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SUMMARY

Ion fluxes mediated by glial cells are required for
several physiological processes such as fluid
homeostasis or the maintenance of low extracellular
potassium during high neuronal activity. In mice, the
disruption of the Cl� channel ClC-2 causes fluid
accumulation leading tomyelin vacuolation. A similar
vacuolation phenotype is detected in humans
affected with megalencephalic leukoencephalop-
athy with subcortical cysts (MLC), a leukodystrophy
which is caused bymutations inMLC1 orGLIALCAM.
We here identify GlialCAM as a ClC-2 binding
partner. GlialCAM and ClC-2 colocalize in Bergmann
glia, in astrocyte-astrocyte junctions at astrocytic
endfeet around blood vessels, and in myelinated
fiber tracts. GlialCAM targets ClC-2 to cell junctions,
increases ClC-2 mediated currents, and changes its
functional properties. Disease-causing GLIALCAM
mutations abolish the targeting of the channel to
cell junctions. This work describes the first auxiliary
subunit of ClC-2 and suggests that ClC-2 may play
a role in the pathology of MLC disease.

INTRODUCTION

Megalencephalic leukoencephalopathy with subcortical cysts

(MLC) is a rare type of leukodystrophy (van der Knaap et al.,

1995a) characterized by macrocephaly that appears in the first

years of life. MRI of patients shows swelling of the cerebral

white matter and the presence of subcortical cysts, mainly in

the anterior temporal regions. In MLC patients, diffusion
studies indicate increased water content of the brain (van

der Knaap et al., 1995b). A brain biopsy from an MLC patient

revealed myelin (van der Knaap et al., 1996) and astrocyte

vacuolation (Duarri et al., 2011). It was suggested that MLC

may be caused by impaired ion transport across cellular

membranes, thereby leading to an osmotic imbalance and

disturbed fluid homeostasis (Brignone et al., 2011; Duarri

et al., 2011). Indeed, MLC1, the first disease gene discovered

to underlie MLC in most patients (Leegwater et al., 2001),

encodes an integral membrane protein with 8 putative trans-

membrane domains with low and questionable homology to

ion channels (Teijido et al., 2004). Recently, MLC1 has been

proposed to be related to the activation of the volume-regu-

lated anion channel (Ridder et al., 2011). However, the precise

role of MLC1 in volume-regulated chloride transport is not

clear (Ridder et al., 2011).

Among the ion channels that are expressed in glia, the hyper-

polarization-activated and osmosensitive ClC-2 Cl� channel

(Gründer et al., 1992; Thiemann et al., 1992) has been proposed

to be an important player in extracellular ion homeostasis (Blanz

et al., 2007; Fava et al., 2001; Makara et al., 2003). Mice lacking

ClC-2 (Clcn2�/� mice) exhibit vacuolation of the white matter

that resembles the pathology of MLC patients (Blanz et al.,

2007). MLC1 mutations account for only 75% of patients with

MLC, but none of the patients without mutations inMLC1 carried

bona fide disease-causing mutations in CLCN2 (Blanz et al.,

2007; Scheper et al., 2010). Tests for a crosstalk between

ClC-2 and MLC1 also gave negative results. The proteins could

not be coprecipitated, and reduction of MLC1 levels by RNA

interference did not change ClC-2 protein levels (Duarri et al.,

2011). Hence, no role of ClC-2 in human MLC could be

established.

GLIALCAMwas recently identified as a secondMLC gene (Ló-

pez-Hernández et al., 2011a). GlialCAM is an Ig-like cell-adhe-

sion molecule of poorly characterized function (Favre-Kontula
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Figure 1. Identification of ClC-2 as a Glial-

CAM-Interacting Protein

(A) Scheme of the GlialCAM molecule. Mutated

residues studied in this work are depicted. Anti-

bodies used for purification (mou: mouse; rab:

rabbit) are shown.

(B) Evaluation of GlialCAM affinity purification from

mouse brain. The scheme shows a 2D plot of

relative protein enrichment in affinity purifications

versus IgG controls. Proteins specifically cop-

urified are shown in the yellow area; dashed lines

indicate the specificity thresholds as suggested by

the distribution of all protein ratios (gray circles).

(C), Immunoblot analysis of a sample of the affinity

purification with the anti-GlialCAM rabbit poly-

clonal antibody stained with the same antibody

(upper) and with anti-ClC-2 C1 antibody (lower);

lanes resolve aliquots of pellet after solubilization,

solubilizate (Sol), not bound (NB), or eluates from

the purification (IP Glial). IP IgG: eluate from an IgG

control.

(D) Copurification of GlialCAM with anti-ClC-2 C2

antibody. Lanes were labeled as before.

(E) Coimmunoprecipitation from HeLa cells transiently transfected with ClC-2 and Flag-tagged GlialCAM. Lanes were labeled as before.

(F) Quantification of interaction using the split-TEV assay. ClC-2 was tested for interaction with the proteins indicated below the graph. **p < 0.01;

***p < 0.001 versus 4F2hc.

See also Figure S1.
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et al., 2008). A role of GlialCAM in MLC was first suggested by

biochemical assays that demonstrated that both proteins bind

each other and colocalize in astrocyte-astrocyte junctions at as-

trocytic endfeet (López-Hernández et al., 2011a). GlialCAM

targets MLC1 to cell-cell junctions (López-Hernández et al.,

2011b) and GLIALCAM mutations identified in MLC patients

impair the correct trafficking of GlialCAM and MLC1 to astro-

cyte-astrocyte junctions (López-Hernández et al., 2011a, 2011b).

Unlike MLC1, GlialCAM is also detected in myelin (López-

Hernández et al., 2011a), mainly in oligodendroglial extensions

(Favre-Kontula et al., 2008). In the present work, we show that

GlialCAM interacts with ClC-2 in several glial cell types including

oligodendrocytes, targeting it to cell junctions and dramatically

increasing its conductance. We thus identified GlialCAM as an

auxiliary subunit of ClC-2, potentially implicating the channel in

the pathogenesis of MLC.

