
Discrete Applied Mathematics 156 (2008) 2293–2299
www.elsevier.com/locate/dam

Characterizations of maximum fractional (g, f )-factors of graphsI

Guizhen Liua,∗, Lanju Zhangb

a School of Mathematics and System Science, Shandong University, Jinan, Shandong, 250100, China
b Biostatistics and Data Management, Medimmune Inc., Gaithersburg, MD 20878, USA

Received 22 November 2005; received in revised form 15 October 2007; accepted 23 October 2007
Available online 26 December 2007

Abstract

In this paper a characterization of maximum fractional (g, f )-factors of a graph is presented. The properties of the maximum
fractional (g, f )-factors and fractional (g, f )-factors with the minimum of edges are also given, generalizing the results given
in [William Y.C. Chen, Maximum (g, f )-factors of a general graph, Discrete Math. 91 (1991) 1–7] and [Edward R. Scheinerman,
Daniel H. Ullman, Fractional Graph Theory, John Wiley and Sonc, Inc., New York, 1997]. Furthermore, some new results on
fractional factors are obtained which may be used in the design of networks. A polynomial time algorithm can be obtained for
actually finding such maximum fractional (g, f )-factors in a graph from the proof.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Many physical structures can be conveniently modeled by networks. Examples include a communication network
with the nodes and links modeling cities and communication channels, respectively; and a railroad network with nodes
and links representing railroad stations and railways between two stations, respectively. Factors and factorizations in
networks are very useful in combinatorial design, network design, circuit layout and so on. In particular, a wide variety
of systems can be described using complex networks. Such systems include: the cell, where we model the chemicals
by nodes and their interactions by edges; the World Wide Web, which is a virtual network of Web pages connected
by hyperlinks; and food chain webs, the networks by which human diseases spread, human collaboration networks
etc [7]. It is well known that a network can be represented by a graph. Vertices and edges of the graph correspond to
nodes and links between the nodes, respectively. Henceforth we use the term “graph” instead of “network”.

We study the fractional factor problem in graphs, which can be considered as a relaxation of the well-known
cardinality matching problem. The fractional factor problem has wide-range applications in areas such as network
design, scheduling and combinatorial polyhedra. For instance, in a communication network if we allow several large
data packets to be sent to various destinations through several channels, the efficiency of the network will be improved
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if we allow the large data packets to be partitioned into small parcels. The feasible assignment of data packets can be
seen as a fractional flow problem and it becomes a fractional matching problem when the destinations and sources of
a network are disjoint (i.e., the underlying graph is bipartite).

The graphs considered in this paper will be finite undirected graphs which may have multiple edges but no loops.
Let G be a graph with vertex set V (G) and edge set E(G). For a vertex x of G, the degree of x in G is denoted
by dG(x). Let g and f be two integer-valued functions defined on V (G) such that 0 ≤ g(x) ≤ f (x) for all
x ∈ V (G). Then a (g, f )-factor of G is a spanning subgraph F of G satisfying g(x) ≤ dF (x) ≤ f (x) for all
x ∈ V (G). If g(x) = f (x) for all x ∈ V (G), then a (g, f )-factor is called an f -factor. If f (x) = k for some
integer k and all x ∈ V (G), then an f -factor is called a k-factor. A fractional (g, f )-indicator function is a function
h that assigns to each edge of a graph G a fractional number in the interval [0, 1] so that for each vertex x we
have g(x) ≤ h(Ex ) ≤ f (x), where Ex = {e|e = xy ∈ E(G)} and h(E1) =

∑
e∈E1

h(e) for any E1 ⊆ E(G).
When g(x) = 0 and f (x) = 1 for all x ∈ V (G), a fractional (g, f )-indicator function is a an indicator function
of a fractional matching [6]. When g(x) = f (x) = 1 for every x ∈ V (G), a fractional (g, f )-indicator function
is an indicator function of a fractional perfect matching or a fractional 1-factor [6,7]. Let h be a fractional (g, f )-
indicator function of a graph G. Set Eh = {e|e ∈ E(G) and h(e) 6= 0}. If Gh is a spanning subgraph of G such
that E(Gh) = Eh , then Gh is called a fractional (g, f )-factor of G. h is also called the indicator function of Gh . If
h(e) ∈ {0, 1} for every e, then Gh is just a (g, f )-factor of G. Let F = Gh be a fractional (g, f )-factor of graph G.
Define the (g, f )-defect of F as follows:

def(F) =

∑
x∈U

( f (x) − h(Ex ))

where U = {x |x ∈ V (G) and h(Ex ) < f (x)}. Next, define the (g, f )-defect of G to be

def(G) = min{def(F)|F is a fractional (g, f )-factor of G}.

