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Abstract
Background: Among the most prominent metabolic alterations in cancer cells are the increase in
glucose consumption and the conversion of glucose to lactic acid via the reduction of pyruvate even
in the presence of oxygen. This phenomenon, known as aerobic glycolysis or the Warburg effect,
may provide a rationale for therapeutic strategies that inhibit tumour growth by administration of
a ketogenic diet with average protein but low in carbohydrates and high in fat enriched with omega-
3 fatty acids and medium-chain triglycerides (MCT).

Methods: Twenty-four female NMRI nude mice were injected subcutaneously with tumour cells
of the gastric adenocarcinoma cell line 23132/87. The animals were then randomly split into two
feeding groups and fed either a ketogenic diet (KD group; n = 12) or a standard diet (SD group; n
= 12) ad libitum. Experiments were ended upon attainment of the target tumor volume of 600 mm3

to 700 mm3. The two diets were compared based on tumour growth and survival time (interval
between tumour cell injection and attainment of target tumour volume).

Results: The ketogenic diet was well accepted by the KD mice. The tumour growth in the KD
group was significantly delayed compared to that in the SD group. Tumours in the KD group
reached the target tumour volume at 34.2 ± 8.5 days versus only 23.3 ± 3.9 days in the SD group.
After day 20, tumours in the KD group grew faster although the differences in mean tumour
growth continued significantly. Importantly, they revealed significantly larger necrotic areas than
tumours of the SD group and the areas with vital tumour cells appear to have had fewer vessels
than tumours of the SD group. Viable tumour cells in the border zone surrounding the necrotic
areas of tumours of both groups exhibited a glycolytic phenotype with expression of glucose
transporter-1 and transketolase-like 1 enzyme.
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Conclusion: Application of an unrestricted ketogenic diet enriched with omega-3 fatty acids and
MCT delayed tumour growth in a mouse xenograft model. Further studies are needed to address
the impact of this diet on other tumour-relevant functions such as invasive growth and metastasis.

Background
Cancer is caused by multiple complex processes influenc-
ing cellular proliferation, differentiation and death.
Genetic alterations favouring growth drive the transfor-
mation of normal cells into malignant cells [1]. The rela-
tionship between cancer-causing genes and cellular
energy metabolism is only partially understood [2]. Sev-
eral authors have shown that genetic alterations promot-
ing tumour development directly affect glucose-mediated
energy metabolism [3,4]. Thompson and colleagues, for
example, determined that the activated serine/threonine
kinase Akt promotes glucose consumption in transformed
cells without affecting the rate of oxidative phorphoryla-
tion [5].

The conversion of glucose to lactic acid via the reduction
of pyruvate, even in the presence of oxygen, is known as
aerobic glycolysis or the Warburg effect. Aggressive
tumours frequently exhibit this metabolic alteration and
reveal an increasing dependency on the glycolytic path-
way for ATP generation. Most cells of non-malignant tis-
sues, in contrast, use pyruvate to produce ATP via
mitochondrial respiration in the presence of oxygen. War-
burg claimed that cancer results from impaired mitochon-
drial metabolism. The increased glycolysis is thought to
be a response to the hypoxic conditions characterising the
microenvironment of malignant cells [6]. An upregula-
tion of glycolysis is associated with a marked increase in
glucose consumption, which can be observed by tumour
imaging techniques such as positron-emission tomogra-
phy. The conversion of pyruvate to lactic acid leads to
microenvironmental acidosis and facilitates both inva-
sion and metastasis [7,8]. In addition, lactic acid sup-
presses the proliferation of and cytokine production by
human cytotoxic T lymphocytes and causes a significant
decrease in their cytotoxic activity [9]. The latter finding
may explain the frequently observed inability of the
immune system to control aggressive cancer despite a spe-
cific T-cell response against tumour-associated antigens.

Therapies designed to target the anaerobic metabolism of
tumours may preferentially kill malignant cells exhibiting
this metabolic alteration. Promising experimental results
in the treatment of certain types of tumours have been
obtained with inhibitors of glycolysis [6] or of the pentose
phosphate pathway [10], and with ketogenic diets [11].
Most malignant tumours are largely dependent on glucose
for their growth and survival, but they are unable to
metabolise ketone bodies for energy production [11]. A

ketogenic diet restricts the glucose supply while providing
the body with adequate energy substrates in the form of
fat for generating ketone bodies. In 1995 Nebeling and
coworkers described the long-term management of paedi-
atric astrocytoma patients by a ketogenic diet. In addition
to its beneficial effect on tumour growth, the diet
improved the patients' nutritional status [12].

