work with a single DFA
because we may choose A1 = A2. If we have L1 = L2, then there might be an exponential gap between the number of
states in A1 and A2, since A1 and A2 accept mutual “reversal languages”. A standard example for this phenomenon is
L = ΣnaΣ∗ and L = Σ∗aΣn . A minimal complete DFA for L has n + 2 states whereas a minimal DFA for L needs more
than 2n states. As a matter of fact, the preference to Hκ (L, L) suits well to the biochemical background saying that a strand
should co-occur with its Watson–Crick complement. It is the two-sided hairpin completion Hκ (L, L) which is closed under
involution, whereas Hκ (L, L) is not closed under involution, in general. For example, let L be the singleton {aba}, then
H1(L, L) = L and H1(L, L) = {aba,aba}. Of course, if we start with a language L such that L = L, then such a discussion is
vacuous.

3. Unambiguity of Hκ (L1, L2)

In this section we introduce the crucial concept of a basic bridge. The actual result in this section shows that the hairpin
completion Hκ (L1, L2) is always an unambiguous linear context-free language. This result itself is not needed for deciding
regularity of Hκ (L1, L2), but it came out as a byproduct of the decision procedure. Moreover, this fact turned out to be
rather fundamental for the understanding of hairpin completions of regular languages. For example, it allows to compute
the growth of Hκ (L1, L2) and to compare it with the growths of the languages L1 and L2. This will be shown in Section 5.

Theorem 3.1. The hairpin completion Hκ (L1, L2) is an unambiguous linear context-free language. Moreover, there is an effective
construction of a generating unambiguous linear grammar Gκ (L1L2) = (V ,Σ, P ,S) for Hκ (L1, L2) such that the size of the grammar
Gκ (L1L2) is bounded by (2κ + 10)|Σ |κn2

1n2
2 ∈O(n2

1n2
2) ⊆O(n4).

Let us give a brief informal outline how we prove Theorem 3.1. Consider first all words π = γαβαγ ∈ Σ∗ with |α| = κ .
Clearly, these words are generated by some linear context-free grammar. Now we add the constraints that either γαβα ∈ L1
or αβαγ ∈ L2 or both. This yields Hκ (L1, L2) and the regular constraint γαβα ∈ L1 or αβαγ ∈ L2 can be put into a “finite
control” associated to non-terminals. Hence, it is straightforward that Hκ (L1, L2) is linear context-free. For unambiguity we
need to do more. We add the constraints that if a prefix of π belongs to L1, then it is a prefix of γαβα, and if a suffix of π
belongs to L2, then it is a suffix of αβαγ . Now, this is still a constraint of regular type, so we have a larger, but still linear
context-free grammar taking care of that. The most technical part of the proof below is to show that these constraints are
strong enough to yield unambiguity.

Proof of Theorem 3.1. The crucial observation is that every word π ∈ Hκ (L1, L2) has a unique factorization π = γαβαγ
such that

1. γαβα ∈ L1 or αβαγ ∈ L2,
2. |α| = κ ,
3. if a prefix of π belongs to L1, then it is a prefix of γαβα, and
4. if a suffix of π belongs to L2, then it is a suffix of αβαγ .
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Fig. 3. The runs defined by π ∈ Hκ (L1, L2) where γα is the minimal gamma-alpha-prefix and, therefore, f1 ∈ F1 or f2 ∈ F2.

In other words, among all factorizations of π which satisfy the first and second condition, we choose the factorization where
the length of γ is minimal. In such a factorization we call γα � π the minimal gamma-alpha-prefix of π . This factorization
yields runs in the DFAs A1 and A2 as in Fig. 3. (Recall that A2 accepts L2 and π = γαβαγ .) As π determines the factors
γ and α, the states ci , di , ei , f i , and q′

i (for i = 1,2) are determined by π as well.
Vice versa, paths of the form as shown in Fig. 3 where |α| = κ define one word π = γαβαγ from the hairpin completion

Hκ (L1, L2) such that γα is its minimal gamma-alpha-prefix.
By this observation, we can use quadruples of states in order to define the unambiguous linear grammar G = Gκ (L1L2)

that generates the hairpin completion Hκ (L1, L2). The set of terminal symbols is Σ . For each (p1, p2,q1,q2) ∈ Q1 × Q2 ×
Q1 ×Q2 we define two non-terminal symbols of G . The first one is denoted by B(p1, p2,q1,q2). It is defined as the regular
language

B(p1, p2,q1,q2) = {
w ∈ Σ∗ ∣∣ p1 · w = q1 ∧ p2 · w = q2

}
.

The second one is denoted by R(p1, p2,q1,q2), which is just a formal symbol. The role of the non-terminal B(p1, p2,q1,q2)

is to derive all words of the language B(p1, p2,q1,q2). For example, in Fig. 3 we have π ∈ B(q01,q02,q′
1,q′

2), αβα ∈
B(c1, c2, f1, f2), and β ∈ B(d1,d2, e1, e2).

A tuple (p1, p2,q1,q2) with B(p1, p2,q1,q2) 	= ∅ is called a basic bridge. This notation will be used in Section 4.1, too.
Compared to Fig. 3, we intend that B(d1,d2, e1, e2)

∗�⇒
G

β . In order to achieve this, for all p1,q1 ∈Q1, p2,q2 ∈Q2, and a ∈ Σ

we define a first set of productions by the following right-linear rules, which we call B-rules:

B(p1, p2,q1,q2 · a) → aB(p1 · a, p2,q1,q2),

B(p1, p2, p1, p2) → 1 (= empty word).

Every derivation from B(p1, p2,q1,q2) to a terminal word must use the rule B(q1, p2,q1, p2) → 1 as the final step. Thus,
B(p1, p2,q1,q2)

∗�⇒
G

w implies p1 · w = q1 and p2 · w = q2 as desired. Furthermore, for all words w ∈ B(p1, p2,q1,q2) and

all factorizations w = uv (i.e., (p1 · u) · v = q1 and (p2 · v) · u = q2) there is a derivation

B(p1, p2,q1,q2)
∗�⇒
G

uB(p1 · u, p2,q2, p2 · v)
∗�⇒
G

uv B(q1, p2,q1, p2)�⇒
G

uv

where the non-terminal reached after |u| steps is uniquely determined. We conclude, the non-terminal B(p1, p2,q1,q2)

derives all words from the language B(p1, p2,q1,q2) and the derivation of each word is unambiguous.
The other rules of the grammar G are containing a symbol of the form R(p1, p2,q1,q2). For each (p1, p2,q1,q2) ∈

Q1 ×Q2 ×Q1 ×Q2 and letter a ∈ Σ such that q1 · a /∈F1 and q2 · a /∈F2 we define an R R-rule:

R(p1, p2,q1 · a,q2 · a) → aR(p1 · a, p2 · a,q1,q2)a.

For each p1,q1 ∈Q1, p2,q2 ∈Q2 and α ∈ Σκ such that q1 · α ∈F1 or q2 · α ∈F2 we define an R B-rule:

R(p1, p2,q1 · α,q2 · α) → αB(p1 · α, p2 · α,q1,q2)α.

Every symbol R(p1, p2,q′
1,q′

2) which appears on the left-hand side of an R R-rule does not appear as a left-hand side of an
R B-rule; and vice versa. Moreover the derivations using R R- and R B-rules are again unambiguous. To see this, consider a
derivation

R
(
q01,q02,q′

1,q′
2

) ∗�⇒
G

uR(p1, p2,q1,q2)u
∗�⇒
G

uv R(c1, c2, f1, f2)vu.

