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1. Introduction

A great many linear inverse problems of physics and engineering may be formulated in an abstract setting as linear
operator equations of the form

T x = y (1.1)

which implicitly define the solution x of the given problem. The desired solution x is often given in terms of the Moore–
Penrose generalized inverse T † in the form x = T † y. In all interesting cases the Moore–Penrose generalized inverse is an
unbounded operator and the challenge is then to provide approximations to the unknown solution T † y that are stable
with respect to perturbations in the data y. Problem (1.1) with an unbounded operator T between Hilbert spaces has been
extensively studied in [7,8,15–17]. C.W. Groetsch in [6,7] gave the explicit representation limω→0+ (ω1 + T ∗T )−1T ∗ for the
Moore–Penrose inverse of an operator T between Hilbert spaces as an application of a general representation theorem. Later
J.J. Koliha [10] gave the same formula for the Moore–Penrose inverse of an arbitrary element in unital C∗-algebras. In the
present paper we give Groetsch’s representation for the Moore–Penrose inverse of unbounded regular operator T between
Hilbert C∗-modules and then we reconsider Eq. (1.1).

A Hilbert C∗-module obeys the same axioms as an ordinary Hilbert space except that the inner product, from which the
geometry emerges, takes values in an arbitrary C∗-algebra A rather than C. Some fundamental properties of Hilbert spaces
like Pythagoras’ equality, self-duality, and even decomposition into orthogonal complements must be given up. Hilbert C∗-
modules play an important role in the modern theory of C∗-algebras and the study of locally compact quantum groups (see
e.g. [19,20]).

Throughout this paper we assume A to be an arbitrary C∗-algebra (not necessarily unital). We deal with bounded and
unbounded operators at the same time, so as a general rule, we will denote bounded operators by capital letters and
unbounded operators by small letters. We use the notations Dom(·), Ker(·) and Ran(·) for domain, kernel and range of
operators, respectively.
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An unbounded regular operator between Hilbert C∗-modules is an analogue of a closed operator on a Hilbert space.
A closed and densely defined operator t from a Hilbert C∗-module E to another Hilbert C∗-module F is called regular if
its adjoint t∗ is also densely defined and if the range of (1 + t∗t) is dense in E . Moore–Penrose inverses of unbounded
regular operators have been studied by the author and M. Frank in [5]. Suppose t and t∗ have unique Moore–Penrose
inverses which are adjoint to each other, t† and t∗ †. We represent t† as a limit of bounded operator, indeed, we show
that t† y = limω→0+ (ω1 + t∗t)−1t∗ y = limω→0+ t∗(ω1 + tt∗)−1 y for all y ∈ Dom(t†). This fact enables us to show that t† is
bounded if and only if t has closed range, if and only if the set {t∗(ω1 + tt∗)−1: ω ∈ R

+} is uniformly bounded.
Suppose y ∈ Dom(t†) = Ran(t) ⊕ Ker(t∗) and xω = t∗(ω1 + tt∗)−1 y. Let x∗ be any minimum point of {|tx − y|2: x ∈

Dom(t) = Ran(t†) ⊕ Ker(t)} in which |.| is the A-valued ‘norm’ given by |x| = 〈x, x〉1/2, then we obtain |tx∗ − y| =
limω→0 |txω − y|. In this situation, xω is also the solution of C∗-valued variational problem min{|tx − y|2 + ω|x|2: x ∈
Dom(t), ω ∈ R

+}. Since every C∗-algebra can be considered as a Hilbert C∗-module, the results are also relevant in the case
of unbounded operators affiliated with C∗-algebras (see e.g. [19,20]).

2. Preliminaries

A (left) pre-Hilbert C∗-module over a C∗-algebra A is a left A-module E endowed with an A-valued inner product
〈·,·〉 : E × E → A, (x, y) �→ 〈x, y〉 which is linear in the first variable x (and conjugate-linear in the second variable y),
satisfying the conditions

〈x, y〉 = 〈y, x〉∗, 〈ax, y〉 = a〈x, y〉 for all a ∈ A,

〈x, x〉 � 0 with equality if and only if x = 0.

