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1 Introduction

In this paper we continue our studies of the mirror Thermodynamic Bethe Ansatz (TBA) as

a tool to determine the spectrum of the AdS5×S5 superstring, and through the gauge-string

correspondence [1] the spectrum of conformal dimensions of composite primary operators

in planar N = 4 super Yang-Mills theory. We will show by way of example how to construct

TBA equations describing string excitations with complex momenta.

The main idea of the TBA approach originally developed for two-dimensional relativis-

tic theories [2] is to reformulate the finite-size spectral problem for an integrable model in

terms of thermodynamics of the accompanying mirror model. Integrability of the mirror

model allows one to compute the necessary thermodynamic quantities and, as a result,

to determine the spectrum of the original model.1 As a necessary step towards realiza-

tion of this idea, one needs to classify solutions of the mirror Bethe-Yang (BY) equations

1See, e.g. [3, 4] for recent reviews of the TBA techniques. Concerning string integrability, the reader

may consult the reviews [5, 6].
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contributing in the thermodynamic limit which is known under the name of string hy-

pothesis [7]. For the AdS5 × S5 mirror the BY equations were obtained in [8] and the

corresponding string hypothesis was formulated in [9]. This led to the construction of the

ground state [10]–[12] and excited state TBA equations for string states with real mo-

menta [12]–[15]. The TBA equations can be formulated in a variety of different forms:

canonical [10]–[12], simplified [10, 16], hybrid [13], and quasi-local [17]; each of these forms

is best suited for studying particular analytic or numerical aspects of the corresponding

solution. Also, the TBA equations have been investigated for particular states in different

regimes. Numerically, for intermediate values of the coupling the TBA equations for a

state dual to the Konishi operator in the gauge theory were solved in [18, 19] and the

results obtained agree with various string theory computations [20]–[23]. Next, a relation

between the TBA equations and the semi-classical description of string states has been

elucidated in [24]. Finally, at weak coupling the TBA equations for the Konishi operator

were shown [14, 25, 26] to agree with Lüscher’s perturbative treatment [27]–[30] and at

four loops with explicit field-theoretic computations [31, 32].

To expose new features of the TBA approach, in this work we turn our attention to

the su(2) sector where particles may have complex momenta, and in particular there are

bound states arising in the large J limit due to poles of the world-sheet scattering matrix.

Here J is the angular momentum of a string rotating around the equator of S5 which is

related to the length L of a gauge theory operator from the su(2) sector with M excitations

(magnons) as L = J+M . Furthermore, J is related to the length parameter LTBA entering

the TBA equations as LTBA = J+2, which is the maximum J-charge in a typical multiplet

of psu(2, 2|4) algebra [33].

The construction of TBA equations for generic states based on the contour deformation

trick, a procedure inspired by the work [34]–[37], has been elaborated upon in [13, 33]. It

assumes that for finite J and small coupling g, states are described as solutions of the BY

equations [38]. Here g =
√
λ

2π , where λ is the ’t Hooft coupling. Picking up a state, i.e.

a concrete solution of the BY equations, we then construct the corresponding asymptotic

Y-functions and determine their analytic properties, in particular, the location of zeros and

poles. This analytic structure is then used to find proper integration contours and engineer

the TBA equations of interest, such that they are solved by the asymptotic Y-functions

upon omitting contributions which vanish in the limit g → 0, e.g. terms such as log(1+YQ).

Furthermore, quantization conditions which fix the location of singularities of the exact Y-

functions must be imposed. In particular, the exact rapidities uk of fundamental particles

are found from the exact Bethe equations Y1∗(uk) = −1, which themselves are obtained

by analytically continuing the TBA equation for Y1 to the string region. These are the

quantization conditions for uk; the finite-size analogues of the BY equations.

The procedure of constructing TBA equations explained above relies on the assumption

that the analytic properties of the asymptotic and exact Y-functions are similar, i.e. that

the locations of zeroes and poles of Y and 1 + Y in their analyticity strip are smoothly

deformed in passing from the asymptotic to the exact solution. In particular, this means

that no new singularities can be formed. In this paper we show that the same strategy of

constructing TBA equations also applies to states with complex momenta, at least for the

cases we considered explicitly.
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We start by considering the simplest three-particle, i.e. M = 3, state in the su(2)

sector which involves complex momenta — a configuration where the first particle has real

(positive) momentum and the other two have complex conjugate momenta, such that the

level-matching condition is satisfied. Search for solutions of the BY equations in the limit

g → 0 reveals that such configurations exist; the first one shows up for J = 4, that is for

L = 7.2 This solution shows several remarkable related features which we list below

1) In the limit g → 0, the complex rapidities u2 and u3 of the second and third particle

respectively, lie outside the analyticity strip, which is in between two lines running

parallel to the real axis at i
g and − i

g ,

2) As g is increased, u2 and u3 move towards the analyticity strip, more precisely, to

the points −2 − i
g and −2 + i

g . Further increasing g leads to a breakdown of the

asymptotic Bethe Ansatz, as the energy of the corresponding configuration becomes

complex. This breakdown happens before u2 and u3 reach the boundaries of the

analyticity strip,

3) The first three YQ-functions, Y1, Y2 and Y3, computed for the asymptotic solution,

exhibit poles located inside the analyticity strip; the poles of Y2 being closest to the

real line are at3 u+
2 and u−3 .

Concerning the first point, we made a wide numerical search for solutions of the one-loop

BY equations for three-particle configurations of the type described above, and could not

find any solution with u2 and u3 falling inside the analyticity strip. There are however

many three-particle solutions with complex roots being in any of the kth strips (k−1)/g <

|Im(u)| < k/g, k = 2, 3, . . . A configuration with complex roots within the analyticity strip

can be found for a four-particle configuration and we will come back to its discussion later.