The non-terminal R(p1, p2,q1,q2) is determined by pi = q0i · u and qi = f i · v (for i = 1,2). Furthermore, the states q′
1,

q′
2, q1, and q2 cannot be final states unless v = 1. If f1 ∈ F1 or f2 ∈ F2, then we have to use an R B-rule in the next

derivation step. This is possible if and only if f1 = e1 · α and f2 = e2 · α for some α ∈ Σκ . Then we can apply the R B-rule
R(c1, c2, f1, f2) → αB(c1 · α, c2 · α, e1, e2)α.

We conclude that we have factorizations as in Fig. 3 if and only if

R
(
q01,q02,q′

1,q′
2

) ∗�⇒
G

γ R(c1, c2, f1, f2)γ �⇒
G

γ αB(d1,d2, e1, e2)αγ
∗�⇒
G

γ αβαγ = π.

Moreover, the derivation from R(q01,q02,q′ ,q′ ) to π is unambiguous.
1 2
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We now let R(q01,q02,q′
1,q′

2) be the axioms in the grammar G for all q′
1 ∈Q1 and q′

2 ∈Q2. Thus, we let

S = {
R
(
q01,q02,q′

1,q′
2

) ∣∣ q′
1 ∈ Q1 ∧ q′

2 ∈ Q2
}
.

This concludes the definition of the grammar G . We still have to show that different axioms generate disjoint languages.
Consider a word π . There exists at most one axiom with R(q01,q02,q′

1,q′
2)

∗�⇒
G

π , as we have q′
1 = q01 · π and q′

2 = q02 · π ,

hence G is unambiguous linear.
According to our convention the size of the grammar is at most

(2κ + 10)|Σ |κn2
1n2

2 ∈ O
(
n2

1n2
2

) ⊆ O
(
n4). �

4. Main result

The purpose of this section is to prove the following theorem, where Σ and κ are viewed as constants; therefore, they
are not part of the input.

Theorem 4.1. Consider the following decision problem whether the hairpin completion Hκ (L1, L2) is regular:

Input. DFAs A1 and A2 with state sets Q1 and Q2 accepting the languages L1 and L2 , respectively.
The input size is n = max{|Q1|, |Q2|}.

Question. Is the hairpin completion Hκ (L1, L2) regular?

The problem is decidable in time:

1. O(n2), if L1 or L2 is finite.
2. O(n6), if L1 = L2 .
3. O(n8), in general.

The proof of Theorem 4.1 covers the rest of this section. Proposition 4.11 in Subsection 4.2 yields the theorem, if L1 or L2
is finite. In particular, it covers the case that L1 = ∅ or L2 = ∅. The demanding situation is to show the theorem when L1 and
L2 are infinite. The proof of the theorem is then based on Tests 1, 2, and 3. All tests check properties of an automaton A,
which accepts the minimal gamma-alpha-prefixes, introduced in Section 3. Therefore, we start with the construction of A.

4.1. The Automaton A

Our goal is to construct a non-deterministic automaton A which accepts the minimal gamma-alpha-prefix of cer-
tain words π = γαβαγ . The construction is analogous to the definition of rules for the non-terminals R(p1, p2,q1,q2)

in Section 3. In particular, the final states of the automaton will determine a basic bridge (d1,d2, e1, e2) such that
β ∈ B(d1,d2, e1, e2).

We use the product automaton of A1 and A2 where all states are reachable. Thus, the state set is:

Q12 = {
(p1, p2) ∈ Q1 ×Q2

∣∣ ∃w ∈ Σ∗: q01 · w = p1 ∧ q02 · w = p2
}
.

The transition function is given by (p1, p2) · w = (p1 · w, p2 · w) for (p1, p2) ∈ Q12 and w ∈ Σ∗ . Furthermore, we let
n12 = |Q12|. If L2 = ∅ or L1 = L2, then n12 = n1 = n and in general n � n12 � n2.

The state set of A will use several copies of subsets of Q12 ×Q1 ×Q2 which in turn is a subset of Q1 ×Q2 ×Q1 ×Q2.
According to Section 3 we call (p1, p2,q1,q2) a basic bridge if B(p1, p2,q1,q2) 	= ∅. If (p1, p2,q1,q2) is a basic bridge, then
there is some word β such that p1 · β = q1 and p2 · β = q2. In order to accept the α-part, we use κ + 1 levels. By [κ] we
denote the set [κ] = {0, . . . , κ}. We define the state space of A by

{(
(p1, p2),q1,q2, 	

) ∈ Q12 ×Q1 ×Q2 × [κ] ∣∣ (p1, p2,q1,q2) is a basic bridge
}
.

In the following N denotes the number N = n12n1n2 � n4. The number of states of A is therefore bounded by N · (κ + 1) ∈
O(N) ⊆O(n4). For L1 = ∅ or L2 = ∅ we have N � n2; for L2 = L1 we have N � n3.

Generalizing the notion of basic bridges we call a state ((p1, p2),q1,q2, 	) a bridge. Bridges are frequently denoted by
(P ,q1,q2, 	) with P = (p1, p2) ∈Q12, q1 ∈Q1, q2 ∈Q2, and 	 ∈ [κ]. Bridges are a central concept in the following.

The a-transitions in the NFA for a ∈ Σ are given by the following arcs:

(P ,q1 · a,q2 · a,0)
a−→ (P · a,q1,q2,0) for qi · a /∈ Fi, i = 1,2,

(P ,q1 · a,q2 · a,0)
a−→ (P · a,q1,q2,1) for q1 · a ∈ F1or q2 · a ∈ F2,

(P ,q1 · a,q2 · a, 	)
a−→ (P · a,q1,q2, 	 + 1) for 1 � 	 < κ.
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Fig. 4. DFAs for L1 and L2 and the resulting NFA A associated to the hairpin completion Hκ (L1, L2) as defined in Example 4.3. Note that the NFA A is
reduced such that every state is reachable from an initial state and leads to some final state.

Observe that no state of the form (P ,q1,q2,0) with q1 ∈ F1 or q2 ∈ F2 has an outgoing arc to level zero; we must
switch to level one. There are no outgoing arcs on level κ and for each (a, P ,q1,q2, 	) ∈ Σ ×Q12 ×Q1 ×Q2 ×[κ − 1] there

exists at most one arc (P ,q′
1,q′

2, 	)
a−→ (P · a,q1,q2, 	

′). Indeed, the triple (q′
1,q′

2, 	
′) is determined by (q1,q2, 	) and the

letter a. More precisely, q′
i = qi · a for i = 1,2. Moreover, 	′ = 0 if 	 = 0 and q′

1 /∈ F1 and q′
2 /∈ F2; otherwise, 	′ = 	 + 1.

Not all arcs exist because it is possible that (P ,q′
1,q′

2, 	) is a bridge whereas (P · a,q1,q2, 	
′) is not. Thus, there are at most

|Σ | · N · κ ∈O(N) arcs in the NFA. For later reference, let us state a remark:

Remark 4.2. The number of states plus the number of arcs in the automaton A is bounded by O(N).

The set of initial states I contains all bridges of the form (Q 0,q′
1,q′

2,0) where Q 0 = (q01,q02). The set of final states F
is given by all bridges (P ,q1,q2, κ) on level κ .

