

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Groetsch's representation of Moore–Penrose inverses and ill-posed problems in Hilbert *C**-modules

K. Sharifi

Department of Mathematics, Shahrood University of Technology, PO Box 3619995161-316, Shahrood, Iran

ARTICLE INFO

Article history: Received 31 August 2009 Available online 2 December 2009 Submitted by M. Mathieu

Keywords: Moore–Penrose inverse Hilbert C*-module Unbounded operator Ill-posed problems

1. Introduction

ABSTRACT

The explicit representation $\lim_{\omega\to 0^+} (\omega 1 + T^*T)^{-1}T^*$ for the Moore–Penrose inverse of an operator T between Hilbert spaces has been given by C.W. Groetsch (1975) [6]. We obtain his formula for the Moore–Penrose inverse of an unbounded operator between Hilbert C^* -modules. Ill-posed problems with unbounded operator between Hilbert C^* -modules are also discussed.

© 2009 Elsevier Inc. All rights reserved.

A great many linear inverse problems of physics and engineering may be formulated in an abstract setting as linear operator equations of the form

$$Tx = y \tag{1.1}$$

which implicitly define the solution x of the given problem. The desired solution x is often given in terms of the Moore– Penrose generalized inverse T^{\dagger} in the form $x = T^{\dagger}y$. In all interesting cases the Moore–Penrose generalized inverse is an unbounded operator and the challenge is then to provide approximations to the unknown solution $T^{\dagger}y$ that are stable with respect to perturbations in the data y. Problem (1.1) with an unbounded operator T between Hilbert spaces has been extensively studied in [7,8,15–17]. C.W. Groetsch in [6,7] gave the explicit representation $\lim_{\omega\to 0^+} (\omega 1 + T^*T)^{-1}T^*$ for the Moore–Penrose inverse of an operator T between Hilbert spaces as an application of a general representation theorem. Later J.J. Koliha [10] gave the same formula for the Moore–Penrose inverse of an arbitrary element in unital C*-algebras. In the present paper we give Groetsch's representation for the Moore–Penrose inverse of unbounded regular operator T between Hilbert C*-modules and then we reconsider Eq. (1.1).

A Hilbert C^* -module obeys the same axioms as an ordinary Hilbert space except that the inner product, from which the geometry emerges, takes values in an arbitrary C^* -algebra \mathcal{A} rather than \mathbb{C} . Some fundamental properties of Hilbert spaces like Pythagoras' equality, self-duality, and even decomposition into orthogonal complements must be given up. Hilbert C^* -modules play an important role in the modern theory of C^* -algebras and the study of locally compact quantum groups (see e.g. [19,20]).

Throughout this paper we assume A to be an arbitrary C^* -algebra (not necessarily unital). We deal with bounded and unbounded operators at the same time, so as a general rule, we will denote bounded operators by capital letters and unbounded operators by small letters. We use the notations $Dom(\cdot)$, $Ker(\cdot)$ and $Ran(\cdot)$ for domain, kernel and range of operators, respectively.

E-mail addresses: sharifi.kamran@gmail.com, sharifi@shahroodut.ac.ir.

⁰⁰²²⁻²⁴⁷X/\$ – see front matter @ 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2009.11.033

647

An unbounded regular operator between Hilbert C^* -modules is an analogue of a closed operator on a Hilbert space. A closed and densely defined operator t from a Hilbert C^* -module E to another Hilbert C^* -module F is called regular if its adjoint t^* is also densely defined and if the range of $(1 + t^*t)$ is dense in E. Moore–Penrose inverses of unbounded regular operators have been studied by the author and M. Frank in [5]. Suppose t and t^* have unique Moore–Penrose inverses which are adjoint to each other, t^{\dagger} and $t^{*\dagger}$. We represent t^{\dagger} as a limit of bounded operator, indeed, we show that $t^{\dagger}y = \lim_{\omega \to 0^+} \frac{(\omega 1 + t^*t)^{-1}t^*}{(\omega 1 + t^*t)^{-1}t^*}y = \lim_{\omega \to 0^+} t^*(\omega 1 + tt^*)^{-1}y$ for all $y \in Dom(t^{\dagger})$. This fact enables us to show that t^{\dagger} is bounded if and only if t has closed range, if and only if the set $\{t^*(\omega 1 + tt^*)^{-1}: \omega \in \mathbb{R}^+\}$ is uniformly bounded.

Suppose $y \in Dom(t^{\dagger}) = Ran(t) \oplus Ker(t^*)$ and $x_{\omega} = t^*(\omega 1 + tt^*)^{-1}y$. Let x_* be any minimum point of $\{|tx - y|^2: x \in Dom(t) = Ran(t^{\dagger}) \oplus Ker(t)\}$ in which |.| is the \mathcal{A} -valued 'norm' given by $|x| = \langle x, x \rangle^{1/2}$, then we obtain $|tx_* - y| = \lim_{\omega \to 0} |tx_{\omega} - y|$. In this situation, x_{ω} is also the solution of C^* -valued variational problem min $\{|tx - y|^2 + \omega |x|^2: x \in Dom(t), \omega \in \mathbb{R}^+\}$. Since every C^* -algebra can be considered as a Hilbert C^* -module, the results are also relevant in the case of unbounded operators affiliated with C^* -algebras (see e.g. [19,20]).