Concerning the second point, we expect that while the asymptotic roots u2 and u3 move

towards the boundaries of the analyticity strip, they cannot cross them because the S-

matrix entering the BY equations develops a singularity as u3 − u2 → 2i
g . Also, the

breakdown of the BY equations simply reflects their asymptotic nature in comparison to

the exact TBA equations. Nevertheless, in the weak coupling expansion the exact Bethe

equations must coincide with the asymptotic Bethe Ansatz up to the first order of wrapping,

which for an operator of length L from the su(2) sector means up to order g2L.

Concerning the third point, occurrence of poles for some of YQ inside the analyticity strip

is a new phenomenon in comparison to the analytic structure of states from the sl(2)

sector and it will have important implications for construction of the corresponding TBA

equations. We also point out that as g increases the poles of Y2 move towards the real line;

nevertheless for g sufficiently small Y2 remains small in the vicinity of the real line, i.e. for

these values of g we can trust the asymptotic solution.

2For L = 6 there is a singular solution composed of a particle with momentum π and a two-particle

bound state with momentum −π [39, 40]. It is unknown how to handle such a state in the TBA framework.
3Throughout the paper the superscript ± means the shift of the function argument by ± i

g
with obvious

generalization to many ± . . .±.
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The main observation which allows us to construct consistent TBA equations is as

follows. If a YQ-function has a pole at a point u∞ inside the analyticity strip, then, as

we will show, it must be equal to −1 at a point u−1 which is located close to the pole.

Both u∞ and u−1 can in general depend on Q. In the limit g → 0 we can estimate their

difference from the asymptotic expression for Y1, obtaining

δu = u∞ − u−1 ∼ g2L .

Indeed, as we see the roots start to differ from each other precisely at the L-loop order!

As we will explain, this guarantees that in the weak coupling expansion the asymptotic

Bethe Ansatz agrees with the TBA up to g2L. It is interesting to point out that an analytic

structure similar to the one we encounter here is realized in the relativistic SU(N) principal

model for states describing fundamental particles with complex momenta [41, 42]. Also, the

fact that these roots and poles lie close to each other could give insight into the “pairing”

of singularities observed in [43] for the ground state Y-functions.

Having understood the analytic structure of the exact solution, we then proceed with

the construction of the TBA equations by means of the contour deformation trick. We

begin with the canonical TBA equations because there the choice of integration contours

can be made most transparent. In particular, in this case the poles of the auxiliary Y -

functions play no role, i.e. only the contributions of zeroes should be taken into account.

Most importantly, we find that the contours must enclose all real zeroes of 1 + YQ which

are in the string region, and all zeroes and poles related to the complex Bethe roots which

are below the real line of the mirror region.4 Finally, we use the canonical equations to

derive the corresponding simplified and hybrid equations.

The driving terms in the resulting TBA equations have quite an intricate structure.

They appear to depend on u
(1,2)
2,3 related to singularities of Y1 and Y2, the real root u1, and

additional roots rM related to auxiliary functions Y− and YM |w. The exact values of these

roots are fixed by the corresponding exact Bethe equations. It is worthwhile to point out

that for the state we consider, several apparently different quantization conditions for the

Bethe roots arise. For instance for u
(1)
3 we find

Y1(u
(1)
3 ) = −1 ⇔ Y1(u

(1)−−
3 ) = −1 ⇔ Y1∗(u

(1)
3 ) = −1 .

The first two conditions follow from our assumptions on the analytic structure and the

last one, which involves Y1∗, the analytic continuation of Y1 to the string region, is the

quantization condition we expect as a finite-size analogue of the BY equation. We show

that the exact Bethe equations representing these quantization conditions are compatible

in a rather non-trivial manner which involves, in particular, crossing symmetry. This is

a strong consistency check of our construction. There are similar quantization conditions

involving Y2. For instance, the location of u
(2)
3 is determined by the following compatible

exact Bethe equations

Y2(u
(2)−
3 ) = −1 ⇔ Y2(u

(2)−−−
3 ) = −1 .

4This means, for instance, that contours never enclose the Bethe root u3 which is in the intersection of

the string and anti-mirror regions.
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Our next interesting observation concerns the energy formula. The fact that 1 + Y1

and 1 + Y2 functions have zeroes and poles in the analyticity strip in conjunction with our

choice for the integration contours leads to the following energy formula

E =

3∑
i=1

E(u
(1)
i )− 1

2π

∞∑
Q=1

∫ ∞
−∞

du
dp̃Q
du

log(1 + YQ)

− ip̃2(u
(1)+
2 ) + ip̃2(u

(2)+
2 )− ip̃2(u

(2)−
3 ) + ip̃2(u

(1)−
3 ) ,

where u
(1)
1 ≡ u1 and E(u) is the dispersion relation of a fundamental particle with rapidity

variable u, while p̃Q is the momentum of a mirror Q-particle.

The expression for E is exact and it can be used to compute corrections to the Bethe

Ansatz energy in the limit g → 0 and J finite, and in the limit J → ∞ and g finite. The

first limit provides the leading wrapping correction which is given by

∆Ewrap =− 1

2π

∞∑
Q=1

∫ ∞
−∞

du
dp̃Q
du

YQ

− i
[

Res

(
dp̃2

du
(u+

2 )Y2(u+
2 )

)
− Res

(
dp̃2

du
(u−3 )Y2(u−3 )

)]
.

The last line in the above formula is nothing else but the residue of the integrand for Y2,

the function which in comparison to the other YQ-functions has poles closest to the real

line. The residue terms are of the same order as the integral term.

In the second limit corrections are expected to be exponentially small in J which for

simple models or states are given by the generalized Lüscher’s formula [27]. In particular,

in this limit the YQ-functions are exponentially small and the integral term takes the same

form as in the expression for ∆Ewrap. This term is usually interpreted as the F-term.

However, in our case the situation is much more complicated because in the limit J →∞
the function Y2 develops a double pole on the real line so that we cannot replace log(1+Y2)

by Y2. Therefore, the large J-correction coming from the integral term is not given by the

F-term. To our knowledge, the p̃-dependent terms in the expression for E are new and, as

far as we can see, they cannot be interpreted as Lüscher’s µ-terms. It would be interesting

to find the large J expansion of the energy formula.