The underlying graph of the automaton restricted to levels 	 � 1 is a directed acyclic graph, since in each step we have
to climb by one level, but it doesn’t necessarily have to be a forest.

Example 4.3. Let L1 = a∗(b + b)a and L2 = aba∗ . For κ = 1 we obtain

Hκ (L1, L2) = a+ba+ ∪ {
aiba j

∣∣ i � j � 1
}
.

The hairpin completion is linear context-free, but not regular. For a graphical presentation of the resulting NFA A with 4
initial states and 5 final states, see Fig. 4.

Next, we show that the automaton A encodes the minimal gamma-alpha-prefixes and that we obtain the hairpin com-
pletion Hκ (L1, L2) in a natural way from A. For languages B and R we denote by B R the language

B R = {vβv | β ∈ B ∧ v ∈ R}.
The notation B R is adopted from group theory where exponentiation denotes conjugation and the involution refers to taking
inverses. Clearly, if B and R are regular, then B R is linear context-free, but not regular in general, e.g., consider {1}Σ∗

. On
the other hand, if B is regular and R is finite, then B R is regular.
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Lemma 4.4. Let M = I × F . For each pair μ = (I, F ) ∈ M with F = ((d1,d2), e1, e2, κ) let Rμ be the (regular) set of words which
label a path from the initial state I to the final state F , and let Bμ = B(d1,d2, e1, e2). Then, the following assertions hold.

The hairpin completion Hκ (L1, L2) is the disjoint union

Hκ (L1, L2) =
⋃
μ∈M

B
Rμ
μ .

Moreover, for μ ∈ I ×F and for all words β ∈ Bμ and v ∈ Rμ , the minimal gamma-alpha-prefix of vβv is v.

Proof. Let π ∈Hκ (L1, L2). Let γα be the minimal gamma-alpha-prefix of π with |α| = κ and factorize π = γαβαγ . There
are runs in the DFAs

A1 : q01
γ−→ c1

α−→ d1
β−→ e1

α−→ f1
γ�⇒ q′

1,

A2 : q02
γ−→ c2

α−→ d2
β−→ e2

α−→ f2
γ�⇒ q′

2

with f1 ∈ F1 or f2 ∈ F2; just as in Fig. 3. Recall that all states on these paths are determined by π . By the definition of

the NFA A, we find a path I
γ−→ A

α−→ F where I = (Q 0,q′
1,q′

2,0), A = ((c1, c2), f1, f2,0), and F = ((d1,d2), e1, e2, κ). As

β ∈ B(d1,d2, e1, e2), there is a unique μ = (I, F ) ∈ I ×F with π ∈ B
Rμ
μ .

Conversely, let μ = (I, F ) ∈ I × F , let β ∈ Bμ , and let I
γ−→ A

α−→ F with |α| = κ be a path in A. As F is a final
state it is on level κ and A = ((c1, c2), f1, f2,0) is the last state on level zero, whence f1 ∈ F1 or f2 ∈ F2. Therefore, we
find runs in the DFAs just like above where I = (Q 0,q′

1,q′
2,0) and F = ((d1,d2), e1, e2, κ). We conclude γα is the minimal

gamma-prefix of γαβαγ and γαβαγ ∈Hκ (L1, L2). �
The next lemma tells us that the paths in the automaton are unambiguous. The arguments are essentially the same as

used in Section 3. The unambiguity of paths will become crucial later.

Lemma 4.5. Let w ∈ Σ∗ be the label of a path in A from a bridge A = (P , p1, p2, 	) to A′ = (P ′, p′
1, p′

2, 	
′), then the path is unique.

This means that B = B ′ whenever w = uv and

A
u−→ B

v−→ A′, A
u−→ B ′ v−→ A′.

Proof. It is enough to consider u = a ∈ Σ . Let B = (Q ,q1,q2,m). Then we have Q = P ·a and qi = p′
i · v . If 	 = 0 and pi /∈Fi

for i = 1,2, then m = 0, too; otherwise m = 	 + 1. Thus, B is determined by A, A′ , and u, v . We conclude B = B ′ . �
Next, we show that the automaton A can be constructed in time O(n2

1n2
2). By Remark 4.2 the number of states plus the

number of transitions in A is in O(N) ⊆O(n2
1n2

2). Thus, it suffices to prove that we can compute the set of basic bridges in
time O(n2

1n2
2). This is shown in the next lemma. Lemma 4.6 is actually more general for later use, where we need to control

the first letters of words in B(d1,d2, e1, e2). A basic bridge (d1,d2, e1, e2) is called an a-bridge, if B(d1,d2, e1, e2) ∩ aΣ∗ 	= ∅.

Lemma 4.6. The set containing all basic bridges and the sets containing all a-bridges for a ∈ Σ , respectively, can be computed in time
O(n2

1n2
2).

Proof. All tuples (p1, p2, p1, p2) ∈ Q1 ×Q2 ×Q1 ×Q2 are marked as basic bridges since the empty word is a witness for
B(p1, p2, p1, p2) 	= ∅. It is therefore enough to compute the set of a-bridges in time O(n2

1n2
2). Consider the transition system

with state set Q1 ×Q2 and transitions (p1,q2)
a−→ (q1, p2) for all p1 · a = q1 and p2 · a = q2. Hence, we use forward edges

from A1 and backward edges from A2. There are n1n2 · |Σ | transitions and the transition system can be constructed in
O(n1n2).

There is a path in the transition system (p1,q2)
w−→ (q1, p2) with w ∈ Σ∗ if and only if we have p1 · w = q1 and

p2 · w = q2. Thus, a tuple (p1, p2,q1,q2) ∈ Q1 × Q2 × Q1 × Q2 is an a-bridge if and only if there exists such a path that
starts with an a-transition.

We now run a depth-first reachability search for all triples (p1,q2,a) ∈ Q1 × Q2 × Σ . If during the depth-first search
algorithm we meet a pair (q1, p2) ∈ Q1 × Q2 which is reachable from (p1,q2) by a path in the transition system starting
with an a-transition, then we mark (p1, p2,q1,q2) as a basic bridge and as an a-bridge. Since each depth-first search can
be performed in O(n1n2), the whole computation can be done in O(n2

1n2
2). �

Remark 4.7. For convenience, we will henceforth assume that all states in the automaton A are reachable from an initial
state and lead to some final state. Such a reachability test can easily be performed in O(n2

1n2
2); thus, this will not breach

the time bounds.
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4.2. Test 0

In the case where L1 or L2 is finite, we provide a simple necessary and sufficient condition for the regularity of
Hκ (L1, L2). First, we make the following observation.

Lemma 4.8. Let L1 be finite, then the hairpin completion Hκ (L1, L2) is regular if and only if the hairpin completion Hκ (∅, L2) is
regular.

Proof. We have Hκ (L1, L2) = Hκ (L1,∅) ∪ Hκ (∅, L2). Since L1 is finite, Hκ (L1,∅) is finite, too. The result follows since
regular languages are closed under finite variation. �
Proposition 4.9. Let A be the automaton constructed above.

1. If the language L(A) is finite, then Hκ (L1, L2) is regular.
2. If the language L(A) is infinite and either L1 is finite or L2 is finite, then Hκ (L1, L2) is not regular.