A pre-Hilbert A-module E is called a Hilbert A-module if E is a complete space with respect to the norm ‖x‖ =
‖〈x, x〉‖1/2. As well as this scalar-valued norm, E has an A-valued ‘norm’ given by |x| := 〈x, x〉1/2 which is evaluated in
the partially ordered set of all positive element of the C∗-algebra A. The A-valued norm needs to be handled with care,
for example, it need not be the case that |x + y| � |x| + |y| (see e.g. [1]). A pre-Hilbert A-submodule E of a pre-Hilbert
A-module F is a direct orthogonal summand if E ⊕ E⊥ = F , where E⊥ := {y ∈ F : 〈x, y〉 = 0 for all x ∈ E} is the orthogonal
complement of E in F . For the elementary theory of Hilbert C∗-modules we refer to the book by E.C. Lance [12] and the
papers [3,13].

We denote by B(E, F ) the set of all adjointable operators from a Hilbert A-module E to another Hilbert A-module F ,
i.e. of all maps T : E → F such that there exists T ∗ : F → E with the property 〈T x, y〉 = 〈x, T ∗ y〉 for all x ∈ E , y ∈ F . B(E, E)

is abbreviated by B(E).
Letting E, F be Hilbert A-modules, we will use the notation t : Dom(t) ⊆ E → F to indicate that t is an A-linear oper-

ator whose domain Dom(t) is a dense submodule of E (not necessarily identical with E) and whose range is in F . Given
t : Dom(t) ⊆ E → F and s : Dom(t) ⊆ E → F , we write s ⊆ t if Dom(s) ⊆ Dom(t) and s(x) = t(x) for all x ∈ Dom(s). A densely
defined operator t : Dom(t) ⊆ E → F is called closed if its graph G(t) = {(x, tx): x ∈ Dom(t)} is a closed submodule of the
Hilbert A-module E ⊕ F . If t is closable, the operator s : Dom(s) ⊆ E → F with the property G(s) = G(t) is called the closure
of t denoted by s = t . The operator t is the smallest closed operator that contains t . An A-linear operator t : Dom(t) ⊆ E → F
is said to be regular if

(i) t is closed and densely defined with domain Dom(t),
(ii) its adjoint t∗ is also densely defined, and

(iii) the range of 1 + t∗t is dense in E .

If we set A = C, i.e. if we take E, F to be Hilbert spaces, then this is exactly the definition of a densely defined closed
operator, except that in that case, both the second and third conditions follow from the first one. We denote the set of all
regular operators from E to F by R(E, F ). It is well known that a densely defined operator t is regular if and only if its
graph G(t) is orthogonally complemented in the Hilbert A-module E ⊕ F (see e.g. [4, Corollary 3.2]).

Corollary 2.1. The operator t : Dom(t) ⊆ E → F is regular if and only if ω−1/2t is regular for any positive real number ω.

For the proof just recall that for an A-linear densely defined operator t : Dom(t) ⊆ E → F and any positive real number ω,
the graph of t is orthogonally complemented if and only if the graph of ω−1/2t is orthogonally complemented (see also
[4, Corollary 3.3]).

If t is regular then t∗ and t∗t are regular, and t = t∗∗ . Define Q t := (1 + t∗t)−1/2, and Ft := t(1 + t∗t)−1/2 = t Q t , then
Ran(Q t) = Dom(t), 0 � Q t � 1 in B(E) and Ft ∈ B(E, F ), cf. [12, (10.4)]. The bounded operator Ft is called the bounded
transform of the regular operator t . The map t → Ft defines a bijection

R(E, F ) → {
T ∈ B(E, F ): ‖T ‖ � 1 and Ran

(
1 − T ∗T

)
is dense in F

}
.