Finally, to check universality of our approach we studied another three-particle state.

This state has L = 40 with complex rapidities u2 and u3 falling inside the third strip.

The analytic structure of asymptotic and exact Y-functions is very similar to the one

previously considered with an exception that now the first four YQ-functions have poles

inside the analyticity strip; Y1 and Y3 have poles closest to the real line. We obtain the

canonical TBA equations by picking up the same contours as before. This time the driving

terms depend on u
(2,3)
2,3 which are related to singularities of Y2 and Y3. The rapidities u

(2,3)
2,3

should be found from the corresponding exact Bethe equations. It is pretty surprising that

the “standard” Bethe equations Y1(u
(1)
2,3) = −1 do not play any role for the description of

this state, because the TBA equations do not explicitly involve these roots at all!
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With two examples at hand, a generalization of our construction to a three-particle

state with u2 and u3 lying in the kth strip seems to be straightforward. Four functions

Yk−2, . . . , Yk+1 will have poles in the analyticity strip, with the poles of Yk−2 and Yk being

closest to the real line. The driving terms in the corresponding TBA equations will de-

pend on u
(k−1)
2,3 and u

(k)
2,3 whose locations are determined by the corresponding exact Bethe

equations for Yk−1 and Yk. The energy formula is then given by

E =

3∑
i=1

E(u
(1)
i )− 1

2π

∞∑
Q=1

∫ ∞
−∞

du
dp̃Q
du

log(1 + YQ)

− ip̃k
(
u

(k−1)
2 + (k − 1) ig

)
+ ip̃k

(
u

(k)
2 + (k − 1) ig

)
− ip̃k

(
u

(k)
3 − (k − 1) ig

)
+ ip̃k

(
u

(k−1)
3 − (k − 1) ig

)
.

This completes our discussion of the TBA approach for the three-particle states with com-

plex momenta.

Let us now come back to the four-particle solution mentioned earlier. The type of

solution we considered is given by a symmetric configuration of particles with momenta

{pi} = {p, p∗,−p,−p∗}. For L ≥ 10 such configurations exist with rapidities inside the

analyticity strip. As the coupling is increased the rapidities tend to the boundaries of

the strip from the inside. For numerical reasons we explicitly study a state with L = 16.

It appears that for this case only Y2 has poles inside the analyticity strip. Nevertheless,

the fact that all rapidities are inside the analyticity strip clearly distinguishes this state

from the three-particle case discussed above. In short, in choosing the integration contours

we found no reason to pick up contributions of the poles and zeros of 1 + Y2. The TBA

and exact Bethe equations are constructed in essentially the same fashion as for states

with real momenta. It would be important to further clarify what precisely makes complex

configurations with rapidities inside and outside the analyticity strip so different in the TBA

treatment. Certainly, this must be related to the fact that the corresponding rapidities do

or do not lie in the overlap of the string and mirror regions respectively.

The paper is organized as follows. In section 2 we consider three-particle states in the

su(2) sector and in section 3 we discuss the relevant analytic properties of the asymptotic

and exact solution for our main state of interest. Section 4 is devoted to the derivation of the

canonical TBA equations via the contour deformation trick. We also present expressions

for the energy and momentum. In section 5 the canonical equations are cast into the

simplified and hybrid forms. In section 6 the exact Bethe equations are presented and

various consistency conditions are verified. We also discuss the relation of the exact Bethe

equations to the asymptotic Bethe Ansatz. In the conclusions we indicate some interesting

questions and discuss a potential fate of three-particle bound states when g becomes large.

Finally, in appendices D and E we study in some detail the L = 40 three-particle state

with roots in the third strip and the four-particle state with roots in the first strip. We

present the corresponding TBA and exact Bethe equations. Various technical details are

relegated to other appendices.
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2 Three-particle states in the su(2) sector

We consider three-particle AdS5 × S5 superstring excited states with vanishing total mo-

mentum which carry two su(4) charges J1 = J and J2 = 3. They are dual to operators

of length L = J + 3 from the su(2) sector of N = 4 SYM. Such states can be composed

of either three fundamental particles carrying real momenta or of one particle with a real

momentum and two particles with complex momenta which are conjugate to each other

at any L for small enough values of the coupling constant g. The TBA and exact Bethe

equations for states with real momenta are similar to the ones for the sl(2) states, and in

this paper we will discuss only states with complex momenta.

We denote the real momentum of the fundamental particle as p1 ≡ p and assume that

it is positive. Then, the complex momenta of two other particles are p2 = −p
2 + iq and

p3 = −p
2 − iq, where the parameter q has a positive real part Re(q) > 0. It is worth

mentioning that for infinite L such a state is a scattering state of a fundamental particle

and a two-particle bound state, and that q becomes complex for g exceeding a special value

depending on p. For these values of g and p the exponentially suppressed corrections to

the energy of the string state computed by using the BY equations are complex as well,

indicating a breakdown of the BY equations [8].

The two independent BY equations in the su(2)-sector [44] for the state under consid-

eration can be written in the form

eip1L
u1 − u2 − 2i

g

u1 − u2 + 2i
g

u1 − u3 − 2i
g

u1 − u3 + 2i
g

1

σ(p1, p2)2σ(p1, p3)2
= 1 ,

eip2L
u2 − u1 − 2i

g

u2 − u1 + 2i
g

u2 − u3 − 2i
g

u2 − u3 + 2i
g

1

σ(p2, p1)2σ(p2, p3)2
= 1 ,

(2.1)

where σ is the BES dressing factor [45], and uk are the u-plane rapidity variables related

to pk as [40]

u =
1

g
cot

p

2

√
1 + 4g2 sin2 p

2
. (2.2)

Taking the logarithm of the BY equations, we get

log( l.h.s.1 ) = 2πi n1 , log( l.h.s.2 ) = −2πi n2 , (2.3)

where n1 and n2 are positive integers because p1 is positive. Due to the level matching

condition they should satisfy the relation n2 ≡ n = 2n1. As was shown in [44], at large

values of g the integer n is equal to the string level of the state.