RESULTS

Identification of ClC-2 as GlialCAM Binding Partner
We used two different antibodies directed against GlialCAM

(Figure 1A) to identify proteins from solubilized mouse brain

membranes that copurify with GlialCAM. In addition to peptides

from GlialCAM and MLC1, quantitative mass spectroscopy

identified peptides corresponding to the ClC-2 chloride channel

(Figure 1B and see Figure S1 available online) as the only other

consistently and specifically copurified protein in the eluate.

Western blot analysis confirmed that ClC-2 was copurified with

at least a fraction of GlialCAM (Figure 1C), which may result

from a partial dissociation of the complex or may indicate that

not all GlialCAM is associated with ClC-2. Coimmunoprecipita-

tion experiments using an antibody against ClC-2 confirmed

the interaction between GlialCAM and ClC-2 (Figure 1D). Similar
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experiments using extracts from cells transfectedwith ClC-2 and

C terminally tagged GlialCAM (Figure 1E), as well as split-TEV

interaction experiments (Figure 1F), suggested that ClC-2 and

GlialCAM directly interact. The interaction appeared specific

since no association was observed between ClC-2 and the

related 2Cl�/H+ antiporter ClC-5, the unrelated polytopic adeno-

sine 2A receptor (A2AR), or the unrelated single transmembrane

span protein 4F2hc (Figure 1F).

Colocalization of ClC-2 and GlialCAM in Tissue
For the interaction of GlialCAM and ClC-2 to be physiologically

relevant, both proteinsmust colocalize in native tissue. GlialCAM

is found exclusively in brain, where it localizes to astrocyte-astro-

cyte junctions at endfeet, Bergmann glia, some pyramidal

neurons and to myelin (López-Hernández et al., 2011a). In addi-

tion to neurons, ClC-2 is expressed on astrocytes and oligoden-

drocytes and was found in myelin-enriched fractions (Blanz

et al., 2007; Fava et al., 2001; Földy et al., 2010; Makara et al.,

2003; Rinke et al., 2010; Sı́k et al., 2000). GlialCAM colocalized

in mouse brain with ClC-2 in cerebellar Bergmann glia which

was counterstained for GFAP (Figure 2A). Both proteins were

present at astrocytic endfeet surrounding blood vessels (Fig-

ure 2B; Blanz et al., 2007; López-Hernández et al., 2011a; Sı́k

et al., 2000) in the cortex and in the cerebellum. In human cere-

bellum, immunogold electron microscopy detected ClC-2 at

astrocyte-astrocyte contacts in the endfeet (Figures 2C and

2D), a location where also GlialCAM and MLC1 are present (Ló-

pez-Hernández et al., 2011a). GlialCAM and ClC-2 were also

found to colocalize inmyelinated fiber tracts along the circumfer-

ence of oligodendrocytic cell bodies in mouse cerebellum

(Figure 2E), where GlialCAM, ClC-2, and the oligodendrocyte-

expressed gap junction protein Cx47 were present in the same

cell membrane (Figure 2F; Blanz et al., 2007). In vitro cell culture



Figure 2. Localization of ClC-2 and GlialCAM in the Brain

Mouse brain sections labeled with antibodies against GlialCAM, ClC-2, or

GFAP antibodies. (A) cerebellar Bergmann glia; (B) astrocytic endfeet

surrounding blood vessels in cortex; (C and D) EM immunolabeling of human

cerebellum shows localization of ClC-2 (arrows) in astrocyte-astrocyte junc-

tions near basal lamina; (E) oligodendrocytic cell bodies in myelinated fibers of

cerebellar white matter tracts.

(F) Coexpression of GlialCAM and the oligodendrocyte marker Cx47 in

membranes of oligodendrocytic bodies in the cerebellum.

(G) EM immunolabeling detects ClC-2 in myelin (arrows).

Scale bars for (A), (B), and (E) 20 mm; (F) 5 mm; for panels (C) and (D) 200 nm; (G)

500 nm. M: myelin; Ax: axon; Ast: astrocyte; BL: basal lamina. ClC-2 anti-

bodies used: C1 (A); C2 (B–F). See also Figure S2.
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studies have shown that GlialCAM is expressed in different

stages of oligodendrocytic differentiation, including the bipoten-

tial O2-A progenitor NG2 positive cells (OPC cells) (Favre-Kon-

tula et al., 2008). Immunogold EM confirmed the presence of

ClC-2 in human myelin (Figure 2G).

Localization and expression of GlialCAM is independent of

MLC1 (López-Hernández et al., 2011b). We similarly asked
whether the expression of GlialCAM or MLC1 depends on

ClC-2. Western blots revealed that the total amount of GlialCAM

and MLC1 proteins were unchanged in the brain of Clcn2�/�

mice (Figure S2A). Likewise, there was no change in the subcel-

lular localization of GlialCAM and MLC1 in Bergmann glia, nor in

the astrocytic endfeet around blood vessels in Clcn2�/� mice

(Figures S2B and S2C).

GlialCAM Changes the Subcellular Distribution of ClC-2
We then studied whether GlialCAM changes the abundance or

localization of ClC-2 in heterologous expression systems. We

could not detect that GlialCAM changes ClC-2 protein levels

(data not shown) and ClC-2 surface expression after transfection

of HeLa cells or transduction of primary astrocytes, as ascer-

tained in a chemiluminescence assay (Figure S3).

Since GlialCAM has been described to target MLC1 to

cell-cell junctions (López-Hernández et al., 2011b), we as-

sayed if GlialCAM could also modify ClC-2 localization in the

same manner. In HeLa cells, ClC-2 transfected alone was

detected at the plasma membrane and intracellularly (Fig-

ure 3A). Coexpression with GlialCAM directed the ClC-2

channel to cell-cell contacts (Figures 3B–3D), where both

proteins colocalized (data not shown). Localization of ClC-2

together with GlialCAM was observed in long (Figure 3B) or

short (Figure 3C) cell-cell contact processes and in extensive

contact areas between opposite cells (Figure 3D). Such a clus-

tering was never observed in contacting cells expressing only

ClC-2 (Figure 3A). Similar results were observed in HEK293

cells (data not shown). We performed analogous experiments

in primary cultures of astrocytes, where both proteins are

endogenously expressed. In these cultures, adenoviral-medi-

ated expression of ClC-2 with or without GlialCAM showed

that the latter protein was necessary to target ClC-2 to astro-

cyte-astrocyte processes (compare Figures 3E and 3F). In

these junctions, ClC-2 and GlialCAM displayed colocalization

(Figures 3F–3H).