Proof. Statement 1 follows directly from Lemma 4.4. For Statement 2 let L(A) be infinite. There is a path

I
u−→ A

v−→ A
w−→ F

in A where I is an initial bridge, F = ((d1,d2), e1, e2) is a final bridge, and A
v−→ A is a loop with v 	= 1, i.e., the loop is

non-trivial. Note that A is on level 0 and hence |w| � κ . Let α be the suffix of w of length κ and let β be a word from
the language B(d1,d2, e1, e2). We have πi = uvi wβw viu ∈Hκ (L1, L2) for all i � 0. Moreover, if a prefix of πi belongs to L1,
then it is a prefix of uvi wβα; and if a suffix of πi belongs to L2, then it is a suffix of αβw viu.

To achieve a contradiction, assume Hκ (L1, L2) is regular and either L1 or L2 is finite. By symmetry and by Lemma 4.8, it
is enough to consider the case when L1 is empty. Let j � 1 such that the power v j is idempotent in the syntactic monoid
of Hκ (∅, L2). This means that for all words x, y ∈ Σ∗ we have xv j y ∈ Hκ (∅, L2) if and only if xv2 j y ∈ Hκ (∅, L2). As a
consequence for all k � 1 we obtain

uv jk wβw v ju ∈ Hκ (L1, L2).

We now consider k to be large enough such that v jk is longer than half of the length of π = uv jk wβw v ju. Since π ∈
Hκ (∅, L2), we must find π = γ ′α′β ′α′γ ′ with α′β ′α′γ ′ ∈ L2. However, the longest suffix of π that belongs to L2 is still a
suffix of αβw v ju, because the word v yields a loop around the state A, so we are free to pump with v . This is a subtle
point and refers to the translation of Fig. 3 into the runs of A. Now, we have the following contradiction: 1/2 · |π | <

|α′β ′α′γ ′| � |αβw v ju| � 1/2 · |π |. �
Test 0. Decide whether or not L(A) is finite. If it is finite, then stop with the output that Hκ (L1, L2) is regular. If it is not
finite but L1 or L2 is finite, then stop with the output that Hκ (L1, L2) is not regular.

Strictly speaking, Test 0 is redundant for the general case, but it yields the desired time complexity for L1 = ∅ or L2 = ∅,
because in these cases we have n1 = 1 or n2 = 1, respectively.

Lemma 4.10. Test 0 can be performed in time O(n2
1n2

2).

Proof. Recall that every state in A is reachable and co-reachable, by Remark 4.7. The language L(A) is infinite if and only

if A contains at least one non-trivial loop A
v−→ A. By Tarjan’s algorithm [30] we can decompose a directed graph (as well

as a finite automaton) into its strongly connected components in linear time with respect to the number of transitions. As
the automaton A has O(n2

1n2
2) transitions, this yields the time complexity. �

We are now ready to prove Theorem 4.1, 1 by the following proposition.

Proposition 4.11. If L1 or L2 is finite, then the regularity of Hκ (L1, L2) can be decided in time O(n2).

Proof. Given an NFA we can decide emptiness of the accepted language in linear time by Tarjan’s algorithm [30]. This is a
better time complexity than needed here. Say L2 is finite, then we replace the automaton A2 by a single state automaton
and we can start our procedure with the value n2 = 1. The result follows by Lemma 4.10. �
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Fig. 5. The hairpin of π (read the upper part from left to right and the lower part from right to left).

4.3. Test 1

By Test 0, we may assume in the following that A accepts an infinite language and that the set S of non-trivial strongly
connected components of the automaton A has been computed. Every non-trivial strongly connected component is on
level 0 and, moreover, as A accepts an infinite language, there is at least one. For s ∈ S let Ns be the number of states in
the component s. Note that

∑
s∈S Ns � N . By putting some linear order on the set of bridges, we assign to each s ∈ S the

least bridge As and some shortest, non-empty word vs such that As
vs−→ As .

The next lemma tells us that for a regular hairpin completion Hκ (L1, L2) every strongly connected component s ∈ S is a
simple cycle, and hence, the word vs is uniquely defined.

Lemma 4.12. Let the hairpin completion Hκ (L1, L2) be regular, s ∈ S be a strongly connected component, and As
w−→ F be a path

from As to a final bridge F . Then the word w is a prefix of some word in v+
s .

In addition, the word vs is uniquely defined and the loop As
vs−→ As visits every other bridge B ∈ s \ {A} exactly once. Thus, it forms

a Hamiltonian cycle of s and |vs| = Ns.

Proof. Let A = As and v = vs . Consider a path labeled by w from A to a final bridge F = ((d1,d2), e1, e2,k). As all bridges
are reachable, we find a word u and an initial bridge I such that

I
u−→ A

v−→ A
w−→ F .

As the automaton A accepts uvi w for all i � 0, we see that uvi wβw viu ∈ Hκ (L1, L2) for all i � 0 and all β ∈
B(d1,d2, e1, e2). As Hκ (L1, L2) is regular, there are j � 1 and k > |wβ| such that uv jk wβw v ju ∈ Hκ (L1, L2), by pump-
ing. Due to the definition of A, the longest suffix of π belonging to L2 is a suffix of αβw v ju, where α is the suffix of w of
length κ , and this suffix is too short to create the hairpin completion. This means that the hairpin completion is forced to
use a prefix in L1 which has to be a prefix of uv jk wβα. Therefore, the suffix w v ju is complementary to a prefix of uv jk ,
whence w must be a prefix of v j(k−1); see Fig. 5. We conclude the first statement of our lemma.

Recall that A
v−→ A is a shortest, non-trivial loop around A; hence |v| � Ns is obvious. Let B ∈ s \ {A} and x = x1x2 such

that A
x1−→ B

x2−→ A. For some i, j � 1 we have |vi | = |x j |. Thus, vi = x j by the first statement. By the unique-path-property

stated in Lemma 4.5 we obtain that the loop A
x j−→ A just uses the shortest loop A

v−→ A several times. In particular, B is
on the shortest loop around A. This yields |v| � Ns and hence the second statement. �
Example 4.13. In the above example (Example 4.3 and Fig. 4) the state (Q 0, t1, t2,0) forms the only strongly connected
component and the corresponding path is labeled with a. As one can easily observe, the automaton A satisfies the properties
stated in Lemma 4.12, even though the hairpin completion is not regular.

The next test tries to falsify the property of Lemma 4.12. Hence it gives a sufficient condition that Hκ (L1, L2) is not
regular.

Test 1. Decide whether there is s ∈ S and a path As
w−→ F such that w is not a prefix of a word in v+

s . If there is such a
path, then stop with the output that Hκ (L1, L2) is not regular.

Lemma 4.14. Test 1 can be performed in time O(N2).

Proof. For s ∈ S , let A = As and compute a shortest non-empty word v such that A
v−→ A. If |v| 	= Ns , stop with the

output that Hκ (L1, L2) is not regular. Otherwise, assign to each bridge that is reachable from A a subset of marks from
{0, . . . , Ns − 1}. A mark i is assigned to a bridge B if B is reachable from A with a word from v∗v[1, i]. Test 1 yields that
Hκ (L1, L2) is not regular if and only if there is a bridge that is marked by i and that has an outgoing a-transition where
a 	= v[i + 1]. The marking algorithm can be performed by a depth-first search that runs in time O(N · Ns). Summing over
all strongly connected components we deduce a time complexity in O(

∑
s∈S N · Ns) ⊆O(N2). �
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Fig. 6. Runs through A1 and A2 based on the loop A
v−→ A.