Let F be a fractional (g, f )-factor such that def(F) = def(G). Then F is called a maximum fractional (g, f )-factor
of G. Pulleyblank studied the properties of fractional matchings [8]. Anstee gave a necessary and sufficient condition
for a graph to have a fractional (g, f )-factor [1]. Chen discusses the characterization of maximum (g, f )-factors
in a graph [2]. Liu and Zhang studied the properties of fractional factors in [3,4,11]. Other results on fractional
factors can be found in [5,6,10]. In this paper the characterizations of maximum fractional (g, f )-factors of a graph
are presented; the properties of maximum fractional (g, f )-factors and fractional (g, f )-factors with the minimum
number of edges are obtained. Furthermore, a polynomial time algorithm can be deduced for actually finding such a
maximum fractional (g, f )-factors in a graph from the proof.

2. The characterization of maximum fractional (g, f )-factors

In this section a necessary and sufficient condition for a subgraph to be a maximum fractional (g, f )-factor is
given. Therefore some results on maximum matchings [8,9] and maximum (g, f )-factors [2] are generalized.

Let G be a graph. For a subset S of V (G), we denote by G − S the subgraph obtained from G by deleting the
vertices in S together with edges incident with vertices in S. For E ′

⊆ E(G), the subgraph induced by E ′ is denoted
by G[E ′

]. Let S and T be two disjoint subsets of V (G); we write EG(S, T ) = {xy|xy ∈ E(G), x ∈ S and y ∈ T }

and eG(S, T ) = h(EG(S, T )). If f is any real function on set S, we let f (S) =
∑

x∈S f (x) and f (∅) = 0.
Anstee gave a necessary and sufficient condition for a graph to have a fractional (g, f )-factor as follows.

Theorem A ([1]). Let G be a graph. Then G has a fractional (g, f )-factor if and only if for any S ⊆ V (G)

g(T ) − dG−S(T ) ≤ f (S)

where T = {x |x ∈ V (G) \ S and dG−S(x) ≤ g(x)}.

When g(x) = f (x) for all x ∈ V (G), the following result is immediately obtained from Theorem A.

Corollary B. Let G be a graph. Then G has a fractional f -factor if and only if for any S ⊆ V (G)

f (T ) − dG−S(T ) ≤ f (S)

where T = {x |x ∈ V (G) \ S and dG−S(x) ≤ f (x)}.
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In the following we always assume that g and f are two integer-valued functions defined on V (G) and 0 ≤ g(x) ≤

f (x) for every x ∈ V (G). Suppose that G has a fractional (g, f )-factor. Let F = Gh be a fractional (g, f )-factor
of a graph G with indicator fractional function h. An x-alternating path with respect to h is a sequence of vertices
of G, P(x1, x) = {x1, x2, . . . , xk = x}, such that for each i , 1 ≤ i ≤ k − 1, xi xi+1 ∈ E(G) and h(x2i−1x2i ) < 1
and h(x2i x2i+1) > 0. The path P(x1, x) is even or odd according as k is odd or even. We denote an odd (even)
x-alternating path from x1 to x by Po(x1, x) (Pe(x1, x)). We define an augmenting path in G with respect to h to be
an odd x-alternating path Po(x1, x) with h(Ex1) < f (x1) and h(Ex ) < f (x). Similarly, we define an augmenting
chain in G with respect to h to be an odd x-alternating chain Co(x1, x) = {x1, x2, . . . , x2k = x} with h(x2i−1x2i ) < 1
and h(x2i x2i+1) > 0, h(Ex1) < f (x1) and h(Ex ) < f (x), where a chain {x1, x2, . . . , xk} means that xi xi+1 ∈ E(G)

and the edge may be used at most two times. Note that x1 = x is allowed.
In the following we give a necessary and sufficient condition for a subgraph to be a maximum fractional (g, f )-

factor, which is a fractional analogue of Theorem 2.1 in [2]

Theorem 2.1. Let G be a graph and F = Gh be a fractional (g, f )-factor. Then F is a maximum fractional (g, f )-
factor if and only if there are no augmenting chains with respect to h in G.