GlialCAM Modifies ClC-2 Currents
We next asked whether GlialCAM could modify ClC-2 function.

Coexpression of GlialCAM and ClC-2 in Xenopus oocytes

dramatically increased ClC-2-mediated currents and changed

their characteristics (Figure 4A). Initial currents measured

at +60 mV were more than 15-fold larger in cells coexpressing

ClC-2 and GlialCAM compared to ClC-2 alone. Whereas ClC-2

currents are strongly inwardly rectifying and activate slowly

upon hyperpolarization, ClC-2/GlialCAM currents were almost

ohmic and displayed time-independent, instantaneously active

currents (Figure 4B). Of note, the apparent inactivation observed

sometimes at very negative voltages is an artifact caused by

chloride depletion inside the oocytes.

Similar effects of GlialCAM on ClC-2 currents were seen in

transfected HEK293 cells, although a residual time-dependent

component was present (Figure 4C). Importantly, GlialCAM

alone does not induce any significant current in HEK cells or

Xenopus oocytes (Figure S4). Similarly, in transfected cells,

ClC-2 steady state currents at +60 mV were dramatically

increased by GlialCAM (Figure 4D). Specificity of the currents

was demonstrated by the characteristic block by extracellular
Neuron 73, 951–961, March 8, 2012 ª2012 Elsevier Inc. 953



Figure 3. GlialCAM Changes the Subcellular Distribution of ClC-2 in

HeLa Cells and in Primary Cultures of Astrocytes

(A–D) GlialCAM changed the subcellular distribution of ClC-2 in transiently

transfected HeLa cells from being at the plasma membrane when transfected

alone (A) versus being at long cell-cell contact processes (B), at short cell-cell

contact processes (C), or in extensive contact regions (D) when cotransfected

with GlialCAM (arrows label cell-cell contacts). Scale bar: 10 mm.

(E–H) Astrocytes were transduced with adenoviruses expressing ClC-2 alone

or together with C terminally tagged GlialCAM at MOI 3. GlialCAM similarly

brought ClC-2 to cell-cell contacts. Arrows point to astrocyte-astrocyte

contacts. Immunofluorescence used a flag monoclonal antibody detecting

GlialCAM protein (red) or a rabbit polyclonal antibody (C1) detecting ClC-2

(green). Colocalization between the red and the green fluorescence results in

a yellow coloring (Merge). Nuclei of astrocytes were stained using DAPI (blue).

Scale bar: 20 mm.

See also Figure S3.

Neuron

A Subunit of ClC-2 Defective in a Leukodystrophy
iodide (Gründer et al., 1992; Thiemann et al., 1992; Figure 4B)

and cadmium (Clark et al., 1998) (data not shown).

To test if GlialCAM may alter native ClC-2 currents we per-

formed whole-cell patch-clamp experiments in differentiated

rat astrocytes. These cells exhibit typical hyperpolarization-acti-

vated ClC-2-like currents that were blocked by iodide (Ferroni

et al., 1997; Makara et al., 2003; Figure 4E). After GlialCAM over-
954 Neuron 73, 951–961, March 8, 2012 ª2012 Elsevier Inc.
expression, currents were increased and showed a large in-

stantaneous component and less rectification (Figure 4F),

qualitatively similar to the effect on ClC-2 in the heterologous

systems. These currents were also blocked by iodide to similar

degree (Figure 4E).

Even if GlialCAM and connexins do not overlap significantly

(Figures 2F and S4D), it may be hypothesized that GlialCAM

expression increases ionic currents by stimulating currents

through gap junction proteins. However, overexpression of

GlialCAM did not modify expression and localization of connexin

43, the major connexin of astrocytes (Figures S4C and S4E).

Furthermore, blocking gap junctions with glycyrrhetinic acid

did not influence GlialCAM-induced currents in coupled astro-

cytes (Figure S4F), which were, however, blocked by iodide

which is known to block ClC-2 (Gründer et al., 1992; Thiemann

et al., 1992; Figure 4F).

We next addressed whether the effect of GlialCAM was

specific to ClC-2. GlialCAM did not change currents of ClC-5

at positive or negative voltages (Figure 5A). We studied if human

GlialCAM could interact with the ClC-2 ortholog from Drosophila

melanogaster (DmClC-2) (Flores et al., 2006), whose genome

lacks a GlialCAM ortholog. GlialCAM interacted biochemically

and increased currents of DmClC-2 (Figures 5B and 5C), sug-

gesting that GlialCAM evolved to interact with the channel at

an interface that is evolutionary conserved among ClC-2 like

channels. Additionally, we addressed interaction with the closest

homolog of GlialCAM named HepaCAM2. No biochemical and

functional interaction was observed between HepaCAM2 and

ClC-2 (Figures 5D and 5E). Finally, we asked whether wild-type

MLC1 or MLC1 containing MLC-causing mutations could influ-

ence ClC-2 or ClC-2/GlialCAM induced current in Xenopus

oocytes. We did not find any effect on ClC-2 mediated currents

(Figure 5F).

Insights into the Molecular Mechanism of ClC-2
Activation by GlialCAM
Currents of Xenopus oocytes expressing GlialCAM/ClC-2

resemble those of an N-terminal deletion of ClC-2 (DN), in which

the osmosensitivity and the voltage-dependence is drastically

altered (Gründer et al., 1992). This might suggest that GlialCAM

activates ClC-2 by interacting with its N terminus. However,

we found that GlialCAM still interacted biochemically with

(Figure S5A) and targeted the DN mutant to cell-cell contacts

(Figure S5B) just like wild-type ClC-2. Moreover, GlialCAM

potentiated DN currents in transfected HEK293 cells

(Figure S5C).