4.4. Tests 2 and 3

Henceforth, we assume that Test 1 was successful (i.e., Test 1 did not yield that Hκ (L1, L2) is not regular). We fix a

strongly connected component s ∈ S of A. We let A = As = ((p1, p2),q1,q2,0), we let v = vs , and we assume A
v−→ A

forms a Hamiltonian cycle in s. By u we denote some word leading from an initial bridge ((q01,q02),q′
1,q′

2,0) to A. For the
following test we do not need to know u we just need to know it exists. The main idea is to investigate runs through the
DFAs A1 and A2 where k, 	 � n according to Fig. 6.

We investigate the case when uvkxyzxv	u ∈ Hκ (L1, L2) for all k � 	 and where (by symmetry) this property is due to
the longest prefix belonging to L1.

The following lemma is rather technical. However, the notations are chosen to fit exactly to Fig. 6.

Lemma 4.15. Let x, y, z ∈ Σ∗ be words and (d1,d2) ∈Q1 ×Q2 with the following properties:

1. κ � |x| < |v| + κ and x is a prefix of some word in v+ .
2. 0 � |y| < |v| and xy is the longest common prefix of xyz and some word in v+ .
3. z ∈ B(c1, c2,d1,d2), where c1 = p1 · xy and c2 = p2 · x.
4. q1 = d1 · xvn1 and during the computation of d1 · xvn1 we see after exactly κ steps a final state in F1 and then never again.
5. q2 = d2 · yxvn2 and, let e2 = d2 · yx, during the computation of e2 · vn2 we do not see a final state in F2 .

If Hκ (L1, L2) is regular, then there exists a factorization xyzxv = μδβδμ where |δ| = κ and p2 · μδβδ ∈ F2 (which implies
δβδμv∗u ⊆ L2).

Proof. The conditions say that uvkxyzxv	u ∈ Hκ (L1, L2) for all k � 	 � n. Moreover, by condition 4, the hairpin completion
can be achieved with a prefix in L1, and the longest prefix of uvkxyzxv	u belonging to L1 is the prefix uvkxyzα where α
is the prefix of x of length κ .

If Hκ (L1, L2) is regular, then we have uvkxyzxvk+1u ∈Hκ (L1, L2), too, as soon as k is large enough, by a simple pumping
argument. For this hairpin completion we must use a suffix belonging to L2. For z = 1, this follows from |y| < |v|. For z 	= 1
we use |y| < |v| and, in addition, that xya with a = z[1] is not a prefix of vx by condition 2.

By 5 the longest suffix of uvkxyzxvk+1u belonging to L2 is a suffix of xyzxvk+1u. Thus, we can write

uvkxyzxvk+1u = uvkxyzxv vku = uvkμδβδμvku

where δβδμvku ∈ L2 and |δ| = κ . We obtain xyzxv = μδβδμ. As p2 = q02 · u and p2 = p2 · v , we conclude p2 · μδβδ ∈ F2
as desired. (Recall that our second DFA A2 accepts L2.) �
Example 4.16. Let us take a look at Fig. 4 again. Let A = (Q 0, t1, t2,0), v = a and u = 1. If we choose x = a, y = 1, z = b, and
(d1,d2) = (p1, p2) we can see that conditions 1 to 5 of Lemma 4.15 are satisfied but there is no factorization abaa = μδβδμ
with |δ| = κ = 1 such that q02 · μδβδ /∈F2. Hence, the hairpin completion is not regular.

We perform Tests 2 and 3 which, again, try to falsify the property given by Lemma 4.15 for a regular hairpin completion.
The tests distinguish whether the word z is empty or non-empty.

Test 2. Decide the existence of words x, y ∈ Σ∗ and states (d1,d2) ∈ Q1 × Q2 satisfying conditions 1 to 5 of Lemma 4.15
with z = 1, but where for all factorizations xyxv = μδβδμ with |δ| = κ we have p2 · μδβδ /∈F2. If we find such a situation,
then stop with the output that Hκ (L1, L2) is not regular.

Test 3. Decide the existence of words x, y, z ∈ Σ∗ with z 	= 1 and states (d1,d2) ∈ Q1 × Q2 satisfying conditions 1 to 5
of Lemma 4.15, but where for all factorizations xyzxv = μδβδμ with |δ| = κ we have p2 · μδβδ /∈ F2. If we find such a
situation, then stop with the output that Hκ (L1, L2) is not regular.

Before we analyze the time complexity of Test 2 and Test 3 we will prove that if languages L1 and L2 pass the
tests we described so far, then the hairpin completion Hκ (L1, L2) is regular. Thus, the properties given by Lemma 4.12
and Lemma 4.15 together are sufficient for the regularity of Hκ (L1, L2). The time complexity analysis of Test 2 and Test 3
can be found in Section 4.5.
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Fig. 7. Runs through A1 and A2 for the word π .

Lemma 4.17. Suppose we passed all of Tests 1, 2 and 3 without obtaining the result “Hκ (L1, L2) is not regular”. Then the hairpin
completion Hκ (L1, L2) is regular.

Proof. Let π ∈ Hκ (L1, L2). Write π = γαβαγ such that γα is the minimal gamma-alpha-prefix of π and |α| = κ . There-
fore, either γαβα ∈ L1 or αβαγ ∈ L2; we assume γαβα ∈ L1, by symmetry. In addition, we may assume that |γ | > n4

(cf. Proposition 4.9 and Test 0). We can factorize γ = uv w with |uv| � n4 and |v| � 1 such that there are runs as in Fig. 7
where f1 ∈F1.

We infer from Test 1 that wα is a prefix of some word in v+ . Hence, we can write wαβ = vi xyz with i � 0 such that
vi xy is the maximal common prefix of wαβ and some word in v+ , wα ∈ v∗x with κ � |x| < |v| + κ , and |y| < |v|.

We see that for some kπ � 	π � 0 we can write

π = uvkπ xyzxv	π u.

Moreover, uvkxyzxv	u ∈Hκ (L1, L2) for all k � 	 � 0. There are only finitely many choices for u, v, x, y (due to the length
bounds) and for each of them there is a regular set Rz associated to the finite collection of bridges such that

π ∈ {
uvkxyRzxv	u

∣∣ k � 	 � 0
} ⊆ Hκ (L1, L2).

More precisely, we can choose Rz = {1} for z = 1 and otherwise we can choose

Rz ∈ {
B(c1, c2,d1,d2) ∩ aΣ∗ ∣∣ (c1, c2,d1,d2) is a bridge and a ∈ Σ

}
.

Note that the sets {uvkxyRzxv	u | k � 	 � 0} are not regular in general. However, if we bound 	 by n, then the finite
union

⋃
0�	�n

{
uvkxyRzxv	u

∣∣ k � 	
}

is regular. Thus, we may assume that 	 > n. Let e2 = p2 · xz yx. We have e2 · vn = q2 and if we see a final state during the
computation of e2 · vn , then for all 	 > k � n and z ∈ Rz we see that uvkxyzxv	u ∈Hκ (L1, L2), due to a suffix in L2 and

uvn v+xyRzxv+vnu ⊆ Hκ (L1, L2).

Otherwise, Test 2 or Test 3 tells us that for all z ∈ Rz the word xyzxv has a factorization μδνδμ such that |δ| = κ and
p2 · μδνδ ∈F2. The paths q02 · u = p2 and p2 · v = p2 yield δνδμv∗u ⊆ L2 and, again,

uvn v+xyRzxv+vnu ⊆ Hκ (L1, L2).