This map is adjoint-preserving, i.e. F ∗
t = Ft∗ , cf. [12, Theorem 10.4]. We also define Rt := (1 + t∗t)−1 = Q 2

t , then Ran(Rt) ⊆
Dom(t), t Rt = Ft Q t ∈ B(E, F ) and ‖t Rt‖ = ‖Ft Q t‖ � ‖Ft‖‖Q t‖ � 1.
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Recall that the composition of two densely defined operators t, s is the unbounded operator ts with Dom(ts) = {x ∈
Dom(s): sx ∈ Dom(t)} given by (ts)(x) = t(sx) for all x ∈ Dom(ts). The operator ts is not necessarily densely defined. Suppose
two densely defined operators t, s are adjointable, then s∗t∗ ⊆ (ts)∗ . If T is a bounded adjointable operator, then s∗T ∗ =
(T s)∗ . The equality implies that s∗T ∗ and (T s)∗ actually have the same domains.

Lemma 2.2. If t ∈ R(E, F ) is an unbounded regular operator then Rtt∗ ⊆ (t Rt)
∗ = t∗Rt∗ .

Proof. The equality F ∗
t = Ft∗ implies (t Q t)

∗ = t∗ Q t∗ . Applying Remark 2.2 of [5] to the regular operator t∗ , we obtain
t∗ Q 2

t∗ = Q tt∗ Q t∗ . We therefore have (t Rt)
∗ = (t Q t Q t)

∗ = Q ∗
t (t Q t)

∗ = Q tt∗ Q t∗ = t∗ Q 2
t∗ = t∗Rt∗ . Since R∗

t = Rt , we have
Rtt∗ ⊆ (t Rt)

∗ = t∗Rt∗ . �
If ω is a positive real number, the properties of the bounded adjointable operators Rω−1/2t , ω−1/2t Rω−1/2t now read as

follows:

Lemma 2.3. Suppose t ∈ R(E, F ) is a regular operator and ω is a positive real number. Then (ω1 + t∗t)−1 and t(ω1 + t∗t)−1 are
bounded adjointable operators,

0 � ω
(
ω1 + t∗t

)−1 � 1 in B(E), (2.1)
∥∥t

(
ω1 + t∗t

)−1∥∥ � ω−1/2, (2.2)
(
ω1 + t∗t

)−1
t∗ ⊆ t∗(ω1 + tt∗)−1

, and (2.3)
(
ω1 + tt∗)−1

t ⊆ t
(
ω1 + t∗t

)−1
. (2.4)

Moreover, the operator (ω1 + t∗t)−1t∗t has a bounded extension to Dom(t) = E which satisfies

0 �
(
ω1 + t∗t

)−1
t∗t = 1 − ω

(
ω1 + t∗t

)−1 � 1 on Dom(t). (2.5)

Suppose x ∈ Dom(t∗) and ω > 0, then (2.3) implies that (ω1 + t∗t)−1t∗x = t∗(ω1 + tt∗)−1x. Consequently, the operator
(ω1 + t∗t)−1t∗ is bounded on the dense submodule Dom(t∗), and its extension by continuity to F satisfies

(
ω1 + t∗t

)−1
t∗ = t∗(ω1 + tt∗)−1

. (2.6)

Definition 2.4. Let t ∈ R(E, F ) be a regular operator between two Hilbert A-modules E, F over some fixed C∗-algebra A.
A regular operator t† ∈ R(F , E) is called the Moore–Penrose inverse of t if tt†t = t , t†tt† = t†, (tt†)∗ = tt† and (t†t)∗ = t†t .

If a regular operator t has a Moore–Penrose inverse t†, then the above definition implies that Ran(t) ⊆ Dom(t†) and
Ran(t†) ⊆ Dom(t). The reader should be aware of the fact that a (bounded or unbounded) module map between Hilbert
C∗-modules generally does not have a Moore–Penrose inverse, see e.g. [5,9,18,21]. However, the author and M. Frank in
Theorem 3.1 of [5] gave a necessary and sufficient condition as follows:

Theorem 2.5. If E, F are arbitrary Hilbert A-modules and t ∈ R(E, F ) denotes a regular operator then the following conditions are
equivalent:

(i) t and t∗ have unique Moore–Penrose inverses which are adjoint to each other, t† and t†∗ .
(ii) E = Ker(|t|) ⊕ Ran(|t|) and F = Ker(t∗) ⊕ Ran(t).