We then compared the functional properties of ClC-2, DN and

GlialCAM/ClC-2. Hypo-osmolarity increased currents of

GlialCAM/ClC-2 and ClC-2, but had no effect on DN (Gründer

et al., 1992; Figure 6A). All of them have the same anion perme-

ability sequence (Figure 6B), strongly suggesting that GlialCAM

has no effect on the open-pore properties of the channel. We

also addressed whether GlialCAM could increase the single

channel conductance of the channel by performing nonsta-

tionary noise analysis of currents induced by ClC-2 or by ClC-2/

GlialCAMat�100mV in transfectedHEK cells. The conductance

of ClC-2 was estimated at 2.9 ± 0.4 pS (n = 8), a value very similar

to what has been previously reported (Weinreich and Jentsch,



Figure 4. GlialCAM Modifies ClC-2 Currents in Xenopus Oocytes, HEK Cells, and Primary Rat Astrocytes

(A) Currents mediated by ClC-2 (left) expressed in oocytes and after coexpression of ClC-2 with GlialCAM (right).

(B) Representative steady-state current-voltage relationship of ClC-2 (circles) and ClC-2 coexpressed with GlialCAM (squares) in chloride (open symbols) or

iodide (filled symbols). Average initial currents measured at +60 mV were 0.96 ± 0.17 mA (n = 14) for ClC-2 and 17.2 ± 2.2 mA (n = 10) for ClC-2/GlialCAM.

(C) Typical whole-cell currents from transfected HEK293 cells with ClC-2-GFP alone (left) or together with GlialCAM (right). The GFP tag does not affect ClC-2

current properties.

(D) Average steady-state current voltage from ClC-2-GFP (filled circles) or ClC-2-GFP/GlialCAM (circles) transfected HEK293 cells.

(E) Left: representative trace of whole-cell inwardly rectifying chloride currents in dbcAMP-treated cultured neocortical rat astrocytes. These currents, as

described (Ferroni et al., 1997), were blockedwhen chloride was replaced by iodide (F) andwere not blocked by tamoxifen (data not shown). Right: representative

trace of chloride currents of dbcAMP-treated astrocytes transduced with adenoviruses expressing GlialCAM fused to GFP. The inset shows the voltage

protocol used.

(F) Average steady-state current-voltage relationship of dbcAMP-treated astrocytes (circles, n = 14) or transduced with adenoviruses expressing GlialCAM-GFP

(filled circles, n = 14) in chloride medium. Recordings were performed in symmetrical chloride concentrations. In some recordings chloride was exchanged by

iodide (triangles or filled triangles). At hyperpolarizing voltages iodide block was by 32.7% ± 3.2% for control astrocytes (n = 6) and by 56.8% ± 2.9% for

astrocytes transduced with adenoviruses expressing GlialCAM-GFP (n = 8).

See also Figure S4.
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2001). For ClC-2/GlialCAM we obtained a value of 2.6 ± 0.2 pS

(n = 8), not statistically significantly different from the value for

ClC-2 alone (p > 0.5). We conclude that GlialCAM does not

modify single-channel properties of ClC-2. Interestingly,

GlialCAM similarly diminished the inhibition by acidic pH of

both ClC-2 and DN (Figure 6C). This result suggested that

GlialCAM may activate ClC-2 by opening the common gate
that acts on both pores of the homodimeric channel, as this

gate is sensitive to acidic pH (Niemeyer et al., 2009).

GlialCAMdisplays a longcytoplasmaticC terminus comprising

about 30% of the protein (Favre-Kontula et al., 2008). However,

consistent with its poor sequence conservation between

species, the deletion of the entire C terminus did not abolish the

interaction with ClC-2, its targeting to cell junctions, and the
Neuron 73, 951–961, March 8, 2012 ª2012 Elsevier Inc. 955



Figure 5. Specificity of the ClC-2 GlialCAM Inter-

action

(A) Human ClC-5 was expressed in oocytes with and

without GlialCAM. Currents were quantified at positive

(+80 mV) and negative (�80 mV) voltages 3 days after

injection. The inset shows representative ClC-5 + Glial-

CAM traces using a voltage-clamp protocol with pulses

ranging from +120 mV to �120 mV in 20 mV steps.

(B) Interaction between DmClC-2 and DmClC-2 or Glial-

CAM was monitored using split-TEV assays. 4F2hc was

used as a negative control. The result is an average of 5

independent experiments. **p < 0.01 versus 4F2hc.

(C) DmClC-2 was expressed in Xenopus oocytes by itself

or together with GlialCAM. Two days after injection in

oocytes DmClC-2 ± GlialCAM currents were determined.

Steady state currents are plotted against voltage (n = 5 ±

SEM). The inset shows representative current traces of

DmClC-2 (filled circle) and DmClC-2 / GlialCAM (open

circle).

(D) Interaction between ClC-2 and GlialCAM or Hep-

aCAM2 by split-TEV assays. 4F2hc was used as a nega-

tive control. The result is an average of 13 independent

experiments. ***p < 0.001; ‘‘ns’’ indicates no significant

difference versus 4F2hc.

(E) Typical ClC-2 currents in Xenopus oocytes expressed

by itself (left) or coexpressed with HepaCAM2 (right).

HepaCAM2 positive protein expression was assessed by

Western blot (data not shown).

(F) Currentsmeasured inXenopus oocytes at + 60mV after

the expression of ClC-2 alone (3 ng), ClC-2 (3 ng) + Glial-

CAM (5 ng), or ClC-2 (3 ng) + GlialCAM (5 ng) + wild-type

MLC1 (3 ng) or containing the MLC-causing mutations

P92S and S246R (3 ng). The result is a representative

experiment of two experiments with at least 5 oocytes

measured for each condition.
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activation of ClC-2 currents in transfected cells (Figures S5D–

S5F). Hence the interaction between both proteins may depend

on the transmembrane and/or the N-terminal part of GlialCAM.

Deletion of the N-terminal part of GlialCAM, while keeping the

cleavable signal peptide, resulted in a lack of surface expression

(data not shown), precluding proper biochemical studies.