Hence, the hairpin completion Hκ (L1, L2) is a finite union of regular languages and, therefore, regular itself. �
4.5. Time complexities of Test 2 and Test 3

In this section we provide the final step of the proof of Theorem 4.1. We show that Test 2 can be performed in time
O(N2) and that Test 3 can be performed in time O(n12n2

1n2
2n). Thus, in case L1 = L2 both tests run in O(n6), and in general

Test 2 runs in O(n8) and Test 3 runs in O(n7).

Test 2. Decide the existence of words x, y ∈ Σ∗ and states (d1,d2) ∈ Q1 × Q2 satisfying conditions 1 to 5 of Lemma 4.15
with z = 1, but where for all factorizations xyxv = μδβδμ with |δ| = κ we have p2 · μδβδ /∈F2. If we find such a situation,
then stop with the output that Hκ (L1, L2) is not regular.

Lemma 4.18. Test 2 can be performed in time O(N2).

Proof. For a strongly connected component s ∈ S with As = ((p1, p2),q1,q2) and vs = v , we have to compute all words x
and y such that there are runs

p1
xy−→ d1

xvn1−→ q1, p2
x−→ d2

yxvn2−→ q2
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Fig. 8. Matching positions of v2
i with v2.

and the conditions 1 to 5 are satisfied. In addition, we demand that during the computation of d2 · yxvn2 we do not meet
any final state in F2 after more than κ − 1 steps. (In case such a final state exists, either condition 5 is breached or a
factorization xyxv = μδβδμ with |δ| = κ and p2 ·μδβδ ∈F2 exists.) By backwards searches in A1 and A2 starting at states
q1 and q2, respectively, and searching for paths labeled by suffixes of v+ , we compute all pairs (x, xy) satisfying these
conditions in time O(N · Ns).

At this stage we also compute the position 	(x, xy) of the last final state during the run p2 · vxyx and we let 	(x, xy) = 0
if no such state exists. Note that 0 � 	(x, xy) < Ns +|x|+κ . If a factorization xyxv = μδβδμ with |δ| = κ and p2 ·μδβδ ∈F2
exists, then |xyxv| − 	(x, xy) gives us a lower bound for the length of μ.

Let m(x, xy) be the length of the longest μ such that a factorization xyxv = μδβδμ with |δ| = κ exists (without the
condition p2 · μδβδ ∈F2).

There is a factorization xyxv = μδβδμ with |δ| = κ and p2 · μδβδ ∈ F2 if and only if m(x, xy) � |xyxv| − 	(x, xy) and
	(x, xy) − κ � |xyxv|/2.

We need to compute the values m(x, xy) efficiently, which turns out to be a little tricky. For 0 � i < Ns we let vi =
v[i + 1, Ns]v[1, i] be the conjugate of v starting at the (i + 1)-st letter. We wish to match positions in v2

i with positions
in v2. For each 0 � j < Ns we store the maximal k � Ns such that v2

i [ j, j + k] = v2[ j, j + k] in a table entry M(i, j), see
Fig. 8. For each i one run (from right to left) over the words v2

i and v2 is enough. It takes O(N2
s ) time to build the table M .

Now, if we know the length m′ of the longest common prefix of v |xy| and xv , then m(x, xy) = |xy| + m′ − κ (yet at most
|xyxv|/2 − κ ). The length of m′ is stored in M(|xyx| mod Ns, (−|x|) mod Ns), hence we have access to m(x, xy) in constant
time.

Summing up, Test 2 can be performed in O(
∑

s∈S N · Ns) ⊆O(N2). �
Test 3. Decide the existence of words x, y, z ∈ Σ∗ with z 	= 1 and states (d1,d2) ∈ Q1 × Q2 satisfying conditions 1 to 5
of Lemma 4.15, but where for all factorizations xyzxv = μδβδμ with |δ| = κ we have p2 · μδβδ /∈ F2. If we find such a
situation, then stop with the output that Hκ (L1, L2) is not regular.

Lemma 4.19. Test 3 can be performed in time O(n12n2
1n2

2n).

Proof. For s ∈ S with As = ((p1, p2),q1,q2) and vs = v , we create two tables T1 and T2. Table T1 holds all pairs (c2,d1) ∈
Q2 ×Q1 such that a word x exists with

1. κ � |x| < |v| + κ and x is a prefix of a word in v+ ,
2. p2 · x = c2,
3. d1 · xvn1 = q1, and during the computation of d1 · xvn1 we see a final state after exactly κ steps and then never again.

We call x a witness for (c2,d1) ∈ T1. Table T2 holds all triples (c1,d2,a) ∈ Q1 × Q2 × Σ such that a proper prefix y′ < v
exists with

1. y′a is no prefix of v ,
2. p1 · y′ = c1,
3. d2 · y′vn2 = q2, and during the computation of d2 · y′vn2 we do not see a final state after κ or more steps.

We call y′ a witness for (c1,d2,a) ∈ T2. By backwards computing in the second component, tables T1 and T2 can be created
in O(Nsn1) and O(Nsn2), respectively.

We claim Test 3 to yield that Hκ (L1, L2) is not regular if and only if there exists a pair (c2,d1) ∈ T1 and a triple
(c1,d2,a) ∈ T2 such that (c1, c2,d1,d2) is an a-bridge. Recall that the list of a-bridges is precomputed.

First, assume (c2,d1) ∈ T1, (c1,d2,a) ∈ T2, and (c1, c2,d1,d2) is indeed an a-bridge. Let x and y′ be the witnesses for
(c2,d1) ∈ T1 and (c1,d2,a) ∈ T2, respectively. Choose z ∈ B(c1, c2,d1,d2)∩ aΣ∗ and y such that xy is a prefix of some word
in v+ , |xy| ≡ |y′| (mod |v|), and |y| < |v|. Verify that x, y, z and (d1,d2) satisfy the conditions 1 to 5 of Test 3. However, for
any factorization xyzxv = μδβδμ with |δ| = κ , the word μδ has to be a prefix of xy, since xya is no prefix of vx. During
the computation of d2 · y′vn2 we did not see a final state after more than κ − 1 steps. The same holds for the computation
of d2 · yxvn2 and, therefore, we have p2 · μδβδ /∈F2.

Now assume that x, y, z ∈ Σ∗ , z 	= 1, and (d1,d2) ∈Q1 ×Q2 exist, which satisfy the conditions 1 to 5 of Test 3 but where
for all factorizations xyzxv = μδβδμ with |δ| = κ we have p2 · μδβδ /∈ F2. Choose y′ < v such that |xy| ≡ |y′| (mod |v|).
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Let c2 = p2 · x, c1 = p1 · y′ and a ∈ Σ be the first letter of z. Obviously, (c1, c2,d1,d2) is an a-bridge and x is a witness for
(c2,d1) ∈ T1. If we saw a final state after more than κ − 1 steps during the computation of d2 · y′vn2 , then a factorization
xyzxv = μδβδμ where |δ| = κ and p2 · μδβδ ∈F2 would exist. Thus, y′ is a witness for (c1,d2,a) ∈ T2.