2. Preliminaries

A (left) pre-Hilbert C*-module over a C*-algebra \mathcal{A} is a left \mathcal{A} -module E endowed with an \mathcal{A} -valued inner product $\langle \cdot, \cdot \rangle : E \times E \to \mathcal{A}$, $(x, y) \mapsto \langle x, y \rangle$ which is linear in the first variable x (and conjugate-linear in the second variable y), satisfying the conditions

 $\langle x, y \rangle = \langle y, x \rangle^*$, $\langle ax, y \rangle = a \langle x, y \rangle$ for all $a \in \mathcal{A}$,

 $\langle x, x \rangle \ge 0$ with equality if and only if x = 0.

A pre-Hilbert \mathcal{A} -module E is called a *Hilbert* \mathcal{A} -module if E is a complete space with respect to the norm $||x|| = ||\langle x, x\rangle||^{1/2}$. As well as this scalar-valued norm, E has an \mathcal{A} -valued 'norm' given by $|x| := \langle x, x\rangle^{1/2}$ which is evaluated in the partially ordered set of all positive element of the C^* -algebra \mathcal{A} . The \mathcal{A} -valued norm needs to be handled with care, for example, it need not be the case that $|x + y| \leq |x| + |y|$ (see e.g. [1]). A pre-Hilbert \mathcal{A} -submodule E of a pre-Hilbert \mathcal{A} -module F is a direct orthogonal summand if $E \oplus E^{\perp} = F$, where $E^{\perp} := \{y \in F : \langle x, y \rangle = 0$ for all $x \in E\}$ is the orthogonal complement of E in F. For the elementary theory of Hilbert C^* -modules we refer to the book by E.C. Lance [12] and the papers [3,13].

We denote by B(E, F) the set of all adjointable operators from a Hilbert A-module E to another Hilbert A-module F, i.e. of all maps $T : E \to F$ such that there exists $T^* : F \to E$ with the property $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for all $x \in E, y \in F$. B(E, E) is abbreviated by B(E).

Letting *E*, *F* be Hilbert *A*-modules, we will use the notation $t: Dom(t) \subseteq E \to F$ to indicate that *t* is an *A*-linear operator whose domain Dom(t) is a dense submodule of *E* (not necessarily identical with *E*) and whose range is in *F*. Given $t: Dom(t) \subseteq E \to F$ and $s: Dom(t) \subseteq E \to F$, we write $s \subseteq t$ if $Dom(s) \subseteq Dom(t)$ and s(x) = t(x) for all $x \in Dom(s)$. A densely defined operator $t: Dom(t) \subseteq E \to F$ is called *closed* if its graph $G(t) = \{(x, tx): x \in Dom(t)\}$ is a closed submodule of the Hilbert *A*-module $E \oplus F$. If *t* is closable, the operator $s: Dom(s) \subseteq E \to F$ with the property $G(s) = \overline{G(t)}$ is called the *closure* of *t* denoted by $s = \overline{t}$. The operator *t* is the smallest closed operator that contains *t*. An *A*-linear operator $t: Dom(t) \subseteq E \to F$ is said to be *regular* if

- (i) t is closed and densely defined with domain Dom(t),
- (ii) its adjoint t^* is also densely defined, and
- (iii) the range of $1 + t^*t$ is dense in *E*.

If we set $\mathcal{A} = \mathbb{C}$, i.e. if we take E, F to be Hilbert spaces, then this is exactly the definition of a densely defined closed operator, except that in that case, both the second and third conditions follow from the first one. We denote the set of all regular operators from E to F by R(E, F). It is well known that a densely defined operator t is regular if and only if its graph G(t) is orthogonally complemented in the Hilbert \mathcal{A} -module $E \oplus F$ (see e.g. [4, Corollary 3.2]).

Corollary 2.1. The operator $t: Dom(t) \subseteq E \to F$ is regular if and only if $\omega^{-1/2}t$ is regular for any positive real number ω .

For the proof just recall that for an A-linear densely defined operator $t: Dom(t) \subseteq E \to F$ and any positive real number ω , the graph of t is orthogonally complemented if and only if the graph of $\omega^{-1/2}t$ is orthogonally complemented (see also [4, Corollary 3.3]).