Ketogenic diets aim to induce ketosis, a physiological
response of the body to limited dietary carbohydrate
intake with consequent exhaustion of the glycogen con-
tent in liver and skeletal muscle resulting in the body's use
of fat for energy. During ketosis, the liver starts to degrade
fatty acids and to form acetyl-CoA in fatty acid oxidation.
Acetyl-CoA can then be diverted into the ketone bodies
acetoacetate and β-hydroxybutyrate (β-OHB), the major
ketone body in plasma [13]. Ketone bodies are trans-
ported from the liver to other tissues where they can be
reconverted to acetyl-CoA. Although glucose is the pre-
ferred fuel, ketone bodies can supply 2% to 6% of the
body's energy needs after an overnight fast and 30% to
40% after a 3-day fast. The brain can also utilise ketone
bodies to supply up to 60% of its metabolic energy needs
[13].

When applied under caloric restriction, different
ketogenic diets supplemented with either lard or soybean
oil have been shown to have an inhibitory effect on
tumour growth [14-16]. However, under caloric restric-
tion the diets led to a dramatic weight loss in contrast to
ad libitum feeding. Several groups have focused on the
impact of lipid oils on both tumour growth and body
weight. Without caloric restriction, an anti-tumour effect
was demonstrated for diets rich in omega-3 fatty acids and
medium chain (6–12 carbons) triglycerides (MCT), which
are not present in lard and scare in soybean oil [17-20].
Different researchers have repeatedly shown in animal
experiments that the growth of human cancer xenografts
can be slowed by omega-3 fatty acid-enriched diets [21-
23]. Still, the potency of omega-3 fatty acids to reduce the
risk of cancer in humans remains controversial [24-27].
An anti-angiogenic effect of omega-3 fatty acids has been
demonstrated in vitro and in vivo [28-30]. A recent study
revealed that the risk of prostate cancer can be modulated
by the dietary omega-6/omega-3 polyunsaturated fatty
acids ratio in prostate-specific Pten knockout mice [31].
Since Pten acts as a suppressor of Akt signalling, which
itself is intimately linked to the glycolytic phenotype,
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these experiments provide a link between lipid and glu-
cose metabolism in pathological conditions.

To determine the impact of a ketogenic diet on tumours
exhibiting aerobic glycolysis, we compared the effects on
growth and survival of a nutritionally balanced carbohy-
drate-restricted diet supplemented with a mixture of vege-
table oils and oil extracts possessing elevated levels of
polyunsaturated omega-3 fatty acid and MCT with those
of a standard diet in a mouse xenograft model. We report
a tumour-suppressive effect of this diet with respect to
growth, necrosis, and neovascularization of subcutane-
ously implanted tumours in nude mice, feeding ad libi-
tum.

Methods
Animals
Twenty-four nude mice (6 to 8-week-old females) of the
NMRI strain obtained from Harlan Winkelmann GmbH
(Borchen, Germany) were maintained in groups of six
animals per cage in laminar flow hoods in a pathogen-free
environment. They were allowed access to food and water
ad libitum. The study was reviewed and approved by the
Animal Care Committee of the local government in
accordance with the national guidelines for animal care
(German Law for the Protection of Animals).

Tumour cells of the human cell line 23132/87
We used cells of the human gastric adenocarcinoma cell
line 23132/87 [32], which were kindly provided by Prof.
H.P. Vollmers, Institute of Pathology, University of Würz-
burg. The cell line is available from the German Collec-
tion of Microorganisms and Cell Cultures (Deutsche
Sammlung von Mikroorganismen und Zellkulturen
GmbH (DSMS), Braunschweig, Germany). The tumour
cells were cultured as a monolayer in RPMI 1640 medium
supplemented with 100 U/ml penicillin, 100 μg/ml strep-
tomycin, 2 mmol/L glutamine, 1 mmol/L sodium pyru-
vate, 10% heat-inactivated fetal calf serum (all products
from Invitrogen-GIBCO, Germany). The cells were rou-
tinely tested for mycoplasma contamination to ensure
that only negative cells were used [33].