In this situation, t∗t†∗ and tt† are the projections onto Ran(|t|) = Ran(t∗) and Ran(t), respectively.

This theorem and Proposition 2.2 of [4] show that each regular operator with closed range has a Moore–Penrose inverse.

Remark 2.6. By an arbitrary C∗-algebra of compact operators A we mean that A = c0 − ⊕
i∈I K(Hi), i.e. A is a c0-direct

sum of elementary C∗-algebras K(Hi) of all compact operators acting on Hilbert spaces Hi , i ∈ I cf. [2, Theorem 1.4.5]. If A
is an arbitrary C∗-algebra of compact operators then for every pair of Hilbert A-modules E, F , every densely defined closed
operator t : Dom(t) ⊆ E → F is automatically regular and has a Moore–Penrose inverse, cf. [4,5,9].

Corollary 2.7. Suppose t ∈ R(E, F ) is a regular operator and t and t∗ possess the Moore–Penrose inverses t† and t†∗ , respectively.

(i) Ker(t∗) = Ker(t†) and Ker(t) = Ker(t†∗).
(ii) Dom(t†) = Ran(t) ⊕ Ker(t†).
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(iii) Dom(t†∗) = Ran(t∗) ⊕ Ker(t† ∗).
(iv) Dom(t) = Ran(t†) ⊕ Ker(t).
(v) Dom(t∗) = Ran(t†∗) ⊕ Ker(t∗).

Proof. To show (i), suppose y ∈ Dom(t†) and t† y = 0. Since tt† ⊆ tt† = (tt†)∗ , for every x ∈ Dom(t) we have

〈tx, y〉 = 〈
tt†t(x), y

〉 = 〈
tx,

(
tt†)∗

y
〉 = 〈

tx,
(
tt†)y

〉 = 0.

It follows y ∈ Dom(t∗) and t∗ y = 0, i.e., Ker(t†) ⊆ Ker(t∗). Since t∗ is the Moore–Penrose inverse of t†∗ , Ker(t∗) ⊆ Ker(t† ∗∗) =
Ker(t†). Similarly, we obtain Ker(t) = Ker(t† ∗).

We prove (iv). Let x ∈ Dom(t), then t(x) = tt†t(x). So every element of Dom(t) can be written as the sum of two
elements (t†t)(x) ∈ Ran(t†) and (1 − t†t)(x) ∈ Ker(t). If x = a + t†(b) where b ∈ Dom(t†) ∩ Ran(t) and a ∈ Ker(t), then
(t†t)(x) = 0 + t†tt†(b) = t†(b) and a = (1 − t†t)(x). Since t†t is an orthogonal projection onto Ran(t†t) = Ran(t†t) = Ran(t†),
we find 〈a, t†(b)〉 = 0, i.e. Dom(t) = Ran(t†) ⊕ Ker(t). The equalities (ii), (iii) and (v) are established in the same way. �
Theorem 2.8. Suppose t ∈ R(E, F ) is a regular operator and t and t∗ possess the Moore–Penrose inverses t† and t†∗ .

(i) t† = limω→0+ t∗(ω1 + tt∗)−1 = limω→0+ (ω1 + t∗t)−1t∗ on Dom(t†).
(ii) t†∗ = limω→0+ t(ω1 + t∗t)−1 = limω→0+ (ω1 + tt∗)−1t on Dom(t† ∗).

Proof. To prove (i), suppose y ∈ Dom(t†) and x = t† y ∈ Ran(t†) ⊆ Dom(t). Then y = (tt†)y + (1 − tt†)y ∈ Ran(t) ⊕ Ker(t†) =
Dom(t†). Suppose ω is an arbitrary positive real number and xω = t∗(ω1 + tt∗)−1 y, then

xω = t∗(ω1 + tt∗)−1
tt† y + t∗(ω1 + tt∗)−1(

1 − tt†)y. (2.7)

Using (2.3) and the fact that (1 − tt†)y ∈ Ker(t†) = Ker(t∗), we get t∗(ω1 + tt∗)−1(1 − tt†)y = (ω1 + t∗t)−1t∗(1 − tt†)y = 0.
We then find from (2.7), (2.4) and (2.5) that

xω = t∗(ω1 + tt∗)−1
tt† y = t∗t

(
ω1 + t∗t

)−1
t† y = (

1 − ω
(
ω1 + t∗t

)−1)
t† y.