If t is regular then t^* and t^*t are regular, and $t = t^{**}$. Define $Q_t := (1 + t^*t)^{-1/2}$, and $F_t := t(1 + t^*t)^{-1/2} = tQ_t$, then $Ran(Q_t) = Dom(t)$, $0 \le Q_t \le 1$ in B(E) and $F_t \in B(E, F)$, cf. [12, (10.4)]. The bounded operator F_t is called the *bounded* transform of the regular operator t. The map $t \to F_t$ defines a bijection

 $R(E, F) \rightarrow \{T \in B(E, F) \colon ||T|| \leq 1 \text{ and } Ran(1 - T^*T) \text{ is dense in } F\}.$

This map is adjoint-preserving, i.e. $F_t^* = F_{t^*}$, cf. [12, Theorem 10.4]. We also define $R_t := (1 + t^*t)^{-1} = Q_t^2$, then $Ran(R_t) \subseteq Dom(t)$, $tR_t = F_tQ_t \in B(E, F)$ and $||tR_t|| = ||F_tQ_t|| \leq ||F_t|| ||Q_t|| \leq 1$.

Recall that the composition of two densely defined operators t, s is the unbounded operator ts with $Dom(ts) = \{x \in Dom(s): sx \in Dom(t)\}$ given by (ts)(x) = t(sx) for all $x \in Dom(ts)$. The operator ts is not necessarily densely defined. Suppose two densely defined operators t, s are adjointable, then $s^*t^* \subseteq (ts)^*$. If T is a bounded adjointable operator, then $s^*T^* = (Ts)^*$. The equality implies that s^*T^* and $(Ts)^*$ actually have the same domains.

Lemma 2.2. If $t \in R(E, F)$ is an unbounded regular operator then $R_t t^* \subseteq (tR_t)^* = t^*R_{t^*}$.

Proof. The equality $F_t^* = F_{t^*}$ implies $(tQ_t)^* = t^*Q_{t^*}$. Applying Remark 2.2 of [5] to the regular operator t^* , we obtain $t^*Q_{t^*}^2 = Q_t t^*Q_{t^*}$. We therefore have $(tR_t)^* = (tQ_tQ_t)^* = Q_t^*(tQ_t)^* = Q_t t^*Q_{t^*} = t^*Q_{t^*}^2 = t^*R_{t^*}$. Since $R_t^* = R_t$, we have $R_t t^* \subseteq (tR_t)^* = t^*R_{t^*}$. \Box

If ω is a positive real number, the properties of the bounded adjointable operators $R_{\omega^{-1/2}t}$, $\omega^{-1/2}tR_{\omega^{-1/2}t}$ now read as follows:

Lemma 2.3. Suppose $t \in R(E, F)$ is a regular operator and ω is a positive real number. Then $(\omega 1 + t^*t)^{-1}$ and $t(\omega 1 + t^*t)^{-1}$ are bounded adjointable operators,

$$0 \leqslant \omega \left(\omega 1 + t^* t \right)^{-1} \leqslant 1 \quad \text{in } B(E), \tag{2.1}$$

$$||t(\omega 1 + t^*t)^{-1}|| \leq \omega^{-1/2},$$
(2.2)

$$(\omega 1 + t^*t)^{-1}t^* \subseteq t^*(\omega 1 + tt^*)^{-1}$$
, and (2.3)

$$(\omega 1 + tt^*)^{-1} t \subseteq t(\omega 1 + t^* t)^{-1}.$$
(2.4)

Moreover, the operator $(\omega 1 + t^*t)^{-1}t^*t$ has a bounded extension to $\overline{Dom(t)} = E$ which satisfies

$$0 \le (\omega 1 + t^* t)^{-1} t^* t = 1 - \omega (\omega 1 + t^* t)^{-1} \le 1 \quad \text{on Dom}(t).$$
(2.5)

Suppose $x \in Dom(t^*)$ and $\omega > 0$, then (2.3) implies that $(\omega 1 + t^*t)^{-1}t^*x = t^*(\omega 1 + tt^*)^{-1}x$. Consequently, the operator $(\omega 1 + t^*t)^{-1}t^*$ is bounded on the dense submodule $Dom(t^*)$, and its extension by continuity to F satisfies

$$\overline{(\omega 1 + t^* t)^{-1} t^*} = t^* (\omega 1 + t t^*)^{-1}.$$
(2.6)

Definition 2.4. Let $t \in R(E, F)$ be a regular operator between two Hilbert \mathcal{A} -modules E, F over some fixed C^* -algebra \mathcal{A} . A regular operator $t^{\dagger} \in R(F, E)$ is called the Moore–Penrose inverse of t if $tt^{\dagger}t = t$, $t^{\dagger}tt^{\dagger} = t^{\dagger}$, $(tt^{\dagger})^* = tt^{\dagger}$ and $(t^{\dagger}t)^* = tt^{\dagger}$.

If a regular operator *t* has a Moore–Penrose inverse t^{\dagger} , then the above definition implies that $Ran(t) \subseteq Dom(t^{\dagger})$ and $Ran(t^{\dagger}) \subseteq Dom(t)$. The reader should be aware of the fact that a (bounded or unbounded) module map between Hilbert C^* -modules generally does not have a Moore–Penrose inverse, see e.g. [5,9,18,21]. However, the author and M. Frank in Theorem 3.1 of [5] gave a necessary and sufficient condition as follows:

Theorem 2.5. If *E*, *F* are arbitrary Hilbert A-modules and $t \in R(E, F)$ denotes a regular operator then the following conditions are equivalent:

(i) t and t^* have unique Moore–Penrose inverses which are adjoint to each other, t^{\dagger} and $t^{\dagger *}$.