In vitro characterisation of cell line 23132/87 tumour cells
Cells of the carcinoma cell line 23132/87 were tested in
vitro for their ability to metabolise glucose to lactate in the
presence of oxygen. This aerobic glycolytic activity of glu-
cose metabolism may correlate with a unique tumour
phenotype characterised by a higher metastatic and inva-
sive potential [6]. The glucose uptake by the tumour cells
was monitored with the fluorescent deoxyglucose analog
2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deox-
yglucose (2-NBDG) [34]. Since no corresponding benign
gastric cancer cell line was available, HUVEC cells (Pro-
mocell, Heidelberg, Germany) were used as control cells

and tested in parallel. In brief, cells were seeded at
100,000/0.5 ml/well in a 24-well plate and after 24 h of
culture the cells were washed with PBS and cultured in
glucose-free DMEM medium (PAA Laboratories, Linz,
Austria) for 15 min. The cells were then incubated with
0.01, 0.1 and 1 mmol/l 2-NBDG (Invitrogen/Molecular
Probes, Karlsruhe, Germany) for 10, 30, and 60 min. at
37°C. The 2-NBDG uptake was stopped by washing the
cells twice with ice-cold PBS. Negative controls were cells
incubated with 2-NBDG on ice and cells incubated with-
out 2-NBDG at 37°C. Following trypsination, cells were
resuspended in 100 μl PBS/10% FCS and counterstained
with 1 μg/ml Propidium Iodide (PI). Ten thousand PI-
negative cells were measured in a FACS Scan flow cytom-
eter (Becton Dickinson, Heidelberg, Germany) and data
were analysed by the free WinMDI 2.8 software package
(The Scripps Research Institute, USA). Lactate production
was assessed in cell supernatants of 20,000 cells/100 μl/
well in a 96-well plate incubated for 24 h with the L-lactic
acid detection kit (Roche/R-Biopharm, Darmstadt, Ger-
many) following the manufacturer's instructions. The col-
our reaction was measured in an absorption plate reader
(Sunrise Absorbance Reader; Tecan, Crailsheim, Ger-
many) at 340 nm. For this purpose the measuring volume
was scaled down to 200 μl.

In vivo growth of cell line 23132/87 tumour cells
For the in vivo experiments a freshly thawed tumour cell
aliquot was cultured for up to three passages in vitro not
more than 3 weeks prior to injection into nude mice. All
mice received tumour cells from the same cell passage.
The cultured cells (nearly 70–80% confluence) were har-
vested with trypsin EDTA (PAA) and the viability of the
detached cells was routinely checked with the trypan blue
exclusion test. All tumour cells prepared for inoculation
were highly viable (>90%). They were inoculated subcuta-
neously in both hind flanks (2.5 × 106 cells per flank).
Tumour nodules appeared approximately 8–10 days fol-
lowing cell injection and the larger of the two was selected
for analyses. All data presented is based on these tumour
nodules. No animal died from tumour growth. The
tumour size was measured with calipers and the tumour
volume VT (mm3) was calculated using the ellipsoid for-
mula A2 × B × π/6, where A represents the smaller diame-
ter. Endpoint for the experiments was attainment of a
tumour volume between 600 and 700 mm3 (target
tumour volume), with the interval between subcutaneous
tumour cell inoculation and the endpoint defined as the
survival time. Tumours reaching the target tumour vol-
ume were dissected and the final target volume and wet
weight were determined. Subsequently, they were cut
through the median, one part was fixed in formalin and
embedded in paraffin, the other part was embedded in
Tissue-Tek (Sakure Finetek Europe B. V., Zoeterwoude,
The Netherlands) and snap frozen in liquid nitrogen.
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Diets and feeding
All mice received a nutritionally balanced diet (altromin
1430) provided by the special animal feed manufacturer
Altromin GmbH & Co. KG, Lage, Germany, prior to the
inoculation of tumour cells. This standard diet was sup-
plied in pellets delivering 12.8 kJ/g gross energy and con-
sisting of 7.0% fat, 23.8% protein, and 36.4%
carbohydrates (Table 1). The ketogenic diet consists of a
mixture of fresh, high quality food homogenized into a
paste using a standard food processor. A similar diet is
being examined in an ongoing clinical trial at the Univer-
sity of Würzburg Hospital for the treatment of incurable
tumour patients. The paste consists of 40.7% curd cheese
(40% fat), 19.9% mackerel, 8.1% blue veined cheese,
8.1% white veined cheese, 8.1% bacon, 4.0% Tavarlin
bread (Tavartis, Otzberg, Germany), 8.1% flaxseed, and
2.7% sesame seed. The paste (737 g) enriched with 300
ml of Tavarlin oil and 100 ml Tavarlin lactate drink (both
Tavartis) was autoclaved, aliquoted in petri dishes under
sterile conditions and stored at -20°C. Three dishes per six
animals were thawed overnight at +4°C prior to feeding.
This diet delivers 15.4 kJ/g gross energy and consists of
35.5% fat, 13.0% protein, and 0.2% carbohydrates (Table
1) and contains 21.45% MCT. The Tavarlin oil mixture
consists of 28.7% saturated fatty acids, 35.7% unsaturated
fatty acids, and 35.6% polyunsaturated fatty acids with a
ratio of omega-6/omega-3 of 1.77:1. Chemical analyses of
the nutrient contents were performed by the Chemical
Laboratory Hameln (Dr. Kaiser & Dr. Woldmann GmbH,
Hameln, Germany). Following tumour cell injection on
day 0 the animals (n = 24) were randomly split into two
equal feeding groups: standard diet (SD) and ketogenic
diet (KD). Tumour size and body weight of all animals
were measured every second/third day.