Proof. If F = Gh is a maximum fractional (g, f )-factor, then def(G) = def(F) =
∑

x∈U ( f (x) − h(Ex )), that is, F
minimizes the quantity

def(F) =

∑
x∈U

( f (x) − h(Ex ))

where U = {x |x ∈ V (G), h(Ex ) < f (x)}.
We show that there are no augmenting chains in G. Otherwise, if there is an augmenting chain Co(x1, x) =

{x1, x2, . . . , x2k = x} such that {x1, x} ⊆ U , set

ε1 = min{1 − h(x2i−1x2i )}

and

ε2 = min{h(x2i x2i+1)}.

If x1 6= x , then set

ε3 = min{ f (x1) − h(Ex1), f (x) − h(Ex )}.

If x1 = x , then set

ε3 =
1
2

min{ f (x1) − h(Ex1), f (x) − h(Ex )}.

We set

ε =
1
2

min{ε1, ε2, ε3}.

Let h′(x2i−1x2i ) = h(x2i−1x2i ) + ε, h′(x2i x2i+1) = h(x2i x2i+1) − ε, and h′(e) = h(e) when e 6∈ Co(x1, x). Then

def(Gh′) < def(F),

a contradiction.
Conversely, if there are no augmenting chains with respect to h in G, we show that F = Gh is a maximum

fractional (g, f )-factor of G. By the definition, we only need to prove that

def(G) = def(F).

If F is a fractional f -factor, then def(G) = def(F) = 0. Otherwise, set

U = {x |x ∈ V (G) and h(Ex ) < f (x)}.

We have U 6= ∅ and def(F) > 0. Define

S∗
= {x | there is an odd x-alternating path Po(x1, x) in G and x1 ∈ U }
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and

D = {x |x 6∈ U, there exists an even x-alternating path Pe(x1, x) in G and x1 ∈ U }.

Since there are no augmenting paths with respect to h in G, for x ∈ S∗
∪ D, x 6∈ U or h(Ex ) = f (x). It is easy

to see that if xy ∈ E(G) and h(xy) > 0, then x ∈ S∗ implies y ∈ D ∪ U . If xy ∈ E(G) and h(xy) < 1, then
x ∈ D ∪ U implies y ∈ S∗. Now we prove that S∗

∩ D = ∅. If x ∈ D ∩ S∗, then there exists an odd alternating
path Po(x1, x) = {x1, x2, . . . , x2k = x} and an even alternating path pe(y1, x) = {y1, y2, . . . , y2k+1 = x}. Thus
Po(x1, x) ∪ Pe(y1, x) is an augmenting chain with respect to h, a contradiction.

Now for any S ⊆ V (G), set

δ(S) = f (T ) − dG−S(T ) − f (S),

where T = {x |x ∈ V (G) \ S and dG−S(x) ≤ f (x)}.

For any S ⊆ V (G) and any fractional (g, f )-factor H , we have eH (T, {x}) ≤ h(Ex ) ≤ f (x) for each x ∈ S.

Therefore∑
x∈T

h(Ex ) ≤ dG−S(x) + eH (T, S) ≤ dG−S(x) + f (S).

We have δ(S) = f (T ) − dG−S(T ) − f (S) ≤
∑

x∈T ( f (x) − h(Ex )) ≤
∑

x∈V (G)( f (x) − h(Ex )) = def(H).

Thus for any S ⊆ V (G) and any fractional (g, f )-factor H , we have

δ(S) ≤ def(H). (2.1)

In particular,

δ(S∗) ≤ def(F). (2.2)

In the following we will show that δ(S∗) ≥ def(F). Let E1 = {e|e ∈ E(F) and h(e) = 1} and F1 = G[E1]. Then for
x ∈ D ∪ U

dG−S∗(x) = dF1(x) − eF1({x}, S∗) ≤ h(Ex ) − eF1({x}, S∗) ≤ f (x).