(ii) $E = Ker(|t|) \oplus \overline{Ran(|t|)}$ and $F = Ker(t^*) \oplus \overline{Ran(t)}$.

In this situation, $\overline{t^*t^{\dagger*}}$ and $\overline{tt^{\dagger}}$ are the projections onto $\overline{Ran(|t|)} = \overline{Ran(t^*)}$ and $\overline{Ran(t)}$, respectively.

This theorem and Proposition 2.2 of [4] show that each regular operator with closed range has a Moore–Penrose inverse.

Remark 2.6. By an arbitrary C^* -algebra of compact operators \mathcal{A} we mean that $\mathcal{A} = c_0 - \bigoplus_{i \in I} \mathcal{K}(H_i)$, i.e. \mathcal{A} is a c_0 -direct sum of elementary C^* -algebras $\mathcal{K}(H_i)$ of all compact operators acting on Hilbert spaces H_i , $i \in I$ cf. [2, Theorem 1.4.5]. If \mathcal{A} is an arbitrary C^* -algebra of compact operators then for every pair of Hilbert \mathcal{A} -modules E, F, every densely defined closed operator $t : Dom(t) \subseteq E \to F$ is automatically regular and has a Moore–Penrose inverse, cf. [4,5,9].

Corollary 2.7. Suppose $t \in R(E, F)$ is a regular operator and t and t^{*} possess the Moore–Penrose inverses t[†] and t^{†*}, respectively.

(i) $Ker(t^*) = Ker(t^{\dagger})$ and $Ker(t) = Ker(t^{\dagger *})$.

(ii) $Dom(t^{\dagger}) = Ran(t) \oplus Ker(t^{\dagger}).$

- (iii) $Dom(t^{\dagger *}) = Ran(t^{*}) \oplus Ker(t^{\dagger *}).$
- (iv) $Dom(t) = Ran(t^{\dagger}) \oplus Ker(t)$.

(v) $Dom(t^*) = Ran(t^{\dagger *}) \oplus Ker(t^*).$

Proof. To show (i), suppose $y \in Dom(t^{\dagger})$ and $t^{\dagger}y = 0$. Since $tt^{\dagger} \subseteq tt^{\dagger} = (tt^{\dagger})^*$, for every $x \in Dom(t)$ we have

$$\langle tx, y \rangle = \langle tt^{\dagger}t(x), y \rangle = \langle tx, (tt^{\dagger})^*y \rangle = \langle tx, (tt^{\dagger})y \rangle = 0.$$

It follows $y \in Dom(t^*)$ and $t^*y = 0$, i.e., $Ker(t^{\dagger}) \subseteq Ker(t^*)$. Since t^* is the Moore–Penrose inverse of $t^{\dagger *}$, $Ker(t^*) \subseteq Ker(t^{\dagger **}) = Ker(t^{\dagger})$. Similarly, we obtain $Ker(t) = Ker(t^{\dagger *})$.

We prove (iv). Let $x \in Dom(t)$, then $t(x) = tt^{\dagger}t(x)$. So every element of Dom(t) can be written as the sum of two elements $(t^{\dagger}t)(x) \in Ran(t^{\dagger})$ and $(1 - t^{\dagger}t)(x) \in Ker(t)$. If $x = a + t^{\dagger}(b)$ where $b \in Dom(t^{\dagger}) \cap \overline{Ran(t)}$ and $a \in Ker(t)$, then $(t^{\dagger}t)(x) = 0 + t^{\dagger}tt^{\dagger}(b) = t^{\dagger}(b)$ and $a = (1 - t^{\dagger}t)(x)$. Since $t^{\dagger}t$ is an orthogonal projection onto $Ran(t^{\dagger}t) = Ran(t^{\dagger}t) = Ran(t^{\dagger})$, we find $\langle a, t^{\dagger}(b) \rangle = 0$, i.e. $Dom(t) = Ran(t^{\dagger}) \oplus Ker(t)$. The equalities (ii), (iii) and (v) are established in the same way. \Box

Theorem 2.8. Suppose $t \in R(E, F)$ is a regular operator and t and t* possess the Moore–Penrose inverses t[†] and t^{†*}.