Measurement of plasma glucose and beta-
hydroxybutyrate (β-OHB)
Blood glucose and β-OHB levels were measured on the
day of tumour cell injection (day 0) and every week there-
after until the last day of the experiments before tumour
resection. Measurements were done with a blood glucose
and ketone monitoring system (Precision Xtra, Abbott
Laboratories, Abbott Park, Illinois, U.S.A.) and corre-
sponding test strips (Abbott GmbH & Co. KG, Wiesbaden,
Germany) using 2 μl of peripheral blood collected from a
snipped tail vein of each animal.

Immunohistochemistry
Tumour tissue sections 2-μm thick were deparaffinized
with xylene and rinsed in decreasing concentrations of
ethanol prior to unmasking by heating for 5 min with 10
mmol/L sodium citrate buffer in a microwave oven at 600
W. After irrigating in distilled H2O, the endogenous per-
oxidase was quenched with 3% hydrogen peroxide in
methanol for 10 min. Cryosections (5 μm) were fixed in
acetone and subsequently air-dried. All sections were then
washed with PBS, blocked for 15 min in 1% goat serum,
and incubated with primary monoclonal mouse antibod-
ies for 60 min. The following antibodies, diluted in a com-
mercial antibody diluent (DAKO, Hamburg, Germany),
were used: mouse-anti-transketolase like enzyme 1
(TKTL1; clone JFC12T10, Linaris GmbH, Wertheim, Ger-
many), final dilution 1:400; mouse anti-pan cytokeratin
(clone KL1, Immunotech, Marseille, France), final dilu-
tion 1:100; anti-Ki-67 antigen (clone MIB-1, DAKO), final
dilution 1:50; and rabbit anti-glucose transporter type 1
(Glut-1; G3900-01, US Biologicals, Swampscott, MA,
USA), final dilution 1:100. The slides were washed in PBS,
incubated with biotinylated anti-mouse and anti-rabbit
immunoglobulins (LASB-kit, DAKO), and treated with
streptavidin-peroxidase (LASB-kit, DAKO) according to
the manufacturer's protocol. After development in 5%
3,3'-diaminobenzidine (DAKO) and counterstaining with
haematoxilin, the sections were dehydrated in graded eth-
anol and embedded in Vitro Clud (Langenbrinck,
Emmendingen, Germany).

Microvessel analysis
Cryosections of dissected tumours were stained with a rat
anti-mouse CD34 antibody (RAM34, BD Pharmingen,
Heidelberg, Germany), final dilution 1:100. Microvessel
density was qualitatively assessed by examining the entire
vital cellular zone of the tumours with a light microscope
at 100× magnification.

Determination of the size of necrosis in tumours of the KD 
and SD group
Sections corresponding to the median line were stained
with haematoxyline-eosine and photographed at a magni-
fication of 4× with a digital camera. Images of each whole

Table 1: Composition of the standard (SD) and ketogenic diets 
(KD) used in this study.

Component 1) SD 2) KD 3)

Fat 7.0 35.5 4)

Carbohydrate 36.4 0.2
Protein 23.8 13.0
Fiber 17.3 14.8
Energy (kJ/g) 12.8 15.4
Ketogenic ratio 5) 0.1 : 1 2.7 : 1

1) Data as gram per 100 g diet.
2) The SD diet contains 9.0 g water and 6.5 g ashes.
3) The KD diet contains 34.4 g water and 2.1 g ashes.
4) The fat source consists of a mixture of vegetable oils from flaxseed 
and hempseed with elevated levels of omega-3 fatty acid and MCT 
(see Methods).
5) Calculated according to the following formula: Fats/(Protein + 
Carbohydrates).
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section were imported into Microsoft PowerPoint and all
areas with morphologically well-defined necrosis were cir-
cled using the free-hand drawing function of the program
at high magnification. The complete area of necrosis per
section was quantified using the "analyse particles"
option of the public domain Java image processing pro-
gram ImageJ 1.34 s (downloaded from the National Insti-
tutes of Health (NIH), Bethesda, MD, USA) and expressed
as percentage of the section's total area.