Set T ∗
= {x |x ∈ V (G) \ S∗ and dG−S∗(x) ≤ f (x)}. Then D ∪ U ⊆ T ∗. Thus

f (T ∗) − dG−S∗(T ∗) ≥ f (D ∪ U ) − dG−S∗(D ∪ U )

= f (D ∪ U ) − dF1(D ∪ U ) + eF1(D ∪ U, S∗)

≥ f (U ) − dF1(U ) + f (D) − dF1(D) + eF1(D ∪ U, S∗). (2.3)

Note that if x ∈ S∗ and h(xy) > 0, then y ∈ D ∪ U . Therefore∑
x∈S∗

h(Ex ) = h(EG(S∗, V (G) \ S∗)) = f (S∗) = h(EF (S∗, V (G) \ S∗))

= h(EF (S∗, D ∪ U )) = eF (S∗, D ∪ U ). (2.4)

Let E2 = {e|e ∈ E(F) and h(e) < 1} and F2 = G[E2]. Then by (2.3) and (2.4) we have

f (T ∗) − dG−S∗(T ∗) ≥ f (D ∪ U ) − dF1(D ∪ U ) + eF1(D ∪ U, S∗)

= f (D ∪ U ) − dF1(D ∪ U ) + eF2(D ∪ U, S∗) − eF2(D ∪ U, S∗) + eF1(D ∪ U, S∗)

= f (D ∪ U ) − dF1(D ∪ U ) + eF (D ∪ U, S∗) − eF2(D ∪ U, S∗)

= f (D) − dF1(D) − eF2(D, S∗) + f (U ) − dF1(U ) − eF2(U, S∗) + f (S∗)

= f (D) −

∑
x∈D

h(Ex ) + f (U ) −

∑
x∈U

h(Ex ) + f (S∗)

≥ def(F) + f (S∗). (2.5)

Note that f (D) −
∑

x∈D h(Ex ) ≥ 0, f (U ) −
∑

x∈U h(Ex ) = def(F) and eF (D ∪ U, S∗) = f (S∗). So (2.5) holds.
Thus

δ(S∗) = f (T ∗) − dG−S∗(T ∗) − f (S∗) ≥ def(F). (2.6)
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Thus by (2.2), (2.6) and (2.1) it follows that

δ(S∗) = def(F) = def(G).

The proof of the theorem is completed. �

3. Properties of maximum fractional (g, f )-factors with the minimum number of edges

In the following if P = {x0, x1, . . . , xk} is a path with edge set {e1, e2, . . . , ek} where ei = vi−1vi , 1 ≤ i ≤ k,
then we also write P = {e1, e2, . . . , ek}. Let F = Gh be a fractional (g, f )-factor of G with indicator function h. Let
E ′

h = {e|0 < h(e) < 1}. Set

F = {F |F is a maximum fractional (g, f )-factor of G}.

To obtain our main result in this section, we first need the following lemma.

Lemma 3.1. Let G be a graph and F = Gh ∈ F with |E ′

h | minimum. Then subgraph H = G[E ′

h] is a disjoint union
of odd cycles.

Proof. Let F = Gh ∈ F with |E ′

h | minimum. Then we have the following claims.
Claim 1. H has no even cycles.
Otherwise, suppose that H has an even cycle C = {e1e2 · · · e2l}. Set

ε1 = min
1≤i≤2l

{h(ei )},

ε2 = min
1≤i≤2l

{1 − h(ei )}

and

ε = min{ε1, ε2}.

When ε = ε1, without loss of generality, assume h(e1) = ε. Let g be a function defined on E(G) which takes
alternately the values −1 and 1 on edges in E(C) with g(e1) = −1 and takes the value 0 on edges in E(G) \ E(C).
Let h′

= h + εg. Then F ′
= Gh′ ∈ F with |Eh′ | < |Eh |, a contradiction.

When ε = ε2, similarly, without loss of generality, let 1 − h(e1) = ε. Let g be a function defined on E(G) which
takes alternately the values 1 and −1 on edges in E(C) with g(e1) = 1 and takes the value 0 on edges in E(G)\ E(C).
Let h′

= h + εg. Then F ′
= Gh′ ∈ F with |Eh′ | < |Eh |, a contradiction again. Thus Claim 1 holds.

Claim 2. dH (x) ≥ 2 for any x ∈ V (H).
Otherwise, suppose that there is a vertex x0 ∈ V (H) such that dH (x0) = 1. Then h(Ex0) < f (x0). Let

P(x0, xk) = {e1, e2, . . . , ek} be a longest path in H from x0 to xk . If k is even, we have dH (xk) = 1. Set
ε = min{h(e1), h(e2), · · · , h(ek)}. Without loss of generality, assume that h(ei0) = ε. Let h′(ei ) = h(ei ) − ε, i ≡ i0
(mod k), h′(ei ) = h(ei ) + ε, i ≡ i0 + 1 (mod k), and h′(e) = h(e) for any other e ∈ E(G). Then F ′

= Gh′ ∈ F with
|Eh′ | < |Eh |, contradicting the definition of h. So k must be odd. Since F ∈ F , there are no augmenting chains with
respect to F by Theorem 2.1. Hence, h(Exk ) = f (xk). This implies that there are two vertices of the path adjacent to
xk and therefore an odd cycle is formed by Claim 1. Then the chain, which traverses the edges on the cycle once and
the other edges of the path two times is an augmenting chain with respect to h, contradicting F ∈ F and Theorem 2.1.
Thus Claim 2 holds.