(i) $t^{\dagger} = \lim_{\omega \to 0^+} t^* (\omega 1 + tt^*)^{-1} = \lim_{\omega \to 0^+} \overline{(\omega 1 + t^*t)^{-1}t^*} \text{ on } Dom(t^{\dagger}).$ (ii) $t^{\dagger *} = \lim_{\omega \to 0^+} t(\omega 1 + t^*t)^{-1} = \lim_{\omega \to 0^+} \overline{(\omega 1 + tt^*)^{-1}t} \text{ on } Dom(t^{\dagger *}).$

Proof. To prove (i), suppose $y \in Dom(t^{\dagger})$ and $x = t^{\dagger}y \in Ran(t^{\dagger}) \subseteq Dom(t)$. Then $y = (tt^{\dagger})y + (1 - tt^{\dagger})y \in Ran(t) \oplus Ker(t^{\dagger}) = Dom(t^{\dagger})$. Suppose ω is an arbitrary positive real number and $x_{\omega} = t^*(\omega 1 + tt^*)^{-1}y$, then

$$x_{\omega} = t^* (\omega 1 + tt^*)^{-1} tt^{\dagger} y + t^* (\omega 1 + tt^*)^{-1} (1 - tt^{\dagger}) y.$$
(2.7)

Using (2.3) and the fact that $(1 - tt^{\dagger})y \in Ker(t^{\dagger}) = Ker(t^{*})$, we get $t^{*}(\omega 1 + tt^{*})^{-1}(1 - tt^{\dagger})y = (\omega 1 + t^{*}t)^{-1}t^{*}(1 - tt^{\dagger})y = 0$. We then find from (2.7), (2.4) and (2.5) that

$$x_{\omega} = t^* (\omega 1 + tt^*)^{-1} tt^{\dagger} y = t^* t (\omega 1 + t^* t)^{-1} t^{\dagger} y = (1 - \omega (\omega 1 + t^* t)^{-1}) t^{\dagger} y.$$

Hence $x_{\omega} - x = x_{\omega} - t^{\dagger}y = -\omega(\omega 1 + t^*t)^{-1}x$. On the other hand $x = t^{\dagger}y \in \overline{Ran(t^{\dagger})} = (Ker(t^{\dagger}*))^{\perp} = (Ker(t))^{\perp} = \overline{Ran(t^*)} = \overline{Ran(t^*t)}$, where the last equality follows from [11, Proposition 4.18]. Given $\epsilon > 0$, there is an element $\tilde{x} \in Dom(t)$ such that $||x - t^*t\tilde{x}|| \leq \epsilon$. Using (2.1) and (2.5), we obtain

$$\|x - x_{\omega}\| \leq \|\omega(\omega 1 + t^{*}t)^{-1}x - \omega(\omega 1 + t^{*}t)^{-1}t^{*}t\tilde{x}\| + \|\omega(\omega 1 + t^{*}t)^{-1}t^{*}t\tilde{x}\|$$

$$\leq \|\omega(\omega 1 + t^{*}t)^{-1}\| \|x - t^{*}t\tilde{x}\| + \omega\|(\omega 1 + t^{*}t)^{-1}t^{*}t\| \|\tilde{x}\|$$

$$\leq \epsilon + \omega\|\tilde{x}\|.$$

Therefore $t^{\dagger}y = \lim_{\omega \to 0^+} t^*(\omega 1 + tt^*)^{-1}y$ for every $y \in Dom(t^{\dagger})$. The second equality of (i) follows from the first one and (2.6). The equalities of (ii) follow by noting that $t^{\dagger *} = t^{*\dagger}$ and interchanging the roles of t and t^* in the first part. \Box

Corollary 2.9. Suppose $t \in R(E, F)$ is a regular operator and t and t* possess the Moore–Penrose inverses t[†] and t^{†*}.

(i) If
$$y \in Dom(t^{\dagger})$$
, $y_{\omega} \in F$, $\omega > 0$ and $\lim_{\omega \to 0^{+}} \omega^{-1/2} ||y - y_{\omega}|| = 0$, then
$$\lim_{\omega \to 0^{+}} t^{*} (\omega 1 + tt^{*})^{-1} y_{\omega} = t^{\dagger} y.$$

(ii) If $y \in Dom(t^{\dagger *})$, $y_{\omega} \in E$, $\omega > 0$ and $\lim_{\omega \to 0^+} \omega^{-1/2} ||y - y_{\omega}|| = 0$, then

$$\lim_{\omega \to 0^+} t (\omega 1 + t^* t)^{-1} y_{\omega} = t^{\dagger *} y_{\omega}$$

Proof. For every $x \in Dom(tt^*)$ we have

$$\left|\left(\omega 1+tt^{*}\right)x\right|^{2}=\omega^{2}|x|^{2}+\left\langle \omega x,tt^{*}x\right\rangle+\left\langle tt^{*}x,\omega x\right\rangle+\left|tt^{*}x\right|^{2}\geq 2\omega\left\langle t^{*}x,t^{*}x\right\rangle=2\omega\left|t^{*}x\right|^{2}.$$

Set $x = (\omega 1 + tt^*)^{-1}z$ where $z \in F$, then $x \in Dom(t^*)$ and $2\omega |t^*(\omega 1 + tt^*)^{-1}z|^2 \leq |z|^2$. Consequently, $||t^*(\omega 1 + tt^*)^{-1}z|| \leq (2\omega)^{-1/2} ||z||$ for every $z \in F$. Using the later inequality and Theorem 2.8, we have

$$\begin{aligned} \left\| t^* (\omega 1 + tt^*)^{-1} y_{\omega} - t^{\dagger} y \right\| &\leq \left\| t^* (\omega 1 + tt^*)^{-1} (y_{\omega} - y) \right\| + \left\| t^* (\omega 1 + tt^*)^{-1} y - t^{\dagger} y \right\| \\ &\leq (2\omega)^{-1/2} \| y_{\omega} - y \| + \left\| t^* (\omega 1 + tt^*)^{-1} y - t^{\dagger} y \right\| \to 0, \quad \text{as } \omega \to 0. \end{aligned}$$