Since the table of a-bridges is precomputed (see Lemma 4.6), this test can be performed in time O(|T1| · |T2|). The set
of all first components of T1 (respectively T2) is bounded by both, the size Ns and n2 (respectively n1). Therefore, we have
|T1| ∈O(n1 · min(Ns,n2)) and |T2| ∈O(n2 · min(Ns,n1)). By symmetry, assume n2 � n1.

Test 3 can be performed in time

O
(∑

s∈S

(
Nsn1 + Nsn2 + n1n2 · min(Ns,n1) · min(Ns,n2)

))

⊆ O
(

n12n2
1n2 + n12n1n2

2 +
∑

s∈S,Ns�n2

n2
1n2

2 +
∑

s∈S,Ns<n2

N2
s n1n2

)
.

Recall that n1 � n � n12 � n1n2 � n2 and
∑

s∈S Ns � N = n12n1n2. Since there are at most n12n1 strongly connected compo-
nents with a size of n2 or more states,

∑
s∈S,Ns�n2

n2
1n2

2 � n12n3
1n2

2.

For the last term we can use the approximation
∑

s∈S,Ns<n2

N2
s n1n2 �

∑
s∈S,Ns<n2

Nsn1n2
2 � n12n2

1n3
2.

We conclude, Test 3 can be performed in time O(n12n2
1n2

2n). �
5. Growth and topological entropy

In this section we compare the growth function of Hκ (L1, L2) with the growth functions of L1 and L2. For this it is
enough to consider the growth functions of L1 and L2 restricted to those words which can be used for a hairpin completion.
Let L′

1 = L1 ∩ ⋃
α∈Σκ Σ∗αΣ∗α and L′

2 = L2 ∩ ⋃
α∈Σκ αΣ∗αΣ∗; clearly, Hκ (L′

1, L′
2) = Hκ (L1, L2). Thus, the growth function

of Hκ (L1, L2) should be compared with the growth functions of L′
1 and L′

2 rather than with those of L1 and L2. The
languages L′

1 and L′
2 are still regular and we can compute their growth functions as part of a preprocessing. In order to

simplify notation, we assume from the very beginning that L1 and L2 contain only words that can form hairpins. Thus, we
assume L′

1 = L1 and L′
2 = L2.

The growth indicator λL of a language L has been defined in Section 2.3. Recall that the growth of |L ∩ Σm| behaves
essentially as λm

L .

Theorem 5.1. Let λ = max{λL1 , λL2 } be the maximum growth indicator of L1 and L2 , and let η be the growth indicator of Hκ (L1, L2).
Then we have the following assertions.

1. The values λ and η satisfy:

√
λ � η � λ.

In particular, the growth of Hκ (L1, L2) is exponential (respectively polynomial, respectively finite) if and only if the growth of
L1 ∪ L2 is exponential (respectively polynomial, respectively finite). In other terms this means that the topological entropy of
Hκ (L1, L2) is positive (respectively zero, respectively equal to −∞) if and only if the topological entropy of L1 ∪ L2 is positive
(respectively zero, respectively equal to −∞).

2. If Hκ (L1, L2) is regular, then we have η = λ. Thus, the growth indicators (respectively topological entropies) of Hκ (L1, L2) and of
L1 ∪ L2 are equal.

The theorem will follow by Lemma 5.4 and Lemma 5.5 in Section 5.1 which compare the growth indicators λ and η with
the growth indicators of the languages Bμ and Rμ for μ ∈ M . In preparation for the proof we recall some well-known on
growth indicators of (regular) languages.

Consider two languages K1 and K2. The growth indicator of their union is λK1∪K2 = max{λK1 , λK2 }. Furthermore, if
K1 	= ∅ 	= K2 the growth indicator of their concatenation is λK1 K2 = max{λK1 , λK2 }, too.

Now, let K be a regular language. The prefix closure of K is defined as

Pref(K ) = {
u ∈ Σ∗ ∣∣ ∃v ∈ Σ∗: uv ∈ K

}
.
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The next lemma is folklore. It holds more generally for factorial closures of regular languages. Instead of working with
growths we might also use the notion of topological entropy as done e.g., in [31]. We content ourselves with the lemma for
prefix closures. Actually, the general case is an immediate consequence by applying first a prefix closure and then a suffix
closure to the prefix closed language. For sake of completeness, we give a short proof.

Lemma 5.2. Let K be a regular language, then we have λK = λPref(K ) .

Proof. The inequality λK � λPref(K ) is obvious because K ⊆ Pref(K ). Conversely, let k be the number of states of some DFA
accepting the language K . For a word u ∈ Pref(K ) ∩ Σm , there is some word v such that uv ∈ K and, moreover, we may
assume |v| � k. For m ∈ N let hm : Pref(K ) ∩ Σm → Σ∗ be a mapping such that both, hm(u) = uv ∈ K and |v| � k. Note that
hm is injective. Thus, for all m ∈N we obtain

∣∣Pref(K ) ∩ Σm
∣∣ �

m+k∑
i=m

∣∣K ∩ Σ i
∣∣.

For all ν > λK there exists some c > 0 such that |K ∩ Σ i | � cν i for all i ∈N. Therefore,

∣∣Pref(K ) ∩ Σm
∣∣ �

m+k∑
i=m

cν i � c(k + 1)νk+m.

We conclude λPref(K ) � ν and hence λK = λPref(K ) . �
Remark 5.3. The conclusion λK = λPref(K ) in Lemma 5.2 does not hold for unambiguous linear languages K , in general. For
example, let K be the language of pseudo-palindromes K = {w ∈ Σ∗ | w = w}. Then, we have λK = √|Σ | and λPref(K ) = |Σ |.

Actually, there are uncountably many languages with λK = 1, but Pref(K ) = Σ∗ and hence λPref(K ) = |Σ |. Define K by
choosing for every length exactly one random word; then |K ∩ Σm| = 1 for all m, but Pref(K ) = Σ∗ with probability 1.

5.1. Proof of Theorem 5.1

Recall from Lemma 4.4 that the hairpin completion is the disjoint union

Hκ (L1, L2) =
⋃
μ∈M

B
Rμ
μ .

We let σμ and ρμ be the growth indicators of Bμ and Rμ , respectively. By σ = max{σμ | μ ∈ M} and ρ = max{ρμ |
μ ∈ M} we denote the maximum growth indicators of all Bμ and all Rμ , respectively. The next lemma compares the
growth indicator λ with the growth indicators σ and ρ .

Lemma 5.4. We have λ = max{σ ,ρ}.

Proof. We start by proving λ � max{σ ,ρ}. Let μ ∈ M be fixed. For γα ∈ Rμ with |α| = κ and β ∈ Bμ , we have γαβα ∈ L1
or αβαγ ∈ L2. Thus, we may define a mapping h : (Rμ × Bμ) → L1 ∪ L2 such that

h(γ α,β) =
{

γ αβα if γ αβα ∈ L1,

αβαγ otherwise.

Obviously, |γα| + |β| = |h(γ α,β)| − κ . Since a word w ∈ L1 ∪ L2 of length m can form less than 2m hairpin completions,
the cardinality of the inverse image h of w is |h−1(w)| < 2m. Using the mapping h, we can compare the growth rm =
|RμBμ ∩ Σm| with the growth 	m = |(L1 ∪ L2) ∩ Σm|; that is rm � 2(m + κ) · 	m+κ for m ∈ N.