Analyzing solutions of the BY equations, we find that for small values of g there is no

solution with complex roots u2 and u3 lying in the analyticity strip −1/g < Im(u) < 1/g.

The fact that the complex roots are outside the analyticity strip leads to dramatic changes

in the analytic properties of the Y-functions in comparison to the case with real momenta.

Changing the values of L and n, it is possible to find solutions with complex rapidities

lying in any of the strips (k− 1)/g < |Im(u)| < k/g, k = 2, 3, . . .. Thus, such states can be

– 7 –
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g p q g p q

0. 2.3129 0.926075 0.5 2.24919 1.23789

0.1 2.3098 0.933177 0.51 2.24704 1.27083

0.2 2.30088 0.955744 0.52 2.2449 1.31517

0.3 2.28709 0.99838 0.53 2.24302 1.40691

0.4 2.26953 1.0737 0.5301 2.24303 1.41083

0.5302 2.2431− 0.00001i 1.41983− 0.001i

Table 1. Numerical solution of the BY equations for the L = 7 state.

characterized not only by L and n but also by the positive integer k which indicates the

strips the complex roots u2 and u3 are located in for small values of g. Solving the BY

equations (2.1) for increasing values of g, we observe that for all solutions the complex roots

move towards the boundaries of the analyticity strip, i.e. the lines |Im(u)| = 1/g. They

cannot however cross them because the S-matrix has a pole if Im(u3) = −Im(u2) = 1/g.

As a result, as soon as the coupling constant exceeds a critical value, u1 becomes complex

and u2 and u3 are repelled from the lines Im(u) = ∓1/g. In addition the asymptotic energy

of such a state becomes complex clearly demonstrating a breakdown of the BY equations.

In the next sections we discuss one example of the states of this type with L = 7, n = 2

and k = 2 in full detail, and we present the necessary results for the L = 40, n = 2, k = 3

case in appendix D. Most of our considerations can be generalized to any L, n and k.

3 The L = 7, n = 2, k = 2 state and Y-functions

The L = 7, n = 2, k = 2 state. An AdS5×S5 superstring excited state with complex

roots located in the second strip 1/g < |Im(u)| < 2/g can be thought of as a finite-size

analog of a scattering state of a fundamental particle and a two-particle bound state,

because complex roots of such a state approximately satisfy the bound state condition

u3−u2 = 2i/g. We will only consider the simplest state of this type with n = 2 and L = 7

but our consideration can be applied to any state with k = 2.5

We solved the BY equations (2.3) numerically6 for 0 ≤ g ≤ 0.5 with step size 0.1, for

0.5 < g ≤ 0.53 with step size 0.01, and finally for g = 0.5301 and g = 0.5302. In table 1

we show the results for p and q.

We see from the table that p and q become complex at g = 0.5302, and the BY equa-

tions cannot be used anymore. In fact the BY equations can probably not even be trusted

at g = 0.5301 because the momentum at this coupling is greater than its value at g = 0.53,

while the momentum has been steadily decreasing up to g = 0.53. To understand a reason

for the breakdown of the BY equations it is convenient to analyze the corresponding values

5For L = 7 we found only one such state with n = 2 and no state with n ≥ 4. For large values of L, n

should be increased to find solutions with k = 2.
6The equations can be solved only numerically even at g = 0.
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Figure 1. The solution to the Bethe Yang equation for u2 at L = 7. For the imaginary part, the

rapidity has been rescaled by a factor of g. Note that the rapidity asymptotes to 2 − i/g before

breakdown of the BY equations.

g u1 u2 urescaled
1 urescaled

2

0. 0.439807
0

−0.865401−1.00613i
0 0.439807 −0.865401− 1.00613i

0.1 4.48989 −8.73211− 10.058i 0.448989 −0.873211− 1.0058i

0.2 2.37935 −4.48112− 5.02428i 0.47587 −0.896224− 1.00486i

0.3 1.72919 −3.11126− 3.34498i 0.518756 −0.933377− 1.00349i

0.4 1.43888 −2.45839− 2.50493i 0.575551 −0.983356− 1.00197i

0.5 1.28853 −2.0896− 2.00117i 0.644265 −1.0448− 1.00058i

0.51 1.27788 −2.06169− 1.96168i 0.651717 −1.05146− 1.00046i

0.52 1.26779 −2.03478− 1.92372i 0.659252 −1.05809− 1.00033i

0.53 1.25786 −2.006− 1.88712i 0.666668 −1.06318− 1.00017i

0.5301 1.25772 −2.00538− 1.88675i 0.666719 −1.06305− 1.00017i

0.5302 1.26 + 0.00002i −2.0041− 1.88652i 0.67 + 0.00001i −1.06257− 1.00024i

Table 2. Numerical solution of the BY equation for the L = 7 state in terms of (rescaled) rapidities.

Note that at g = 0.5302 the rapidity u1 becomes complex.

of the u-plane rapidity variables uk and also their rescaled values urescaled
k = guk which are

more convenient for small values of g. The results are shown in table 2.

Figure 1 and table 2 show that as g increases u2 approaches −2− i/g which is a branch

point of x(u+i/g). It cannot however cross the cut Im(u) = −1/g because the S-matrix has

a pole if Im(u3) = −Im(u2) = 1/g. As a result, as soon as g & 0.5301, u1 becomes complex,

and u2 and u3 are repelled from the cuts Im(u) = ∓1/g. Let us finally mention that the

asymptotic energy of the state at g = 0.5302 is complex which makes inapplicability of the

BY equations for g & 0.5301 obvious.

To apply the contour deformation trick, it is convenient to know the location of the

Bethe roots on the z-torus, as we have indicated in figure 2. We see, in particular, that

the root u2 is in the intersection of the string and mirror regions. We also see that as g

increases the root u2 approaches the point of intersection of the boundaries of the mirror

and string regions.
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+u3
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2
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-
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2

Ω2

-

Ω1

2 0
Ω1

2

-

Ω2

2

0

Ω2

2

Ω2

Figure 2. The location of the (shifted) rapidities on the z-torus, at g = 1/2. The green and

yellow lines outline the mirror and string regions respectively, while the gray lines are the contours

Re(u(z)) = Re(ui). The curved dashed gray lines correspond to the lines at −2i/g and −3i/g in

the mirror u-plane. The straight dashed lines are the real mirror and real string line respectively.