Hence xω − x = xω − t† y = −ω(ω1 + t∗t)−1x. On the other hand x = t† y ∈ Ran(t†) = (Ker(t† ∗))⊥ = (Ker(t))⊥ = Ran(t∗) =
Ran(t∗t), where the last equality follows from [11, Proposition 4.18]. Given ε > 0, there is an element x̃ ∈ Dom(t) such that
‖x − t∗tx̃‖ � ε . Using (2.1) and (2.5), we obtain

‖x − xω‖ �
∥∥ω(

ω1 + t∗t
)−1

x − ω
(
ω1 + t∗t

)−1
t∗tx̃

∥∥ + ∥∥ω(
ω1 + t∗t

)−1
t∗tx̃

∥∥
�

∥∥ω(
ω1 + t∗t

)−1∥∥∥∥x − t∗tx̃
∥∥ + ω

∥∥(
ω1 + t∗t

)−1
t∗t

∥∥‖x̃‖
� ε + ω‖x̃‖.

Therefore t† y = limω→0+ t∗(ω1 + tt∗)−1 y for every y ∈ Dom(t†). The second equality of (i) follows from the first one and
(2.6). The equalities of (ii) follow by noting that t†∗ = t∗ † and interchanging the roles of t and t∗ in the first part. �
Corollary 2.9. Suppose t ∈ R(E, F ) is a regular operator and t and t∗ possess the Moore–Penrose inverses t† and t†∗ .

(i) If y ∈ Dom(t†), yω ∈ F , ω > 0 and limω→0+ ω−1/2‖y − yω‖ = 0, then

lim
ω→0+ t∗(ω1 + tt∗)−1

yω = t† y.

(ii) If y ∈ Dom(t†∗), yω ∈ E, ω > 0 and limω→0+ ω−1/2‖y − yω‖ = 0, then

lim
ω→0+ t

(
ω1 + t∗t

)−1
yω = t†∗ y.

Proof. For every x ∈ Dom(tt∗) we have
∣∣(ω1 + tt∗)x

∣∣2 = ω2|x|2 + 〈
ωx, tt∗x

〉 + 〈
tt∗x,ωx

〉 + ∣∣tt∗x
∣∣2 � 2ω

〈
t∗x, t∗x

〉 = 2ω
∣∣t∗x

∣∣2
.

Set x = (ω1 + tt∗)−1z where z ∈ F , then x ∈ Dom(t∗) and 2ω|t∗(ω1 + tt∗)−1z|2 � |z|2. Consequently, ‖t∗(ω1 + tt∗)−1z‖ �
(2ω)−1/2‖z‖ for every z ∈ F . Using the later inequality and Theorem 2.8, we have

∥∥t∗(ω1 + tt∗)−1
yω − t† y

∥∥ �
∥∥t∗(ω1 + tt∗)−1

(yω − y)
∥∥ + ∥∥t∗(ω1 + tt∗)−1

y − t† y
∥∥

� (2ω)−1/2‖yω − y‖ + ∥∥t∗(ω1 + tt∗)−1
y − t† y

∥∥ → 0, as ω → 0.
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This completes the proof of (i). The second assertion is easily proved by interchanging the roles of t and t∗ in the first
part. �
Corollary 2.10. Suppose t ∈ R(E, F ) is a regular operator and t and t∗ possess the Moore–Penrose inverse t† . Then the following
assertions are equivalent:

(i) t† : Dom(t†) ⊆ F → E is bounded.
(ii) Ran(t) is a closed submodule of F .

(iii) The set {t∗(ω1 + tt∗)−1: ω ∈ R
+} is uniformly bounded.