Impact of MLC-Related Mutations Identified in
GLIALCAM on ClC-2
Several GLIALCAM mutations found in patients with MLC trun-

cate the protein before the transmembrane domain or result in

amino-acid changes in the N-terminal, extracellular part of Glial-

CAM (López-Hernández et al., 2011a). We studied four of these

missense mutations located within the IgV domain (Figure 1A).

All GlialCAM proteins containing MLC-causing missense muta-

tions retained their physical interaction with ClC-2 (Figures 7A

and S6A) and increased ClC-2 activity similar to wild-type

GlialCAM in Xenopus oocytes (Figures 7B and S6B) and in trans-

fected cells (data not shown). In contrast, all of them abolished
956 Neuron 73, 951–961, March 8, 2012 ª2012 Elsevier Inc.
the targeting of ClC-2 to cell junctions in HeLa

or HEK293 cells (Figures 7C and 7D).

We also analyzed the effect of the MLC-

causing mutations in GlialCAM on the localiza-

tion of ClC-2 in primary cultures of rat astrocytes
through adenoviral-mediated transduction (Figure 8). Coexpres-

sion of ClC-2 with GlialCAM mutant variants resulted in intracel-

lular and cell membrane staining of ClC-2 (Figures 8B–8E), but

not the typical wild-type GlialCAM induced localization in cell

junctions (Figure 8A).

DISCUSSION

In this work, we have identified GlialCAM as an interaction

partner of the ClC-2 chloride channel. As ClC-2 is functional in

the absence of GlialCAM, albeit displays different biophysical

properties, and since GlialCAM shows a much more restricted

expression pattern than ClC-2 (Thiemann et al., 1992), it is clear

that GlialCAM is not an obligate b-subunit of ClC-2, but an auxil-

iary subunit that associates with ClC-2 only in some cell types.

MLC1 wild-type or containing MLC-causing mutations, by

contrast, does not modify ClC-2 currents neither in the presence

nor in the absence of GlialCAM, and biochemical studies

indicate that ClC-2 and MLC1 do not interact directly (Duarri



Figure 6. Electrophysiological Characterization of

the GlialCAM/ClC-2 Complex

(A) Dependence on the extracellular osmolarity of ClC-2,

ClC-2 + GlialCAM, or DNClC-2 currents. Gray bars

indicate application of the hypotonic solution. Insets

show typical responses of the same oocytes to a pulse

to �140 mV before swelling.

(B) Reversal potential ofDNClC-2 (n = 5 ± SEM) andClC-2/

GlialCAM (n = 5 ± SEM) currents under different anionic

conditions.

(C) pH dependence of ClC-2 and DNClC-2, each without

and with GlialCAM. Currents were normalized to the value

at pH 7.3. Arrow points to the pH value with the largest

difference between the groups that express or not

GlialCAM.

See also Figure S5.

Neuron

A Subunit of ClC-2 Defective in a Leukodystrophy
et al., 2011). Furthermore, MLC1 expression and localization is

unaltered in Clcn2�/� mice. These data suggest that GlialCAM/

MLC1 and GlialCAM/ClC-2 may form distinct complexes.

Recently, the lack of MLC1 has been correlated with a variable

impairment in cell volume regulation that may be mediated by

the volume regulated anion channel (VRAC) (Ridder et al.,

2011). However, VRAC is distinct from ClC-2 as evident from

very different biophysical characteristics (Jordt and Jentsch,

1997). Furthermore, the mechanism of modulation of VRAC by

MLC1 is unclear. As MLC1 and ClC-2 share GlialCAM as a

subunit, we cannot exclude that MLC1 could regulate ClC-2

function in an indirect/unknown manner. Therefore, an inter-

esting hypothesis that should be tested in the next future is

whether ClC-2 function is altered in cells lacking MLC1.

GlialCAM by itself localizes to cell-cell junctions (López-

Hernández et al., 2011b), probably being retained there by

homophilic or heterophilic interactions with membrane proteins

of the apposing cell. In other GlialCAM homolog proteins such

as the members of the SLAM family (Engel et al., 2003), localiza-

tion at the immunological synapse of SLAM proteins is achieved

by trans-homophilic interactions between the IgV domains of

opposite molecules. Furthermore, GlialCAM is also able to

localize ClC-2 and MLC1 (López-Hernández et al., 2011b) to

cell-cell junctions in heterologous expression systems and in

primary cultures of astrocytes. The role of GlialCAM as a ClC-2

subunit appears to be specific within its protein family, as its

closest homolog, HepaCAM2, did not interact with ClC-2.

GlialCAM carrying MLC-related mutations (López-Hernández

et al., 2011a) fails to arrive at cell-cell junctions (López-Hernán-

dez et al., 2011b). As a consequence, also their associated

subunits, MLC1 and ClC-2, are not properly targeted to cell-

cell junctions. Thus, GlialCAM function may be needed to cluster

ClC-2 and MLC1 in particular to astrocyte-astrocyte junctions at

astrocytic endfeet. Here, the ClC-2 chloride channel may be

needed to support a transcellular chloride flux or to compensate
Neuron 73,
large electrochemical ion gradients that may

occur at these junctions during ion-driven

changes in osmolarity. However, the chloride

flux mediated by ClC-2/GlialCAM in cell junc-

tionsmost likely fulfills a different role compared

to the one mediated by gap junctions as these
proteins do not colocalize completely. Our experiments also

exclude that GlialCAM activates astrocyte gap junctions, since

their blockade did not influence currents induced by GlialCAM

overexpression, and GlialCAM overexpression had no influence

on connexin 43 protein levels or its subcellular localization.