This completes the proof of (i). The second assertion is easily proved by interchanging the roles of t and t^* in the first part. \Box

Corollary 2.10. Suppose $t \in R(E, F)$ is a regular operator and t and t^* possess the Moore–Penrose inverse t^{\dagger} . Then the following assertions are equivalent:

(i) $t^{\dagger}: Dom(t^{\dagger}) \subseteq F \to E$ is bounded.

(ii) Ran(t) is a closed submodule of F.

(iii) The set $\{t^*(\omega 1 + tt^*)^{-1}: \omega \in \mathbb{R}^+\}$ is uniformly bounded.

Proof. (i) \Leftrightarrow (ii) According to Corollary 2.7 we have $Dom(t^{\dagger}) = Ran(t) \oplus Ker(t^*)$. The operator t^{\dagger} is bounded if and only if $Dom(t^{\dagger}) = F$, if and only if $F = Dom(t^{\dagger}) = Ran(t) \oplus Ker(t^*)$, if and only if Ran(t) is closed.

(ii) \Rightarrow (iii) Suppose that Ran(t) is a closed submodule of F, then $F = \overline{Ran(t)} \oplus Ker(t^{\dagger}) = Dom(t^{\dagger})$. In view of Theorem 2.8, the net $\{t^*(\omega 1 + tt^*)^{-1}y\}_{\omega}$ converges for any $y \in F$ and hence, by the Principle of the Uniform Boundedness, $\{t^*(\omega 1 + tt^*)^{-1}: \omega \in \mathbb{R}^+\}$ is uniformly bounded.

(iii) \Rightarrow (i) Suppose { $t^*(\omega 1 + tt^*)^{-1}$: $\omega \in \mathbb{R}^+$ } is uniformly bounded. Since $t^*(\omega 1 + tt^*)^{-1}$, $\omega > 0$ are bounded operators and $\lim_{\omega \to 0^+} t^*(\omega 1 + tt^*)^{-1}y = t^{\dagger}y$ for all $y \in Dom(t^{\dagger})$, t^{\dagger} is a bounded operator on its domain $Dom(t^{\dagger})$. The domain of t^{\dagger} is dense in *F* and *E* is a Hilbert module, so t^{\dagger} has a unique bounded \mathcal{A} -linear extension $\tilde{t}^{\dagger} : F \to E$ which is defined by

$$\widetilde{t}^{\dagger} z = \lim_{n \to +\infty} t^{\dagger} y_n \quad \text{for all } z \in F,$$

where $\{y_n\}$ is a sequence in $Dom(t^{\dagger})$ which converges to z in norm. Hence, for every $z \in F$ there exist a sequence $\{y_n\}$ in $Dom(t^{\dagger})$ and an element $\tilde{t^{\dagger}}z$ in E such that $y_n \to z$ and $t^{\dagger}y_n \to \tilde{t^{\dagger}}z$. The closedness of t^{\dagger} implies that $z \in Dom(t^{\dagger})$ and $\tilde{t^{\dagger}}z = t^{\dagger}z$, that is, t^{\dagger} is everywhere defined and bounded. \Box

3. Ill-posed problems

The equation tx = y where $t: Dom(t) \subseteq E \to F$ is an unbounded regular operator which has Moore–Penrose inverse t^{\dagger} , is called ill-posed if t is not boundedly invertible. Of course the equation has a solution if and only if $y \in Ran(t)$, in this situation, $x = t^{\dagger}y + (1 - t^{\dagger}t)z \in Ran(t^{\dagger}) \oplus Ker(t) = Dom(t)$ for some $z \in Dom(t)$. However, we can associate generalized solutions with any y in the dense submodule $Ran(t) \oplus Ker(t^*) = Ran(t) \oplus Ker(t^{\dagger}) = Dom(t^{\dagger})$ of F. We begin our section with the following useful lemma.

Lemma 3.1. Suppose a, b are self-adjoint elements in an arbitrary C^* -algebra \mathcal{A} and $k^2a^2 + kb \ge 0$ for any k in the set of real numbers \mathbb{R} , then b = 0.