Statistical analysis
GraphPad Prism 4.0 software (Statcon, Witzenhausen,
Germany) was used for statistical analyses. Body weight,
tumour growth, plasma glucose, blood ketone levels and
necrotic areas were analysed by Mann-Whitney U test to
show significant differences between the KD and SD
groups after the nonparametric rank order test of Puri and
Sen [35]. Probability values below 0.05 were considered
significant.

Results
Characterisation of cells of the human gastric 
adenocarcinoma cell line 23132/87 in vitro and in vivo
Cells of the carcinoma cell line 23132/87 were tested in
vitro for their ability to metabolise glucose to lactate in the
presence of oxygen. First, the glucose consumption was
measured with 2-NBDG glucose by flow cytometry. The 2-
NBDG glucose uptake, which is time and dose-dependent
(Fig. 1A,B), was higher in gastric carcinoma cells than in
HUVEC (Fig. 1C). Second, supernatant from overnight
cultures with 2 × 105 tumour cells/ml in the presence of
5.6 mmol/l glucose was found to have 0.18 mg/ml L-lac-
tate, whereas the same number of HUVEC produced 0.13
mg/ml L-lactate. In addition, the lactate production
depends on glucose concentration in the culture medium
(Fig. 1D). In addition, all tumour sections of both the KD
and SD groups showed a clear surface expression of Glut-
1 and cytoplasmic expression of TKTL1 (Additional File
1).

Course of body weights
All animals of the KD group readily accepted the unre-
stricted ketogenic diet and showed a steady increase in
body weight over a period of up to 45 days (Fig. 2). The
mean body weights of the KD and SD animals prior to
tumour cell injection were 27.4 ± 3.3 g vs. 28.5 ± 2.2 g
(difference not significant, P = 0.62), respectively, and at
experiment's end: 29.6 ± 2.0 g vs. 29.9 ± 1.3 g (difference
not significant, P = 0.18).

Animal survival
The last two animals in the SD group reached the end-
point on day 28 after tumour cell injection (Fig. 3). At this
time point, only 4 of 12 animals in the KD group reached
the target tumour volume. The last animal of the KD

group reached the endpoint on day 45. The mean survival
time of animals in the KD group was 34.2 ± 8.5 days, in
the SD group 23.3 ± 3.9 days. Overall, application of the
unrestricted ketogenic diet was highly significantly associ-
ated with survival (P = 0.0054, Fig. 3).

Analyses of tumour growth
All 24 nude mice receiving a subcutaneous injection of
tumour cells of the gastric adenocarcinoma cell line
23132/87 showed growth of solid tumours. On the day of
tumour cell injection, animals of the KD group were
switched from the standard diet to the ketogenic diet.
Tumour progression was followed by measuring tumour
volume over time. The difference between the mean
tumour volume curves of KD and SD animals is signifi-
cant (P = 0.021, Fig. 4A). The slopes of the regression lines
for the mean tumour volumes in the KD and SD group are
15.28 versus 24.94. Comparison of the tumour growth
curves for individual animals of the KD and SD groups
reveals a strong delay in tumour growth in KD animals
compared to SD animals during the first 20 days after cell
inoculation (Fig. 4B, 4C). At day 20, 8 of 12 KD animals
had tumours with a volume below 300 mm3, whereas this
was true of only 2 of 12 SD animals. As described in Meth-
ods, tumour growth to more than 600 mm3 (but below
700 mm3) determined the end of the experiment and the
interval between tumour cell injection and endpoint was
defined as the survival time. At the experiments' endpoint,
neither tumour volumes (658 ± 32.6 mm3 KD vs. 662 ±
35.1 mm3, P = 0.88) nor tumour weights (397 ± 45.6 mg
KD vs. 413 ± 32.8 mg, P = 0.75) differed significantly
between the two groups. The results indicate that the
determination of the target tumour volume (between
600–700 mm3) is an accurately definable endpoint of
experiment.