Analytic properties of asymptotic Y-functions. The numerical solution for uk(g)

can be used to analyze the analytic properties of asymptotic Y-functions considered as

functions of g. According to the contour deformation trick, all driving terms in the TBA

equations should come from zeroes and poles of Y – and 1+Y -functions. In table 3 we only

list zeroes and poles relevant for constructing the TBA equations for the state, omitting

those which do not appear in the equations. For the reader’s convenience we have also

schematically indicated their location in the u-plane in figure 3. For Q ≥ 4 the poles of
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Y1=Y3=¥Y1=Y3=¥

Y1 vw=0Y1 vw=0
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+
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+
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-
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Figure 3. Relevant roots and poles of the asymptotic Y-functions on the (mirror) u-plane.

Yo-function Zeroes Poles

YM |w rM±1

1 + YM |w r−M , r+
M u2 − (M + 1)i/g , u3 + (M + 1)i/g

Y1|vw u1 , r0

1 + YM |vw u2 + (M + 1)i/g , u3 − (M + 1)i/g

Y− u−2 , u
+
3 r1 , u

+
2 , u

−
3

Y+ r1 , u
−
1

1− Y− r−0 , r
+
0

1− Y+

Y1 r0 u++
2 , u−−3

Y2 u+
2 , u

−
3

YQ , Q ≥ 3 u2 + i
g (Q− 1) , u3 − i

g (Q− 1)

Table 3. Relevant roots and poles of asymptotic Y-functions within the mirror region.

Y o
Q at u3 − i

g (Q − 1) lie below the analyticity strip and are located on the grey curves

associated to the complex rapidities, in the mirror region of figure 2. They are close to the

points u2 − i
g (Q− 3) but lie on the other side of the line − i

g (Q− 2).
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For g = 1/2 the rapidities and the first five roots take the following values

{u1, u2, u3} = {1.28853,−2.0896− 2.00117i,−2.0896 + 2.00117i} ,
{r0, r1, r2, r3, r4} = {−1.28046,−1.18687,−1.16032,−1.14978,−1.14463} .

We find that all the roots rM are real and they approach a limiting value at M → ∞.

Next, note that u+
2 , u++

2 and u−3 , u−−3 are within the analyticity strip −1/g < Imu < 1/g.

Thus, the first three YQ-functions have poles there. This is a drastically different situation

compared to all previously studied states. The function Y2 in particular has two complex-

conjugate poles located very close to the real line.

Analytic properties of exact YQ-functions. In the last subsection we pointed out

that the asymptotic functions Y1, Y2 and Y3 have poles which lie within the analyticity

strip. This leads to a dramatic change in the analyticity structure of the exact YQ-functions.

In particular, we will show that this immediately implies that for small values of g these

functions must satisfy the exact Bethe equations YQ(u(Q)) = −1, where u(Q) is located

close to a pole of YQ. The consideration is general and works either for finite J and small g

(which is the case we are interested in) or for finite g and large J . To simplify the notations,

we drop the index Q and represent a Y-function in the form

Y (u) =
y(u)

u− u∞
, (3.1)

where y(u) is regular and does not vanish at u∞ but it may have poles and zeroes elsewhere.

Moreover, for any u within the analyticity strip which is not its pole, y(u) is of order g2L−1

while u∞ scales as 1/g for small values of g.

We want to find u−1 close to u∞ such that Y (u−1) = −1. We get immediately

u−1 − u∞ + y(u−1) = 0 (3.2)

and expanding y(u−1) around u∞ we obtain

u−1 ≈ u∞ − y(u∞) = u∞ − ResY (u∞) . (3.3)

Since y(u∞) is small u−1 is close to u∞.

Let us denote by ũ
(Q)
2 ≈ u2 and ũ

(Q)
3 ≈ u3 the points which are related to the exact

locations of the poles of YQ functions in the analyticity strip. The poles can be (and in

general are) slightly shifted from their asymptotic positions for small but finite g. We

assume that all Y-functions are real analytic in the mirror plane, that is Y (u)∗ = Y (u∗).

Therefore ũ
(Q)
2 and ũ

(Q)
3 are complex conjugate to each other. Then from table 3 we have

Y1(ũ
(1)++
2 ) =∞ , Y2(ũ

(2)+
2 ) =∞ , Y3(ũ

(3)++
2 ) =∞ , (3.4)

where for definiteness we discuss the pole locations related to ũ
(Q)
2 only.

According to the discussion above, there are complex conjugate points u
(Q)
2 and u

(Q)
3

which are close to ũ
(Q)
2 and ũ

(Q)
3 (and to the asymptotic points u2 , u3) such that

1 + Y1(u
(1)++
2 ) = 0 , 1 + Y2(u

(2)+
2 ) = 0 , 1 + Y3(u

(3)++
2 ) = 0 . (3.5)
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We now show that the pole locations are determined by the zeroes of the functions

1 + YQ. To this end we assume that for finite g the exact YQ functions have the following

representation [3, 46]

YQ = ΥQ
TQ,−1 TQ,1
TQ−1,0TQ+1,0

, ΥQ(v) = e−J ẼQ(v)
N∏
i=1

SQ1∗
sl(2)(v, ui) , (3.6)

where in the g → 0 limit the T-functions TQ,±1 reduce to the asymptotic transfer matrices,

T0,0 = 1 and TQ,0 reduce to 1.

The poles of the asymptotic Y o
Q appear due to poles in ΥQ. As was mentioned above,

the poles of the exact YQ-functions are shifted from their asymptotic positions for finite g.