Proof. According to [14, Theorem 3.3.6] there exists a positive linear functional τ such that $\tau(b) = ||b||$. Since $k^2a^2 + kb \ge 0$ for all $k \in \mathbb{R}$, we get

$$k^{2}\tau(a^{2}) + k\tau(b) = k^{2}\tau(a^{2}) + k\|b\| \ge 0 \quad \text{for all } k \in \mathbb{R}.$$
(3.1)

Suppose first that $\tau(a^2) > 0$. Then the necessary and sufficient condition for the positivity of the quadratic form (3.1) in k is exactly $||b|| \leq 0$, that is, b = 0. Now suppose that $\tau(a^2) = 0$, again by using (3.1) with k = -1, we find b = 0. \Box

Lemma 3.2. Suppose $t: Dom(t) \subseteq E \to F$ is an unbounded regular operator and $y \in Ran(t) \oplus Ker(t^*)$. The equation

$$t^*(tx - y) = 0 (3.2)$$

and the C^{*}-valued variational problem

$$\min\{|tx - y|^2: x \in Dom(t)\}$$
(3.3)

are solvable if and only if y is in the submodule $Ran(t) \oplus Ker(t^*)$ of F.

Proof. For $h \in Dom(t)$

$$\delta(h) = |t(x+h) - y|^2 - |tx - y|^2 = \langle tx - y, th \rangle + \langle tx - y, th \rangle^* + |th|^2.$$
(3.4)

If *x* is a solution of (3.2), then $tx - y \in Ker(t^*) = Ran(t)^{\perp}$, which implies $\langle tx - y, th \rangle = \langle tx - y, th \rangle^* = 0$. Consequently, $\delta(h) = |th|^2 \ge 0$, that is, *x* is a solution of (3.3). Conversely, if *x* is a solution of (3.3), then $\delta(h) = |th|^2 + \langle tx - y, th \rangle + \langle tx - y, th \rangle^* \ge 0$

for all $h \in Dom(t)$. Thus, $k^2 |th|^2 + k(\langle tx - y, th \rangle + \langle tx - y, th \rangle^*) \ge 0$ for all $h \in Dom(t)$ and $k \in \mathbb{R}$. Using Lemma 3.1, we have $\langle tx - y, th \rangle + \langle tx - y, th \rangle^* = 0$. Consequently,

$$\langle t^*(tx-y), h \rangle + \langle t^*(tx-y), h \rangle^* = 0 \quad \text{for all } h \in Dom(t).$$
 (3.5)

Since Dom(t) is a dense submodule of E, the equality (3.5) remains valid for each $h \in E$. In particular, for $h = t^*(tx - y)$ we obtain $2\langle t^*(tx - y), t^*(tx - y) \rangle = 0$, i.e. $t^*(tx - y) = 0$.

If $y \in Ran(t) \oplus Ker(t^*)$, there exists $x_0 \in Dom(t)$ such that $y - tx_0 \in Ker(t^*)$, i.e. x_0 is the solution of (3.2). Conversely, suppose $y \in F$ and (3.2) has a solution x, then $y = tx - (tx - y) \in Ran(t) \oplus Ker(t^*)$. \Box

Theorem 3.3. Suppose $t \in R(E, F)$ is a regular operator and t and t^* possess the Moore–Penrose inverses t^{\dagger} and $t^{\dagger*}$. Let $y \in Dom(t^{\dagger}) = Ran(t) \oplus Ker(t^*)$, then $x_{\omega} = t^*(\omega 1 + tt^*)^{-1}y$ is the unique solution of the C^* -valued variational problem

$$\min\{|tx - y|^2 + \omega|x|^2: x \in Dom(t), \ \omega \in \mathbb{R}^+\}.$$
(3.6)

Moreover, if x_* is any solution of (3.3), then

$$|tx_{*} - y| = \lim_{\omega \to 0^{+}} |tx_{\omega} - y|.$$
(3.7)

Proof. Let $H_{\omega}(x) = |tx - y|^2 + \omega |x|^2$, $x \in Dom(t)$. One has

$$\mu(h) = H_{\omega}(x+h) - H_{\omega}(x) = |th|^2 + \omega|h|^2 + \langle tx - y, th \rangle + \langle tx - y, th \rangle^* + \omega \langle x, h \rangle + \omega \langle x, h \rangle^*,$$

for $h \in Dom(t)$ and $y \in Dom(t^{\dagger})$. Using $tt^*(\omega 1 + tt^*)^{-1} = 1 - \omega(\omega 1 + tt^*)^{-1}$, for $x_{\omega} \in Dom(t)$ we obtain

$$\mu(h) = H_{\omega}(x_{\omega} + h) - H_{\omega}(x_{\omega}) = |th|^{2} + \omega|h|^{2} + \langle tt^{*}(\omega 1 + tt^{*})^{-1}y - y, th \rangle + \langle tt^{*}(\omega 1 + tt^{*})^{-1}y - y, th \rangle^{*} + \omega \langle t^{*}(\omega 1 + tt^{*})^{-1}y, h \rangle + \omega \langle t^{*}(\omega 1 + tt^{*})^{-1}y, h \rangle^{*} = |th|^{2} + \omega|h|^{2} \ge 0.$$

Consequently, $H_{\omega}(x_{\omega}) \leq H_{\omega}(x_{\omega} + h)$ for any $h \in Dom(t)$, that is, $H_{\omega}(.)$ attains a minimum on $x_{\omega} = t^*(\omega 1 + tt^*)^{-1}y$, $y \in Dom(t^{\dagger})$. If \tilde{x} is an another minimum point of $H_{\omega}(.)$ and $h = \tilde{x} - x_{\omega}$, then $H_{\omega}(x_{\omega}) = H_{\omega}(x_{\omega} + h)$, which implies $\mu(h) = |th|^2 + \omega |h|^2 = 0$. Hence $h = \tilde{x} - x_{\omega} = 0$, i.e. x_{ω} is the unique solution of (3.6).