The ketogenic diet influenced plasma β-OHB levels but 
not glucose levels
Mice of the KD group achieved ketosis within six days
after feeding was started and their β-OHB levels remained
continuously higher (between 1.2- and 2.4-fold) than
those of the SD animals. The β-OHB levels of KD and SD
animals differed highly significantly after day 6 (P <
0.001, Table 2). In contrast, no significant difference was
noted between the blood glucose levels of the KD and SD
groups. These findings are consistent with studies show-
ing that a ketogenic diet does not lower plasma glucose
levels when given ad libitum [16]. At the end of experiment
the blood glucose levels were 5.5 ± 2.7 mmol/l KD vs. 6.3
± 1.3 mmol/l SD (P = 0.59) and the β-OHB levels were 1.3
± 0.5 mmol/l KD vs. 0.6 ± 0.1 mmol/l SD (P < 0.001). The
serum insulin levels, measured with ELISA (ultrasensitive
mouse insulin ELISA from Mercodia, Sweden, following
the manufacturer's instructions) at the end of experiment,
were slightly reduced in KD animals in comparison to SD
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lucose consumption and lactate production by tumour cells of the gastric carcinoma cell line 23132/87Figure 1
Glucose consumption and lactate production by tumour cells of the gastric carcinoma cell line 23132/87. (A) 
Time-dependent glucose uptake. The glucose uptake was measured with the fluorescent deoxyglucose analog 2-NBDG by flow 
cytometry. Tumour cells were incubated with 0.1 mmol/l 2-NBDG for 10, 30, and 60 min under normoxic conditions. The 
non-filled curves indicate the proportion of cells incorporating 2-NBDG and the filled curve represents the background stain-
ing of cells incubated with 2-NBDG on ice. (B) Concentration-dependent glucose uptake. Tumour cells were incubated with 
0.01, 0.1, and 1 mmol/l 2-NBDG for 10 min. The filled curve represents cells incubated without 2-NBDG. (C) The 2-NBDG 
uptake of gastric carcinoma cells in comparison with HUVEC. The cells were incubated for 10 min with 0.01, 0.1, and 1 mmol/
l, respectively. The flow cytometric data represents the total tumour cell population minus dead cells. MFI: Mean fluorescence 
intensity; ΔMFI = (MFI2-NBDG)-(MFIunstained cells). (D) Lactate production. Lactate concentration in the culture medium was meas-
ured as described in Methods. Lactate production by tumour cells and HUVEC depends on glucose concentration in the cul-
ture medium but shows an increase in gastric cancer cells. Data in A-D are from one of three independent experiments.
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animals (63.3 ± 32.5 pmol/l vs. 72.0 ± 41.0 pmol/l), but
the difference was not significant (P = 0.84).

Histological and immunohistological analysis of human 
tumours derived from the 23132/87 cell line
Histology of tumour nodules revealed striking differences
in the size of necrotic areas of the two groups (Fig. 5).
Tumours from animals of the KD group exhibited highly

significantly larger necrotic areas (35.4% of total area in
median) than tumours of the SD group (13.6% in
median, P = 0.0074). Concerning the vital areas of the
tumours, the two groups did not differ appreciably in
expression levels of Glut-1, TKTL1, and the proliferation
marker Ki-67 antigen (Additional File 1). All cells, which
were nearly 100% Ki-67 positive, expressed Glut-1 and
were clearly positive for TKTL1. Analysis of the CD34-
stained tumour sections revealed that the size of the areas
with vital tumour cells correlated with the density of ves-
sels spreading from the subderma into the tumour nod-
ule. Interestingly, tumours of the KD group appear to have
had fewer vessels than tumours of the SD group (Addi-
tional File 2).

Discussion
This study was designed to test whether a ketogenic diet
can inhibit the growth of tumours of the human gastric
adenocarcinoma cell line 23132/87 in a xenograft model.
The tumour cells demonstrated increased glucose con-
sumption and lactate production in vitro. They were posi-
tive for TKTL1, a marker enzyme of aerobic glycolysis [36],
whose expression has been shown to correlate with a poor
prognosis in a variety of carcinomas [37-40]. The
ketogenic diet used here provides average protein and is
low in carbohydrates and high in fat enriched with
omega-3 fatty acids and MCT. Compared to the applied
standard diet, the unrestricted ketogenic diet had a retard-
ing effect on tumour growth and resulted in larger necrotic
areas within the tumours. Blood glucose levels in the KD
group were unaltered, but its ketone body levels were sig-
nificantly elevated compared to those of the SD group.
Since our study does not allow to decide whether the
effects of the diet are due primarily to omega-3 fatty acids
and MCT, or to a combination, further studies are needed
to address this issue.