This means that the T-function TQ,0 must have a pole at u2 + i
gQ and a zero at ǔ2 + i

gQ

closed to the pole. Thus TQ,0 satisfies

TQ,0

(
u2 +

i

g
Q

)
=∞ , TQ,0

(
ǔ

(Q)
2 +

i

g
Q

)
= 0 , (3.7)

with similar properties for u3 , ǔ
(Q)
3 . In what follows we will assume that (3.7) hold for any

Q and that ǔ
(Q)
2 6= ǔ

(Q′)
2 for any Q 6= Q′.

The zeroes of TQ,0 are obviously related to poles of YQ. In addition they are also

related to the zeroes of 1 + YQ as follows from the second representation for YQ

1 + YQ =
T+
Q,0 T

−
Q,0

TQ−1,0TQ+1,0
, (3.8)

which is valid if the T-functions satisfy the Hirota equations [47]. Indeed

ǔ
(1)
2 = ũ

(2)
2 = u

(1)
2 , ǔ

(2)
2 = ũ

(1)
2 = ũ

(3)
2 = u

(2)
2 , ǔ

(3)
2 = u

(3)
2 , (3.9)

and in general ǔ
(Q)
2 = u

(Q)
2 . Moreover, the conditions

TQ,0

(
u

(Q)
2 +

i

g
Q

)
= 0 , TQ,0

(
u

(Q)
3 − i

g
Q

)
= 0 (3.10)

imply that in the mirror u-plane the function 1 + YQ for Q ≥ 2 has zeroes at

u
(Q)
2 +

i

g
(Q− 1) , u

(Q)
2 +

i

g
(Q+ 1) , u

(Q)
3 − i

g
(Q− 1) , u

(Q)
3 − i

g
(Q+ 1) ,

and poles at

u
(Q−1)
2 +

i

g
(Q− 1) , u

(Q+1)
2 +

i

g
(Q+ 1) , u

(Q−1)
3 − i

g
(Q− 1) , u

(Q+1)
3 − i

g
(Q+ 1) .

Since 1 + Y1 has just T2,0 in its denominator it only has poles at u
(2)++
2 and u

(2)−−
3 while

it has zeroes at u
(1)++
2 , u

(1)−−
3 , u

(1)
2 and u

(1)
3 . In addition in the string u-plane it should

have an extra zero at u1 so that Y1 satisfies the exact Bethe equation there. It is worth

mentioning that the YQ-functions have additional poles related to the real Bethe root u1,

e.g. Y2 has a pole at u−1 . These additional poles however always lie outside integration

contours and therefore are irrelevant for constructing the TBA equations.
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Analytic properties of auxiliary Y-functions. The analytic properties of exact aux-

iliary Y-functions are similar to those of the asymptotic ones. Basically, all zeroes and poles

which depended on u2 and u3 would now depend on u
(Q)
2 and u

(Q)
3 . In fact, all information

about u2 , u3 goes away and all Y-functions can only have singularities related to u
(Q)
2 and

u
(Q)
3 as can be seen by performing a redefinition of T-functions which removes ΥQ from

YQ, see e.g. [48].

The exact Y-functions can be expressed in terms of T-functions satisfying the Hirota

equations in the standard form except for YQ,0 = YQ for which we keep the conventional

ΥQ factor

Ya,s =
Ta,s−1Ta,s+1

Ta−1,sTa+1,s
, 1 + Ya,s =

T+
a,sT

−
a,s

Ta−1,sTa+1,s
, 1 +

1

Ya,s
=

T+
a,sT

−
a,s

Ta,s−1Ta,s+1
, (3.11)

where Ya,s are related to our Y-functions as

Y1,−1 = − 1

Y
(−)
−

, Y1,1 = − 1

Y
(+)
−

, Y2,−2 = −Y (−)
+ , Y2,2 = −Y (+)

+ , (3.12)

YQ+1,−1 =
1

Y
(−)
Q|vw

, YQ+1,1 =
1

Y
(+)
Q|vw

, Y1,−Q−1 = Y
(−)
Q|w , Y1,Q+1 = Y

(+)
Q|w .

For states from the su(2) sector the auxiliary Y-functions from the left and right wings are

equal, and we can drop the superscripts (±) and consider only the right wing Y-functions.

We want to know how the singularities of Y-functions related to the complex Bethe roots

u2 and u3 are shifted due to the presence of Ta,0-functions in (3.11). Thus, we discuss the

s = 1 case which includes Y− and YM |vw; the singularities of YM |w are shifted as well but

they lie outside the analyticity strip and appear to be irrelevant for the construction of the

TBA equations. Concretely, we have

• YM |vw = 1/YM+1,1, 1 + YM |vw =
T+
M+1,1T

−
M+1,1

TM+1,0TM+1,2

As we know the asymptotic YM |vw function has poles at u2 + (M + 1)i/g and u3 −
(M + 1)i/g. These poles disappear because TM+1,0 has poles there. However new

poles at u
(M+1)
2 + (M + 1)i/g and u

(M+1)
3 − (M + 1)i/g appear because TM+1,0 has

zeroes there.

• Y− = −1/Y1,1, 1− Y− =
T+
1,1T

−
1,1

T1,0T1,2

The poles at u+
2 and u−3 are shifted to u

(1)+
2 and u

(1)−
3 because T1,0 has zeroes there.

Asymptotically Y− has zeroes at u−2 and u+
3 . The location of these zeroes is shifted

too but we do not need them to write the TBA equations for YM |w because they lie

outside the analyticity strip.

4 Canonical TBA equations

We begin our discussion of the TBA equations for the L = 7, n = 2 state with their

canonical form even though the simplified TBA equations for YM |w, YM |vw and YQ, Q ≥ 2
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are completely fixed by the zeroes and poles of these functions in the analyticity strip. The

main reason for this choice is that in the canonical TBA equations the auxiliary functions

Y±, YM |w and YM |vw appear in the form 1 + 1/Y while the YQ-functions appear in the

form 1 +YQ, and therefore the poles of the auxiliary Y-functions and the zeroes of the YQ-

functions do not produce any driving terms, meaning they play no role in the choice of the

integration contours. In addition, the kernels appearing in the canonical TBA equations

for Y± and Y1 functions have a simpler analytic structure than those in the simplified and

hybrid TBA equations which makes the analysis clearer.