Recent reports indicated that the ClC-2 channel in neurons

constitutes a part of the background conductance regulating

input resistance and providing an efflux pathway for chloride

(Földy et al., 2010; Rinke et al., 2010), which may be a safeguard

mechanism to prevent chloride accumulation in active

GABAergic synapses. In contrast, the role of ClC-2 in glial cells

is unknown. Recordings from mouse slices demonstrated that

ClC-2-mediated current was reduced in reactive astrocytes

within a lesion (Makara et al., 2003). Strong evidence in favor

of an important physiological role of ClC-2 in glial cells is

provided by the phenotype of Clcn2�/� mice, which display an

MLC-like vacuolization in the brain (Blanz et al., 2007). Vacuoliza-

tion in the brain has been also observed in mice disrupted for the

potassium channel Kir4.1 (Neusch et al., 2001) or double-disrup-

ted for connexins 32 and 47 (Menichella et al., 2006). These

proteins are thought to be crucial for potassium siphoning by

glial cells, a process that is needed to avoid neuronal depolariza-

tion by extracellular K+ during repetitive action potential firing

(Rash, 2010). In agreement with this role in ion siphoning, in

Kir4.1 knockout mice there was no vacuolation in the optic nerve

after blocking action potential generation with tetrodotoxin

(Neusch et al., 2001). It was neither observed in the Clcn2�/�

mice possibly because they are blind due to retinal degeneration

(Blanz et al., 2007). Hence degeneration in both mouse models

depend on nerve activity, in accord with the siphoning process

that is required after neuronal repolarization. It has been sug-

gested that ClC-2may play a role in charge compensation during

potassium influx or efflux in glial cells (Blanz et al., 2007).

ClC-2-mediated currents were increased upon GlialCAM

expression and showed less inward rectification. However,
951–961, March 8, 2012 ª2012 Elsevier Inc. 957



Figure 7. Biochemical and Functional Conse-

quences of GLIALCAM Mutations on ClC-2

(A) Interaction between ClC-2 and GlialCAM or GlialCAM

containing MLC-related mutations revealed by split-TEV

interaction assays (n = 5).

(B) Average instantaneous currents at +60 mV from ClC-2

expressing oocytes coinjected with saturating concen-

trations of GlialCAM or the indicated GlialCAM variants.

The result is an average of n = 5 in each experiment from

three independent experiments.

(C) Immunofluorescence of HeLa cells expressing ClC-2

plus wild-type GlialCAM or GlialCAM containing the MLC-

related mutations R92Q, R98C, R92W, and G89D. Scale

bar: 10 mm. Expression at contact sites and non-contact

surface membrane was determined by the analysis of the

intensity profile along the dashed line.

(D) Relative fluorescence intensity at cell contacts. Inten-

sity profile analysis revealed that ClC-2 alone had a ratio R

of fluorescence Fcontact/Fsurface (see Experimental Proce-

dures) of 0.7 ± 0.03 (n = 58), ClC-2 + GlialCAM a value of

1.8 ± 0.14 (n = 55), and the GlialCAM variants studied (with

at least 24 pair of cells analyzed) had R values less than 1

(see Experimental Procedures), indicating that the variants

containing MLC-relatedmutations were not able to cluster

ClC-2 to cell junctions. *p < 0.05, **p < 0.01 versus wild-

typeGlialCAMplus ClC-2. Similar results were observed in

HEK cells (not shown).

See also Figure S6.
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ClC-2 activity recorded in cultured astrocytes (Ferroni et al.,

1997) or in astrocytes in brain slices (Makara et al., 2003) resem-

bles that of ClC-2 alone. This may be due to different recording

conditions, or, alternatively, it may be that GlialCAM interacts

with ClC-2 only under special circumstances, such as those

occurring during high neuronal activity.

A polarized distribution of the Kir4.1 channel in astrocyte

membranes in contact with endothelial cells, mediated by

interaction with proteins of the DGC (dystrophin-glycoprotein

complex) (Nagelhus et al., 2004), is required for potassium

siphoning. In an analogous way, the polarized localization

of ClC-2 mediated by GlialCAM in astrocyte-astrocyte or

oligodendrocyte-astrocyte contacts may be also needed to

support a directional flux of potassium from neurons to

blood vessels. As a cell-adhesion molecule, GlialCAM could

influence the expression of other molecules expressed in cell

junctions such as connexins. Similar to DGC proteins, the

localization in cell-cell contacts of GlialCAM itself and of asso-

ciated molecules may be achieved by transmediated interac-

tions or by interactions with intracellular scaffolds in each

cell. It seems possible that GlialCAM may organize a more

extensive cluster of proteins at the astrocytic junctions in the

endfeet.

We propose that the lack of the stimulatory effect of GlialCAM

on ClC-2 currents, or a mislocalization of this Cl� channel, or
958 Neuron 73, 951–961, March 8, 2012 ª2012 Elsevier Inc.
both, will impair glial chloride transport. This

may impair not only chloride homeostasis, but

also potassium siphoning and cell volume regu-

lation that is particularly important during

neuronal activity. This in turn may entail accu-
mulation of osmotically driven water, lead to the vacuolization

observed in MLC patients with mutations in GLIALCAM or in

Clcn2�/� mice. Vacuolization observed in MLC patients with

GLIALCAM mutations could also be due to defects in GlialCAM

by itself, or to a mislocalization of MLC1, an established causal

player inMLC. Additionally, the adhesive properties of GlialCAM,

and their importance for the anatomy of the brain and the path-

ogenesis of MLC remain to be studied.

The fact that so far no disease-causing CLCN2 mutation has

been found in patients with MLC (Blanz et al., 2007; Scheper

et al., 2010) might be explained by the presence of additional

symptoms (e.g., blindness, male infertility, as expected from

the phenotype of Clcn2�/� mice [Bösl et al., 2001]) that could

result in improper disease classification. The male infertility

could also lead to an underrepresentation of CLCN2 mutations

in the human population. Thus, proof of the involvement of

ClC-2 in MLC disease will require, for example, immunolocaliza-

tion studies in brain biopsies of MLC patients with GLIALCAM

mutations.