For ν > λ = λL1∪L2 we choose ν ′ from the open interval (λ, ν). There exists c′ > 0 such that rm � 2(m+κ)c′ν ′κν ′m for all
m ∈ N and, as the function νm is growing faster than ν ′m , there is some c > 0 such that rm � cνm for all m ∈ N. Therefore,
max{σμ,ρμ} � ν for all ν > λ, whence max{σμ,ρμ} � λ. As this inequality holds for all μ ∈ M , we deduce λ � max{σ ,ρ}.

Conversely, we will prove that L1 is included in a language K whose growth indicator is max{σ ,ρ}. As there is a
symmetric language that includes L2, this yields λ � max{σ ,ρ}. Let B = ⋃

μ∈M Bμ , let R = ⋃
μ∈M Rμ , and let K be the

prefix closure K = Pref(R BΣκ). As the growth indicator of R BΣκ is λR BΣκ = max{σ ,ρ} and by Lemma 5.2, we conclude
λK = max{σ ,ρ}.

Now, consider w ∈ L1. By assumption, w can form a hairpin on its right side. We let π ∈ Hκ ({w},∅) be a hairpin
completion of w . Let γα be the minimal gamma-alpha-prefix of π with |α| = κ and β such that π = γαβαγ . The word
w has to be a prefix of γαβα ∈ R BΣκ , by the minimality of |γ |. Thus, L1 ⊆ K as desired. �

Next, let us compare the growth indicator η with the growth indicators σ and ρ .
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Fig. 9. Growth indicators λ and η in dependency of σ and ρ .

Lemma 5.5. We have η = max{σ ,
√

ρ }.

Proof. Let τμ be the growth indicator of B
Rμ
μ for μ ∈ M . Since Hκ (L1, L2) = ⋃

μ∈M B
Rμ
μ , we see that η = max{τμ | μ ∈ M}.

Thus, in order to prove the claim, it suffices to show that τμ = max{σμ,
√

ρμ } for μ ∈ M . Let μ ∈ M be fixed from here on
and recall that Bμ and Rμ are non-empty. We let

gBμ(z) =
∑
m�0

bmzm with bm = ∣∣Bμ ∩ Σm
∣∣,

gRμ(z) =
∑
m�0

rmzm with rm = ∣∣Rμ ∩ Σm
∣∣.

It will be convenient to let ri+1/2 = 0 for i ∈N.

First, let us prove τμ � σμ . Let v ∈ Rμ and consider K = v Bμv . Obviously, K ⊆ B
Rμ
μ and hence τμ � λK = σμ .

Next, we prove τμ � √
ρμ . Let K = {β}Rμ ⊆ B

Rμ
μ for some β ∈ Bμ . The generating function of K is given as gK (z) =∑

m�0 r(m−|β|)/2zm . For all ν > λK there exists c > 0 such that

∀m ∈N: r(m−|β|)/2 � cνm ⇐⇒ ∀m ∈N: rm � cν|β|(ν2)m

and, therefore, ν2 � ρμ . We conclude τμ � λK � √
ρμ .

Finally, we need to prove that τμ � max{σμ,
√

ρμ }. As B
Rμ
μ is unambiguous and by Lemma 4.4,

g
B

Rμ
μ

(z) =
∑
m�0

dmzm with dm =
∑

k+	=m

bkr	/2.

For ν > max{σμ,
√

ρμ } we choose ν ′ from the open interval (max{σμ,
√

ρμ }, ν). By that choice, νm grows faster than ν ′m

and there is c′ > 0 such that for all m ∈ N and k + 	 = m, we have bkr	/2 � c′ν ′m . Thus, there is c > 0 such that for all
m ∈ N, the inequality dm � mc′ν ′m � cνm holds. This deduces the last step in the proof, τμ � max{σμ,

√
ρμ }. �

Lemma 5.4 and Lemma 5.5 yield a development of the growth indicators λ and η as shown in Fig. 9. The growth
indicator η is at least

√
λ and at most λ; therefore, we deduce the first statement of Theorem 5.1. The second statement

of Theorem 5.1 claims that if the hairpin completion is regular, then λ = η. We infer from Lemma 4.12 that if Hκ (L1, L2)

is regular, then the growth of all Rμ is at most polynomial, more precisely, it is linear or finite, i.e., ρ = 1 or ρ = 0. We
conclude λ = max{σ ,ρ} = max{σ ,

√
ρ } = η.

6. Conclusion and open problems

We proved that the regularity problem for hairpin completions of regular languages is decidable in time O(n8) (respec-
tively O(n6) in case when L1 = L2). The question is whether we could have a lower degree polynomial for the time bound.
The first step of the algorithm is the construction of an automaton A, which has size O(n4) (respectively O(n3)). Thus,
when speaking of time complexity with respect to the size of A, the algorithm uses quadratic time, only. Furthermore, it
seems that all pairs of states of A must be considered in the decision procedure, hence the time bound might be optimal
for our approach. Further improvement of the time complexity would probably call for a completely different approach.
For the one-sided hairpin completion of a regular language, we provide a faster algorithm which runs in quadratic time.
Assuming that the one-sided hairpin completion is the closest to the biochemical setting, our quadratic time bound is quite
reasonable. The regularity problem can be considered as easy for the one-sided hairpin completion.

The polynomial time bounds are due to the fact that we use DFAs for the specification of L1 and L2. One might argue
that a natural specification of a regular language uses an NFA, and we are hiding a first exponential blow-up. Actually,
it is open what happens if L1 and L2 are given by NFAs. The problem becomes much more difficult and asks for further
investigation. We suspect that deciding regularity of Hκ (L1, L2) might become PSPACE-complete.
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Under the natural assumption that every word from the underlying languages can form a hairpin we have shown in
Section 2.3 that the hairpin completion has an exponential growth if and only if one of the underlying languages has an
exponential growth. On the other hand, the structure of regular languages with polynomial growths is well understood by
[29]. It might be worth to investigate the structure of hairpin completions for regular languages with polynomial growths.

The situation for iterated hairpin completions is very interesting, but far from understood. The iterated hairpin com-
pletion has been defined as H∗

κ (L) = ⋃
i�0 Hi

κ (L) where Hκ (L) = Hκ (L, L). The iterated hairpin completion of a singleton
language is not context-free, in general, but still in NL, hence context-sensitive, see [13]. Whether or not regularity of the
iterated hairpin completion of a singleton or, more generally, a regular language is decidable, remains a challenging open
problem. A partial result for so-called non-crossing words has been shown in [12]. We also suggest to investigate H∗

κ (L) with
Hκ (L) =Hκ (L, L). Actually, this operation is closer to the spirit of the paper and seems to be closer to DNA-computing.

Another interesting problem concerns the hairpin lengthening of regular languages, which is a similar operation as the
hairpin completion. We call γ1αβαγ2 a (right) hairpin lengthening of γ1αβα if γ2 is a suffix of γ1 and we call it a (left)
hairpin lengthening of αβαγ2 if γ1 is a prefix of γ2. The hairpin lengthening HLκ (L1, L2) of languages L1 and L2 is
introduced analogously to the hairpin completion. It is known that the hairpin lengthening HLκ (L1, L2) of two regular
languages is linear context-free. However, HLκ (L1, L2) is not unambiguous, in general, see [32]. This might indicate that
deciding regularity of the hairpin lengthening HLκ (L1, L2) is more difficult than for the hairpin completion. It is open
whether the regularity problem for hairpin lengthening is decidable. The iterated hairpin lengthening of a regular language
remains regular, see [33,34] in contrast to the hairpin completion.
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