Integration contour. There is a choice of integration contours for YQ-functions which

we believe is universal for the type of states under consideration. We suggest that for any

state the integration contours for YQ are chosen such that they enclose all the real zeroes

of 1+YQ which are in the string region, and all the zeroes and poles related to the complex

Bethe roots which are below the real line of the mirror region, see figure 2. In particular,

the contours never go to the anti-mirror region of the z-torus. For the L = 7, n = 2 state

this means that we take into account the poles of Y1 at u
(2)−−
3 , of Y2 at u

(1)+
2 and u

(3)
3 − 3i

g ,

and of YQ, Q ≥ 3 at u
(Q−1)
3 − i

g (Q−1) and u
(Q+1)
3 − i

g (Q+ 1), and then the zeroes of 1 +Y1

at u
(1)−−
3 and u

(1)
2 , of 1 +Y2 at u

(2)+
2 and u

(2)
3 − 3i

g , and of 1 +YQ, Q ≥ 3 at u
(Q)
3 − i

g (Q− 1)

and u
(Q)
3 − i

g (Q+ 1) in the mirror u-plane, and finally the zero of 1 +Y1 at u1 in the string

u-plane. The net result of these contributions is discussed in appendix A. Let us stress that

we do not take into account the complex Bethe root u3 which is in the intersection of the

string and anti-mirror regions. The choice of integration contours is not unique, and we

will see that for the L = 7, n = 2 state we can make a simpler choice where we only take the

contributions of the real zero of 1 +Y1 in the string u-plane, the zeroes u2 and u3 of 1 +Y1

in the mirror u-plane, and all zeroes and poles of 1+Y2 in the analyticity strip of the mirror

u-plane into account. With this choice the integration contours avoid all other zeroes and

poles of 1 + YQ, even those which are inside the analyticity strip of the mirror u-plane.

The integration contours for all auxiliary Y-functions, collectively denoted Yaux, run

along the real line of the mirror region, lie above the zeroes of Y-functions at real Bethe roots

and below all other real zeroes, and enclose all zeroes of Yaux and 1 +Yaux which are inside

the analyticity strip of the mirror u-plane (including its boundary) but below the real line.

It is worth stressing that the integration contours discussed above are for the canonical

TBA equations, and they are different from the contours for the simplified equations. In

particular, in the simplified TBA equations the integration contour for Y+ should enclose

the points u−k in the mirror u-plane for real Bethe roots uk.

Let us now use the integration contours to derive the energy and momentum formulae,

and the canonical TBA equations for the L = 7, n = 2 state. We use the kernels and

S-matrices defined in [13].

Energy formula. According to the contour deformation trick the energy of an excited

state is given by the formula

E = − 1

2π

∫
CQ

du
dp̃Q
du

log(1 + YQ) , (4.1)

where CQ are the integration contours for YQ functions.
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Formula (A.5) can be used to take the integration contours back to the real line of the

mirror u-plane. We can think of 1
2π

dp̃Q
du as a kernel with ip̃Q being identified with logSQ

in (A.5). It satisfies the discrete Laplace equation, and therefore the energy is

E = ip̃1∗(u1) + ip̃1(u
(1)
2 )− ip̃1(u

(1)
3 )− 1

2π

∫ ∞
−∞

du
dp̃Q
du

log(1 + YQ)

− ip̃2(u
(1)+
2 ) + ip̃2(u

(2)+
2 )− ip̃2(u

(2)−
3 ) + ip̃2(u

(1)−
3 ) . (4.2)

Taking into account that

ip̃1∗(u1, v) = E(u1) , ip̃1(u
(1)
2 ) = E(u

(1)
2 ) , −ip̃1(u

(1)
3 ) = E(u

(1)
3 ) , (4.3)

we get

E =
∑
i

E(u
(1)
i )− 1

2π

∫ ∞
−∞

du
dp̃Q
du

log(1 + YQ)

− ip̃2(u
(1)+
2 ) + ip̃2(u

(2)+
2 )− ip̃2(u

(2)−
3 ) + ip̃2(u

(1)−
3 ) , (4.4)

where u
(1)
1 ≡ u1 and E(u) is the dispersion relation of a fundamental particle with rapidity

variable u.

The energy of the state depends only on the singularities of Y1 and Y2. The contri-

butions coming from the other YQ-functions cancel out, and the rapidity dependent terms

can also be thought of as purely originating from the zeroes of 1 + Y1 in the string region,

and the zeroes and poles of Y2 in the analyticity strip of the mirror u-plane.

Let us also mention that the terms on the second line can be written as energies of

two-particle bound states analytically continued to the mirror region.

Momentum formula. Similar consideration can be applied to the formula for the total

momentum (which should vanish for our state) given by

P = − 1

2π

∫
CQ

du
dẼQ
du

log(1 + YQ) . (4.5)

Since also 1
2π

dẼQ
du satisfies the discrete Laplace equation, identifying iẼQ with logSQ in (A.5),

we obtain

P =iẼ1∗(u1) + iẼ1(u
(1)
2 )− iẼ1(u

(1)
3 )− 1

2π

∫ ∞
−∞

du
dẼQ
du

log(1 + YQ)

− iẼ2(u
(1)+
2 ) + iẼ2(u

(2)+
2 )− iẼ2(u

(2)−
3 ) + iẼ2(u

(1)−
3 ) . (4.6)

Taking into account that

iẼ1∗(u1, v) = p(u1) ≡ p1 , iẼ1(u
(1)
2 ) = p(u

(1)
2 ) ≡ p2 , −iẼ1(u

(1)
3 ) = p(u

(1)
3 ) ≡ p3 ,

we get the following formula for the total momentum

P =
∑
i

pi −
1

2π

∫ ∞
−∞

du
dẼQ
du

log(1 + YQ)

− iẼ2(u
(1)+
2 ) + iẼ2(u

(2)+
2 )− iẼ2(u

(2)−
3 ) + iẼ2(u

(1)−
3 ) . (4.7)
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It was noticed in [49] that the TBA equations imply a quantization condition for the total

momentum. Thus, since the total momentum vanishes as g → 0 and it changes continuously

with g the total momentum should vanish for any g.