Suppose x_* is any minimum point of $H_0(x) = |tx - y|^2$, $x \in Dom(t)$. Then

$$|tx_* - y|^2 \leq |tx_{\omega} - y|^2 \leq |tx_{\omega} - y|^2 + \omega |x_{\omega}|^2 \leq |tx_* - y|^2 + \omega |x_*|^2$$

which yields

$$|||tx_{\omega} - y|^2 - |tx_* - y|^2|| \leq ||\omega|x_*|^2|| = \omega ||x_*||^2.$$

Hence, $|tx_* - y|^2 = \lim_{\omega \to 0^+} |tx_\omega - y|^2$. By continuity of the function $g(x) = \sqrt{x}$ on $[0, +\infty)$ we can deduce $|tx_* - y| = \lim_{\omega \to 0^+} |tx_\omega - y|$. \Box

We close the paper with the observation that we can reformulate our results in terms of densely defined closed operators on Hilbert C^* -modules over C^* -algebras of compact operators, since they automatically have Moore–Penrose inverses.

Acknowledgment

The author would like to thank the referee for his/her useful comments.

References

- [1] Lj. Arambašić, R. Rajić, On the C*-valued triangle equality and inequality in Hilbert C*-modules, Acta Math. Hungar. 119 (4) (2008) 373-380.
- [2] W. Arveson, An Invitation to C*-Algebras, Springer, New York, 1976.
- [3] M. Frank, Geometrical aspects of Hilbert C*-modules, Positivity 3 (1999) 215-243.
- [4] M. Frank, K. Sharifi, Adjointability of densely defined closed operators and the Magajna–Schweizer Theorem, J. Operator Theory, in press, available on arXiv:0705.2576v2 [math.OA], 2007.
- [5] M. Frank, K. Sharifi, Generalized inverses and polar decomposition of unbounded regular operators on Hilbert C*-modules, J. Operator Theory, in press, available on arXiv:0806.0162v1 [math.OA], 2008.
- [6] C.W. Groetsch, Representations of the generalized inverse, J. Math. Anal. Appl. 49 (1975) 154-157.
- [7] C.W. Groetsch, Spectral methods for linear inverse problems with unbounded operators, J. Approx. Theory 70 (1) (1992) 16-28.
- [8] C.W. Groetsch, Stable Approximate Evaluation of Unbounded Operators, Lecture Notes in Math., vol. 1894, Springer-Verlag, Berlin, 2007.
- [9] B. Guljaš, Unbounded operators on Hilbert C*-modules over C*-algebras of compact operators, J. Operator Theory 59 (1) (2008) 179–192.
- [10] J.J. Koliha, The Drazin and Moore-Penrose inverse in C*-algebras, Proc. R. Irish Acad. Sect. A 99 (1999) 17-27.
- [11] J. Kustermans, The functional calculus of regular operators on Hilbert C*-modules revisited, available on arXiv:funct-an/9706007v1, 1997.

- [12] E.C. Lance, Hilbert C*-Modules, London Math. Soc. Lecture Note Ser., vol. 210, Cambridge University Press, 1995.
- [13] M. Magajna, Hilbert C*-modules in which all closed submodules are complemented, Proc. Amer. Math. Soc. 125 (3) (1997) 849-852.
- [14] G.J. Murphy, C*-Algebras and Operator Theory, Academic Press, 1990.
- [15] Yu.P. Pytev, A pseudoinverse operator. Properties and applications, Mat. Sb. (N.S.) 118 (160 (1)) (1982) 19-49 (in Russian).
- [16] A.G. Ramm, Ill-posed problems with unbounded operators, J. Math. Anal. Appl. 325 (1) (2007) 490-495.
- [17] A.G. Ramm, Regularization of ill-posed problems with unbounded operators, J. Math. Anal. Appl. 271 (2) (2002) 542–545.
- [18] K. Sharifi, Descriptions of partial isometries on Hilbert C*-modules, Linear Algebra Appl. 431 (2009) 883-887.
- [19] S.L. Woronowicz, K. Napiórkowski, Operator theory in the C*-algebra framework, Rep. Math. Phys. 31 (1992) 353–371.
- [20] S.L. Woronowicz, Unbounded elements affiliated with C*-algebras and noncompact quantum groups, Comm. Math. Phys. 136 (1991) 399-432.
- [21] Q. Xu, L. Sheng, Positive semi-definite matrices of adjointable operators on Hilbert C*-modules, Linear Algebra Appl. 428 (2008) 992-1000.