In summary, the discovery of GlialCAM as the first auxiliary

subunit of ClC-2 increases the complexity of regulation of the

CLC chloride transporter/channel family for which so far only

two b-subunits have been described (Estévez et al., 2001; Lange

et al., 2006). Our work provides new clues to uncover the phys-

iological role of the ClC-2 channel in glial cells, and suggests that



Figure 8. ClC-2 and GlialCAM Subcellular Localization Changes

Caused by GLIALCAM Mutations in Primary Cultures of Astrocytes

(A–E) Astrocytes were cotransduced with adenoviruses expressing ClC-2

together with wild-type GlialCAM (A) or containing the MLC-related mutations

R92Q (B), R98C (C), R92W (D), and G89D (E). Cells were fixed, permeabilized,

and then immunofluorescence was performed with a rabbit polyclonal anti-

body against ClC-2 (green) and a monoclonal antibody detecting GlialCAM

protein (red). Nuclei were stained with DAPI (blue). Colocalization between the

green and the red channel is shown in yellow. Images correspond to repre-

sentative cells from three independent experiments. Scale bar: 20 mm.
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the ClC-2 channel may be involved in the physiopathology of

MLC disease.

EXPERIMENTAL PROCEDURES

Biochemistry

Proteomic analysis: for solubilization, membrane vesicles (1 mg) were resus-

pended in ComplexioLyte buffer 47a (at 0.8 mg protein/ml, LOGOPHARM

GmbH, Germany; with protease inhibitors), incubated for 30 min at 4�C and

cleared by ultracentrifugation (10 min at 150,000 3 g). 0.8 ml solubilizates

were incubated for 2 hr at 4�C with 10 mg of immobilized anti-rabbit GlialCAM
(López-Hernández et al., 2011a), anti-mouse GlialCAM (Vitro, Spain) and

control IgG (Upstate, USA), respectively. After brief washing (2 3 5 min) with

ComplexioLyte 47a, bound proteins were eluted with Laemmli buffer (DTT

added after elution). Eluates were shortly run on SDS-PAGE gels and silver-

stained prior to tryptic digestion for MS analysis. LC-MS/MS analysis was per-

formed as described (López-Hernández et al., 2011a). Immunoprecipitation

and western blot studies of HeLa cells transiently transfected or solubilized

rat brain to confirm protein-protein interactions with ClC-2 and GlialCAM anti-

bodies was performed as described (López-Hernández et al., 2011a). Relative

MS sequence coverage of ClC-2 protein (Figure S1) was calculated as SC =Ni/

(Ni + Nan), where Ni is the number of amino acid residues of the identified

peptides (with Mascot score R 20) and Nan is the number of MS-accessible

but not identified amino acids (peptides with mass of 740–3,000 u) of the

respective Swiss-Prot sequence.

Molecular Biology

Rat ClC-2 and the N-terminal deletion (D16–61) mutant DN (Gründer et al.,

1992) constructs for expression in oocytes were in the pTLN vector (Lorenz

et al., 1996). For localization studies in HEK293 or HeLa cells, rClC-2 and

DN were C-terminally fused to GFP or to flag. DmClC-2 and ClC-2 with an

HA extracellular tag was provided by LP Cid (Centro de Estudios Cientı́ficos,

Chile). GlialCAM-DC was constructed eliminating residues from 289 until the

stop codon.

Voltage-Clamp Experiments

Xenopus oocytes were injected and maintained as described (Estévez et al.,

2003). For ClC-2, 5 ng cRNA and for DN 0.25 ng cRNA/oocyte were injected.

When coexpressing, 1.25 ng cRNA of GlialCAM were coinjected with ClC-2.

Oocytes were perfused with (in mM): 100 NaCl, 5 MgSO4, and 10 HEPES/

NaOH (pH 7.3). To estimate the specific ClC-2-mediated chloride currents,

iodide (100 mM NaI replacing the NaCl), which blocks ClC-2-mediated

outward currents (Gründer et al., 1992; Thiemann et al., 1992), was applied

in every experiment. Oocyteswhich did not exhibit a significant block were dis-

carded. For selectivity experiments (Figure 6B), 100 mM Cl� was exchanged

by 100 mM of the tested anion. For pH experiments, 10 mM buffer was used

(pH 10–9: CAPS [N-cyclohexyl-3-aminopropanesulfonic acid]; pH 8–7:

HEPES; pH 6–5: MES; and pH 4: Glutamic acid). Hypotonicity effects were

studied as described (Gründer et al., 1992). For ClC-2, an initial 1 s voltage

pulse at +60 mV was applied, followed by 5 s voltage steps from �140 mV

to +60 mV in 20 mV increments and a tail pulse of 1 s to 60 mV. To quantify

expression levels, the initial tail current (at +60 mV) after the �140 mV test

pulse was estimated by back extrapolation of a single exponential fit to the de-

caying tail current. To estimate the number of constitutively active channels,

instantaneous currents were measured during a short test pulse to +60 mV

without prior activation by hyperpolarization.

Patch-Clamp Experiments

Fluorescent HEK293 cells, expressing CLC-2-GFP or DN-GFP with or without

GlialCAM, were measured with an extracellular solution containing (in mM):

140 NaCl, 2 MgSO4, 2 CaCl2, and 10 HEPES/NaOH (pH 7.3) using standard

patch-clamp technique. Intracellular solution was (in mM) 130 NaCl,

2MgSO4, 2 EGTA, and 10 HEPES/NaOH (pH 7.3). Only cells for which currents

were reversibly blocked by iodide were used for analysis. Patch-clamp of

astrocytes was performed as described (Ferroni et al., 1997).

Surface Expression by Chemiluminescence

Surface expression in transfected mammalian cells or astrocytes was per-

formed similarly as previously described (Duarri et al., 2008; Teijido et al.,

2004). Briefly, 48 hr after transfection, cells were cleaned with PBS and fixed

with 3% paraformaldehyde. After PBS washing, cells were blocked with 1%

BSA in PBS for 30 min, and incubated with 1 ml of 3F10 anti-HA antibody at

0.2 mg/ml in blocking solution for 1 hr at RT. Cells were washed six times

with blocking solution, and incubated for 20 min with 1 ml of a 1:1,000 dilution

horseradish peroxidase-coupled secondary antibody (donkey anti-rat IgG,

Jackson, Suffolk, UK) in blocking solution. Cells were washed four times

with blocking solution and eight times with PBS. Luminescencewasmeasured
Neuron 73, 951–961, March 8, 2012 ª2012 Elsevier Inc. 959
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of one dish at a time with 500 ml of Power Signal ELISA solution (Pierce) in

a Turner TD-20/20 luminometer (Turner Biosystems, Madison, WI, USA).