The observation that unrestricted access to the ketogenic
diet retarded tumour growth contrasts with data on
another ketogenic diet, KetoCal, a commercially available
diet for children with epilepsy [16]. The therapeutic effect
of KetoCal on tumour growth was apparent in adult mice
only when their caloric intake was restricted, which
resulted in a 20% – 23% loss in body weight within eight
days after start of feeding. KetoCal provided to animals ad
libitum produced no marked loss in body weight but also
had no influence on tumour growth [16]. In contrast to
the calorically restricted KetoCal diet, we observed neither
significant weight loss nor reduced blood glucose levels in
our animals, although the tumour suppressive effects of
the diets were comparable. Our data therefore suggest that
an effective metabolic tumour therapy is not necessarily
accompanied by reduced blood glucose levels. A possible
cause of the observed delaying effect of the ketogenic diet
on tumour growth is the high levels of omega-3 fatty acids

Influence of the ketogenic diet on animal survival timesFigure 3
Influence of the ketogenic diet on animal survival 
times. Data are expressed as Kaplan-Meier survival curves 
(n = 12 mice per group). Survival in the KD group was signif-
icantly prolonged compared to that in the SD group (P = 
0.001).
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and MCT in the diet. An antitumour effect has been dem-
onstrated for both omega-3 fatty acids and MCT in
patients and experimental models [17-21,24].

Cancer patients with advanced incurable cancer are typi-
cally threatened by cancer cachexia, characterised by pro-
gressive weight loss, mainly due to loss of fat and skeletal
muscle, and anorexia [41]. Although cancer cachexia
accounts for about 20% of cancer deaths, its underlying
mechanisms are not known in detail [42]. To improve the
quality of life and survival time of incurable patients, it is
important to avert the onset of cachexia. Calorically
restricted diets are therefore not suitable as treatment for
these patients. Ketogenic diets, however, with high fat,
adequate protein and low carbohydrates, have been

shown to prevent or limit the protein catabolism in skele-
tal muscle [43]. In 1995 Nebeling et al. proposed a
ketogenic diet rich in MCT as a successful therapeutic
option in pediatric cancer patients [12]. Barber et al. later
reported that the combination of fish oil and an energy-
dense nutritional supplement increased body weight in
cachectic cancer patients [44]. A non-restricted ketogenic
diet may thus indeed be capable of benefiting cachectic
cancer patients when supplemented with adequate lipids.
The ketogenic diet described in this study induced both a
slight increase in body weight and a slower growth rate of
human tumour cells in nude mice.

Tumours of the KD group were characterised by signifi-
cantly larger necrotic areas than those of the SD group.

Influence of the ketogenic diet on tumour growthFigure 4
Influence of the ketogenic diet on tumour growth. (A) Shown is the mean tumour volume ± standard deviation as well 
as the respective regression lines of KD and SD animals. Endpoint for the experiments was attainment of a tumour volume 
between 600 and 700 mm3. Slopes are significantly different (P = 0.021). R2 (coefficient of determination). (B-C) Shown are 
tumour volumes for the individual animals of the KD and SD groups for the first 20 days after tumour cell inoculation.
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This finding may be explained by the restricted glucose
supply in the KD group. However, we did not find signif-
icant differences in blood glucose levels of KD and SD ani-
mals. This observation indicates that glucose is
synthesised from noncarbohydrate precursors by a proc-
ess called gluconeogenesis. Fearon et al. even found
higher blood glucose levels in ketotic, tumour bearing rats
than in ketotic, non-tumour bearing rats. The authors
considered that the inability of the ketogenic diet to
reduce tumour growth was due to persistently high glu-
cose levels [45]. In contrast, different feeding studies with
carbohydrate-free diets showed significantly lower levels
of circulating glucose compared to carbohydrate-enriched
diets [46]. Nebeling et al. described that within 7 days of
initiating ketogenic diet, blood glucose levels declined to
low levels [12]. In addition, the authors calculated from
results of PET scans a 21.8% average decrease in glucose
uptake at the tumour site. One possible explanation for
the significantly delayed tumour growth despite constant
blood glucose levels in mice of the KD group is the ability
of ketogenic diets to significantly reduce blood insulin
levels [47]. It is widely accepted that frequently elevated
levels of insulin can stimulate tumour growth [48]. We
found slightly reduced insulin levels in KD animals, but
the difference to insulin levels of SD animals was not sig-
nificant.