Proof. (i) ⇔ (ii) According to Corollary 2.7 we have Dom(t†) = Ran(t) ⊕ Ker(t∗). The operator t† is bounded if and only if
Dom(t†) = F , if and only if F = Dom(t†) = Ran(t) ⊕ Ker(t∗), if and only if Ran(t) is closed.

(ii) ⇒ (iii) Suppose that Ran(t) is a closed submodule of F , then F = Ran(t) ⊕ Ker(t†) = Dom(t†). In view of Theorem 2.8,
the net {t∗(ω1 + tt∗)−1 y}ω converges for any y ∈ F and hence, by the Principle of the Uniform Boundedness, {t∗(ω1 +
tt∗)−1: ω ∈ R

+} is uniformly bounded.
(iii) ⇒ (i) Suppose {t∗(ω1 + tt∗)−1: ω ∈ R

+} is uniformly bounded. Since t∗(ω1 + tt∗)−1, ω > 0 are bounded operators
and limω→0+ t∗(ω1 + tt∗)−1 y = t† y for all y ∈ Dom(t†), t† is a bounded operator on its domain Dom(t†). The domain of t†

is dense in F and E is a Hilbert module, so t† has a unique bounded A-linear extension t̃† : F → E which is defined by

t̃†z = lim
n→+∞ t† yn for all z ∈ F ,

where {yn} is a sequence in Dom(t†) which converges to z in norm. Hence, for every z ∈ F there exist a sequence {yn}
in Dom(t†) and an element t̃†z in E such that yn → z and t† yn → t̃†z. The closedness of t† implies that z ∈ Dom(t†) and
t̃†z = t†z, that is, t† is everywhere defined and bounded. �
3. Ill-posed problems

The equation tx = y where t : Dom(t) ⊆ E → F is an unbounded regular operator which has Moore–Penrose inverse t†,
is called ill-posed if t is not boundedly invertible. Of course the equation has a solution if and only if y ∈ Ran(t), in
this situation, x = t† y + (1 − t†t)z ∈ Ran(t†) ⊕ Ker(t) = Dom(t) for some z ∈ Dom(t). However, we can associate generalized
solutions with any y in the dense submodule Ran(t) ⊕ Ker(t∗) = Ran(t) ⊕ Ker(t†) = Dom(t†) of F . We begin our section with
the following useful lemma.

Lemma 3.1. Suppose a,b are self-adjoint elements in an arbitrary C∗-algebra A and k2a2 + kb � 0 for any k in the set of real
numbers R, then b = 0.

Proof. According to [14, Theorem 3.3.6] there exists a positive linear functional τ such that τ (b) = ‖b‖. Since k2a2 + kb � 0
for all k ∈ R, we get

k2τ
(
a2) + kτ (b) = k2τ

(
a2) + k‖b‖ � 0 for all k ∈ R. (3.1)

Suppose first that τ (a2) > 0. Then the necessary and sufficient condition for the positivity of the quadratic form (3.1) in k
is exactly ‖b‖ � 0, that is, b = 0. Now suppose that τ (a2) = 0, again by using (3.1) with k = −1, we find b = 0. �
Lemma 3.2. Suppose t : Dom(t) ⊆ E → F is an unbounded regular operator and y ∈ Ran(t) ⊕ Ker(t∗). The equation

t∗(tx − y) = 0 (3.2)

and the C∗-valued variational problem

min
{|tx − y|2: x ∈ Dom(t)

}
(3.3)

are solvable if and only if y is in the submodule Ran(t) ⊕ Ker(t∗) of F .

Proof. For h ∈ Dom(t)

δ(h) = ∣∣t(x + h) − y
∣∣2 − |tx − y|2 = 〈tx − y, th〉 + 〈tx − y, th〉∗ + |th|2. (3.4)

If x is a solution of (3.2), then tx − y ∈ Ker(t∗) = Ran(t)⊥ , which implies 〈tx − y, th〉 = 〈tx − y, th〉∗ = 0. Consequently, δ(h) =
|th|2 � 0, that is, x is a solution of (3.3). Conversely, if x is a solution of (3.3), then δ(h) = |th|2 +〈tx− y, th〉+〈tx− y, th〉∗ � 0
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for all h ∈ Dom(t). Thus, k2|th|2 + k(〈tx − y, th〉 + 〈tx − y, th〉∗) � 0 for all h ∈ Dom(t) and k ∈ R. Using Lemma 3.1, we have
〈tx − y, th〉 + 〈tx − y, th〉∗ = 0. Consequently,