Immunological Procedures

Two immune sera against ClC-2 were generated against overlapping

sequences of the C terminus. In the first antibody (C1 Ab), the peptide used

for immunization was (C)HGLPREGTPSDSDDKSQ. The native protein

sequence contains a cysteine residue instead of the highlighted serine in order

to avoid coupling this residue to the carrier protein. In the second antibody (C2

Ab), the peptide used for immunization was (C)RSRHGLPREGTPSDSDD. (C) is

the cysteine that was used for coupling. Affinity purification of the antibodies

was used as described (López-Hernández et al., 2011a). Mostly, the C1 anti-

body was used in western blot studies, and the C2 antibodywas used in immu-

noprecipitation, immunocytochemistry, and EM immunogold. Both antibodies

gave no staining in the Clcn2�/� mice.

Primary Culture and Adenoviral Transduction

Rat primary quiescent astrocyte cultures were prepared as described previ-

ously (Duarri et al., 2008). Dibutyryl-cAMP differentiated rat astrocytes were

obtained as described (Ferroni et al., 1997). Adenoviruses expressing three

copies of the flag epitope fused to human GlialCAM, either wild-type or con-

taining mutations have been described (López-Hernández et al., 2011a).

Adenoviruses expressing GlialCAM fused to EmGFP or ClC-2 fused to three

copies of the Flag epitope or containing an extracellular HA epitope were con-

structed in a similar manner. Transduction of astrocytes was performed as

already described (López-Hernández et al., 2011a).

Immunofluorescence and Electron Microscopic Studies

Tissue immunohistochemistry and immunofluorescence were performed as

previously described (Blanz et al., 2007; Teijido et al., 2004). For electron

microscopic studies, human cerebellum samples were processed as previ-

ously described (López-Hernández et al., 2011a).

Quantification of Localization in Cell Contacts

Image J (http://rsbweb.nih.gov/ij/) was used to quantify fluorescence at cell

contacts and in the plasma membrane at cell contact free sites by performing

intensity profile experiments. We defined a ratio (R) considering the fluores-

cence signal at the plasma membrane of two cells (cell 1 and cell 2) and the

signal in junctions. [R = Fjunction/(Fmembrane1+Fmembrane2)]. Thus, if the R value

is > 1, the signal will be concentrated at junctions.

Split-TEV Method

Split-TEV (Tobacco etch virus protease) assays were performed as described

(López-Hernández et al., 2011b). We used a mutant form of the TEV protease

(S219V) which prevents its self-digestion but does not affect its catalytic effi-

ciency. The oligopeptide substrate used as the TEV protease-recognition

site was ENLYFQS, and the chimeric transcription factor used was GV (ob-

tained from the pM3-VP16 vector) (Clontech, Nucliber, Madrid, Spain), which

contains the yeast Gal4DNA binding domain and the herpes simples VP16

transactivaction domain. After TEV protease cleavage, GV translocates into

the nucleus and induces the reporter Gaussia Luciferase gene expression

(pNEBr-X1Gluc) (New England BioLabs, IZASA, Barcelona, Spain), which is

secreted into the cell culture medium.

TEV protease was divided in two fragments: the TEV-N (residues 1–118) and

the TEV-C (residues 119–242). We fused the TEV-N fragment, the TEV

protease recognition site and the chimeric transcription factor GV to the

C-terminal of ClC-2, the mutant DNClC-2, or DmClC-2 in a pCDNA3 vector

containing a CMV promoter. In addition, we fused the TEV-C fragment to the

C-terminal of ClC-2, ClC-5, DNClC-2, GlialCAM wild-type, HepaCAM2, Glial-

CAMDC, GlialCAM containing the mutations R92Q, R98C, R92W, and

G89D, and the adenosine 2A receptor. The fusion of the TEV-C fragment to

4F2hc was done N-terminal. All the proteins with the TEV-C fragments were

cloned in a pCDNA6.2/V5-pL Dest, containing the herpes simplex virus thymi-

dine kinase (HSV-TK) promoter, to provide low to moderate levels of

expression.

All the expression plasmids were constructed by PCR using a polymerase

with proofreading (KOD Hot Start polymerase, Calbiochem, Darnstadt,
960 Neuron 73, 951–961, March 8, 2012 ª2012 Elsevier Inc.
Germany), adding the attB1, attB2, attB5R, or attB5 recombination sites

compatible with the Multisite Gateway System (Invitrogen, Carlsbad, CA,

USA). All protocols were performed according to the manufacturer’s instruc-

tions (Invitrogen).

HeLa cells were transiently transfected with the corresponding cDNA

constructs. The total DNA transfected was 2 mg, with the following ratios:

0.75 mg of each protein containing the TEV-N and the TEV-C fragments,

0.3 mg of the reporter gene pNEBr-X1GLuc, and 0.2 mg of the pCMV-bGal

vector, which was used to monitor the transfection efficiency. After 48 hr,

20 ml were removed from the supernatant of the cells and Gaussia luciferase

activity was measured in a TD-20/20 luminometer (Turner BioSystems, Madi-

son, USA), after the addition of 20 mMof native colenterazine. To normalize the

data, cells were solubilized and 30 ml of the cell lysates were used to measure

the b-Galactosidase enzyme activity using the Luminiscent b-Galactosidase

Detection Kit II (Clontech) in the same luminometer.

Statistical Analyses

For determination of the statistical significance between groups, either the

Student’s t test or the Bonferroni’s comparison test were used. p values are

annotated in each figure. Values depicted are means ± SEM.

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures and can be found with this

article online at doi:10.1016/j.neuron.2011.12.039.
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and Jentsch, T.J. (2001). Barttin is a Cl� channel beta-subunit crucial for renal

Cl� reabsorption and inner ear K+ secretion. Nature 414, 558–561.
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