Claim 3. If H has an odd cycle C , then C must be a component of H .
Otherwise, let C = {e1e2 · · · e2l+1} be an odd cycle of H with a vertex x ∈ V (C) of degree larger than 2 in H .

Suppose that e′

1 is an edge not in E(C) and it incident with x . Starting from e′

1, we find a longest path in H\E(C). By
Claim 1, the path cannot return to a vertex of V (C)\{x}. By Claim 2, we finally must get another cycle C ′(also odd)
which is connected to cycle C by a path P (possibly of length 0). Set

ε1 = min{h(e)|e ∈ E(C ∪ C ′)},

ε2 = min{1 − h(e)|e ∈ E(C ∪ C ′)},

ε3 = min{h(e)|e ∈ E(P)},

ε4 = min{1 − h(e)|e ∈ E(P)}



2298 G. Liu, L. Zhang / Discrete Applied Mathematics 156 (2008) 2293–2299

and

ε = min
{
ε1, ε2,

1
2
ε3,

1
2
ε4

}
.

If ε = ε1, we may assume that h(e1) = ε, without loss of generality. Let g be a function defined on E(G) which
takes alternately the values −1 and 1 on edges in E(C ∪ C ′) with g(e1) = −1, takes the value −2 and 2 on edges in
E(P) and takes the value 0 on edges in E(G)\E(C ∪ C ′

∪ P) such that g(E(G)) = 0. (It is easy to check that such a
function is feasible because both C and C ′ are odd cycles.) Let h′

= h + εg. Then F ′
= Gh′ ∈ F with |Eh′ | < |Eh |,

contradicting the definition of h. Similarly, we can also obtain a contradiction if ε = ε2, ε3 or ε4. Thus Claim 3 holds.
By Claim 1, Claim 2 and Claim 3, it follows that every component of H is an odd cycle. �

Theorem 3.2. Suppose that G has fractional (g, f )-factors. Then there is a maximum fractional (g, f )-factor
F = Gh such that h(e) ∈ {0, 1

2 , 1} for any e ∈ E(G).

Proof. Let F = Gh be the maximum fractional (g, f )-factor of G as defined in Lemma 3.1. By Lemma 3.1, it is easy
to see that for any e ∈ E ′

h, h(e) =
1
2 . And our conclusion follows. �

In particular, let F = Gh be a maximum fractional matching of G. Then from Theorem 3.2 we obtain the following
result.

Corollary 3.3 ([7]). For any graph G, there exists a maximum fractional matching F = Gh of G such that
h(e) ∈ {0, 1

2 , 1} for any e ∈ E(G).

Now we have our main result in this section.

Theorem 3.4. Suppose that graph G has fractional (g, f )-factors. Then the maximum fractional (g, f )-factor
described as in Lemma 3.1 is a maximum fractional (g, f )-factor of G with the minimum number of edges.

Proof. Let F = Gh be the maximum fractional (g, f )-factor of G described as in Lemma 3.1. By Theorem 3.2
h(E(G)) is an integer. Let m = h(E(G)). Set

m1 = |{e ∈ E(G)|h(e) = 1}|

and

m2 =

∣∣∣∣{e ∈ E(G)|h(e) =
1
2

}∣∣∣∣ .
We have

|F | = m1 + m2

and

m = m1 +
1
2

m2.

Hence

|F | = m +
1
2

m2.

By the definition of m2, the desired conclusion follows. �

Remark. It is easy to see that each search for an augmenting chain can be performed by breadth first search in time
O(|E |) and the corresponding augmentation lowers the value max{0, f (x) − h(Ex )} for at least one vertex. In [4]
a polynomial algorithm for finding a fractional (g, f )-factor is given. Therefore a polynomial algorithm for finding
a maximum fractional (g, f )-factor is given from the proof of Theorem 2.1. An polynomial algorithm for finding a
maximum fractional (g, f )-factor with the minimum number of edges from a maximum (g, f )-factor is given from
the proofs of Lemma 3.1, Theorems 3.2 and 3.4.
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