〈
t∗(tx − y),h

〉 + 〈
t∗(tx − y),h

〉∗ = 0 for all h ∈ Dom(t). (3.5)

Since Dom(t) is a dense submodule of E , the equality (3.5) remains valid for each h ∈ E . In particular, for h = t∗(tx − y) we
obtain 2〈t∗(tx − y), t∗(tx − y)〉 = 0, i.e. t∗(tx − y) = 0.

If y ∈ Ran(t) ⊕ Ker(t∗), there exists x0 ∈ Dom(t) such that y − tx0 ∈ Ker(t∗), i.e. x0 is the solution of (3.2). Conversely,
suppose y ∈ F and (3.2) has a solution x, then y = tx − (tx − y) ∈ Ran(t) ⊕ Ker(t∗). �
Theorem 3.3. Suppose t ∈ R(E, F ) is a regular operator and t and t∗ possess the Moore–Penrose inverses t† and t†∗ . Let y ∈ Dom(t†) =
Ran(t) ⊕ Ker(t∗), then xω = t∗(ω1 + tt∗)−1 y is the unique solution of the C∗-valued variational problem

min
{|tx − y|2 + ω|x|2: x ∈ Dom(t), ω ∈ R

+}
. (3.6)

Moreover, if x∗ is any solution of (3.3), then

|tx∗ − y| = lim
ω→0+ |txω − y|. (3.7)

Proof. Let Hω(x) = |tx − y|2 + ω|x|2, x ∈ Dom(t). One has

μ(h) = Hω(x + h) − Hω(x) = |th|2 + ω|h|2 + 〈tx − y, th〉 + 〈tx − y, th〉∗ + ω〈x,h〉 + ω〈x,h〉∗,
for h ∈ Dom(t) and y ∈ Dom(t†). Using tt∗(ω1 + tt∗)−1 = 1 − ω(ω1 + tt∗)−1, for xω ∈ Dom(t) we obtain

μ(h) = Hω(xω + h) − Hω(xω) = |th|2 + ω|h|2 + 〈
tt∗(ω1 + tt∗)−1

y − y, th
〉

+ 〈
tt∗(ω1 + tt∗)−1

y − y, th
〉∗ + ω

〈
t∗(ω1 + tt∗)−1

y,h
〉 + ω

〈
t∗(ω1 + tt∗)−1

y,h
〉∗

= |th|2 + ω|h|2 � 0.

Consequently, Hω(xω) � Hω(xω + h) for any h ∈ Dom(t), that is, Hω(.) attains a minimum on xω = t∗(ω1 + tt∗)−1 y, y ∈
Dom(t†). If x̃ is an another minimum point of Hω(.) and h = x̃ − xω , then Hω(xω) = Hω(xω + h), which implies μ(h) =
|th|2 + ω|h|2 = 0. Hence h = x̃ − xω = 0, i.e. xω is the unique solution of (3.6).

Suppose x∗ is any minimum point of H0(x) = |tx − y|2, x ∈ Dom(t). Then

|tx∗ − y|2 � |txω − y|2 � |txω − y|2 + ω|xω|2 � |tx∗ − y|2 + ω|x∗|2,
which yields

∥∥|txω − y|2 − |tx∗ − y|2∥∥ �
∥∥ω|x∗|2

∥∥ = ω‖x∗‖2.

Hence, |tx∗ − y|2 = limω→0+ |txω − y|2. By continuity of the function g(x) = √
x on [0,+∞) we can deduce |tx∗ − y| =

limω→0+ |txω − y|. �
We close the paper with the observation that we can reformulate our results in terms of densely defined closed operators

on Hilbert C∗-modules over C∗-algebras of compact operators, since they automatically have Moore–Penrose inverses.
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