Another possible explanation for the antitumour effect of
the ketogenic diet is its ability to delay tumour take. Fol-
lowing tumour cell injection the animals of the KD group
were fed with the ketogenic diet. The comparison of the
individual tumour volumes of KD animals reveals that the
unrestricted ketogenic diet delayed tumour growth

strongly in the first 20 days after tumour cell inoculation.
Five tumours in the KD group did not grow, 3 tumours
grew slightly, whereas only 4 tumours grew as fast as the
tumours of the SD group. The observation that the
ketogenic diet delays the tumour cell take could be clini-
cally significant for prevention of metastatic tumour cell
take. However, further studies are required to accurately
discriminate the effects of the ketogenic diet.

The significantly larger necrotic areas in the centre of
tumours grown in the KD mice correlate well with the
reduced microvessel density in these tumours. The sup-
pression of neovascularization may be provoked by the
anti-angiogenic effect of omega-3 fatty acids [28-30], as
well as by reduced levels of lactate/pyruvate in glucose-
starved tumour cells, which are able to stimulate angio-
genesis via HIF-1-mediated transactivation of VEGF [49].
Suppressed neovascularisation may further inhibit an
adequate supply of glucose to the centre of the tumours.
In aggressive tumour cells such a severe limitation of sub-
strate produces a state termed 'metabolic catastrophe',
which enhances necrosis. The therapeutic induction of
metabolic catastrophe was recently proposed as an
approach to killing "unkillable" tumour cells [50]. Since
glucose-fermenting tumour cells have been shown to have
substantially enhanced resistance to several anticancer
drugs [51,52], the combined application of conventional
chemotherapy and metabolic tumour therapy may repre-
sent an effective approach for targeting both fermentative
and respiratory cell populations.

Transplantation of human cancer cells or tumour biopsies
into immunodeficient mice is a commonly used xenograft
model [53]. Since this model precludes T cell-mediated
cellular immunity, the results do not reflect any immuno-
suppressive effects of lactate as a by-product of glucose fer-
mentation. Due to lactate's suppressive effect on the
cellular immune response [9], it is conceivable that the
ketogenic diet we applied would have more profound
effects in a model that allows a T-cell response directed
against tumour-associated antigens. Additional studies
using other models are necessary to further explore the
true potential of metabolic tumour therapy in a function-
ally active immune system.

Conclusion
In this pilot study we demonstrate that a carbohydrate-
restricted diet supplemented by lipids rich in omega-3
fatty acids and MCT delays the growth of glucose ferment-
ing tumours. The effect did not depend on caloric restric-
tion and there was no loss of body weight. Further studies
are needed to address the impact of metabolic therapy on
additional tumour-relevant functions such as invasive
growth and metastasis. The ketogenic diet described here

Table 2: Serum levels (mmol/L) of β-OHB in tumour-bearing 
animals of the KD and SD groups on different days after tumour 
cell injection (day 0). 

KD Days after tumour cell inoculation

0 6 8 20 23 28

Mean 0.5 0.9 * 1.2 * 1.6 * 1.3 * 1.2 *
± SD 0.1 0.2 0.2 0.6 0.4 0.3

SD Days after tumour cell inoculation

0 6 8 20 23 28

Mean 0.5 0.5 0.5 0.6 0.7 0.6
± SD 0.09 0.09 0.07 0.06 0.08 0.06

KD animals achieved ketosis within 6 days after feeding the ketogenic 
diet (Table 1) and remained significantly higher than those of SD 
animals (* P < 0.001). In contrast, serum glucose levels were not 
significantly different between SD and KD animals (see Results).
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may provide a promising strategy for targeting glucose fer-
menting cell populations in vivo.
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Additional file 1
Immunohistochemical analysis of representative tumours of the KD 
(animal 9) and SD (animal 16) groups. The carcinoma cells (pan 
cytokeratin-positive) located within the viable zone around the necrosis 
have proliferated (Ki-67 antigen-positive) and exhibit a glycolytic pheno-
type (TKTL1-positive). The expression of Glut-1 correlated with the strong 
glucose uptake and lactate production shown in Fig. 1 (Magnification: 
×250).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2407-8-122-S1.pdf]

Additional file 2
Influence of the ketogenic diet on vascularity in tumours of the human 
gastric adenocarcinoma cell line 23132/87. Representative tumour sec-
tions from the KD (animal 11) and SD (animal 13) groups are shown. 
Vessels were stained with the rat anti-mouse CD34 antibody RAM34 as 
described in Methods (Magnification: ×400).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2407-8-122-S2.pdf]
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