Canonical equations for w-strings. The excited state canonical TBA equations for

w strings are given by

log YM |w = log

(
1 +

1

YN |w

)
?CN|w KNM + log

1− 1
Y−

1− 1
Y+

?C± KM ,

where CN |w, C− and C+ are the integration contours for YN |w, Y− and Y+ functions. Taking

the integration contours back to real line of the mirror u-plane, Y+ does not produce any

driving term, the zero of 1−Y− at r−0 produces − logSM (r−0 − v), and finally the zeroes of

YN |w at rN−1 and rN+1, and the zeroes of 1 + YN |w at r−N give

+1
2

∞∑
N=1

logSNM (rN−1 − v)SNM (rN+1 − v)−
∞∑
N=1

logSNM (r−N − v) ,

where +1/2 in the first term appears due to the principal value prescription in (4.8).

Taking into account that SNM (u− v) satisfies the discrete Laplace equation

SN−1,M (u− v)SN+1,M (u− v) = SNM (u− − v)SNM (u+ − v) ,

we can write the canonical TBA equations for w strings in the form

log YM |w = log(1 +
1

YN |w
) ?p.v. KNM + log

1− 1
Y−

1− 1
Y+

?̂ KM

+ 1
2

∞∑
N=1

log
SNM (r+

N − v)

SNM (r−N − v)
+ 1

2 logS1M (r0 − v)− logSM (r−0 − v) , (4.8)

where logS1M (r0 − v) should be understood as logSM−1(r0 − v) + logSM+1(r0 − v).

Canonical equations for vw-strings. The excited state canonical TBA equations for

vw strings are given by

log YM |vw = log(1 +
1

YN |vw
) ?CN|vw KNM + log

1− 1
Y−

1− 1
Y+

?C± KM − log(1 + YQ) ?CQ
KQM
xv ,

where CN |vw and CQ are the integration contours for YN |vw, and YQ functions. Taking the

integration contours back to real line of the mirror u-plane and using formula (A.5), we

can bring the canonical TBA equations for vw strings to the form

log YM |vw = log

(
1 +

1

YN |vw

)
?p.v. KNM + log

1− 1
Y−

1− 1
Y+

?̂ KM − log(1 + YQ) ? KQM
xv

+
1

2
log

S1M (r0 − v)

S1M (u1 − v)
− logSM (r−0 − v)− log

S1M
xv (u

(1)
3 , v)

S1M
xv (u

(1)
2 , v)

+ logS1∗M
xv (u1, v)− log

S2M
xv (u

(2)−
3 , v)

S2M
xv (u

(1)−
3 , v)

S2M
xv (u

(1)+
2 , v)

S2M
xv (u

(2)+
2 , v)

, (4.9)
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where the first term on the second line appears due to the zeroes of Y1|vw at u1 and r0, the

second term arises because of the zero of 1 + Y− at r−0 .

Canonical equations for Y+/Y−. Formula (A.5) can be used to write the TBA equa-

tion for Y+/Y−

log
Y+

Y−
= log(1 + YQ) ? KQy−

∑
i

logS1∗y(u
(1)
i , v) + log

S2y(u
(1)+
2 , v)

S2y(u
(2)+
2 , v)

S2y(u
(2)−
3 , v)

S2y(u
(1)−
3 , v)

, (4.10)

where we have used that

S1∗y(u
(1)
3 , v) = 1/S1y(u

(1)
3 , v) , S1∗y(u

(1)
2 , v) = S1y(u

(1)
2 , v) .

The driving terms can be also explained by contours which enclose only the zeroes of 1+Y1

in the string region, and all zeroes and poles of Y2 in the analyticity strip of the mirror

u-plane, while avoiding other zeroes and poles of 1 + YQ.

Canonical equation for Y+Y−. Let us now analyze the canonical TBA equation for

Y+Y− given by

log Y+Y− = − log (1 + YQ) ?CQ
KQ (4.11)

+ 2 log

(
1 +

1

YM |vw

)
?CM|vw KM − 2 log

(
1 +

1

YM |w

)
?CM|w KM .

• The term − log(1 + YQ) ?CQ
KQ produces

logS1(u1 − v) + log
S1(u

(1)
2 − v)

S1(u
(1)
3 − v)

− log
S2(u

(1)+
2 − v)

S2(u
(2)+
2 − v)

S2(u
(2)−
3 − v)

S2(u
(1)−
3 − v)

(4.12)

• The term 2 log
(

1 + 1
YM|vw

)
?CM|vw KM produces

2 log

(
1 +

1

YM |vw

)
?p.v. KM − logS1(u1 − v) + logS1(r0 − v) , (4.13)

where we take into account that the contour runs above u1 but below rM .

• The term 2 log
(

1 + 1
YM|w

)
?CM|w KM produces

2 log

(
1 +

1

YM |w

)
?p.v. KM + logSM (rM−1 − v)SM (rM+1 − v)− 2 logSM (r−M − v) ,

(4.14)

where we sum over M from 1 to ∞. Computing the sum we get

2 log

(
1 +

1

YM |w

)
?p.v. KM + logS1(r0 − v)−

∞∑
M=1

log
SM (r−M − v)

SM (r+
M − v)

. (4.15)
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Thus, the canonical TBA equation for Y+Y− is

log Y+Y− = − log (1 + YQ) ? KQ + 2 log
1 + 1

YM|vw

1 + 1
YM|w

?p.v. KM (4.16)

+ log
S1(u

(1)
2 − v)

S1(u
(1)
3 − v)

− log
S2(u

(1)+
2 − v)

S2(u
(2)+
2 − v)

S2(u
(2)−
3 − v)

S2(u
(1)−
3 − v)

+
∞∑

M=1

log
SM (r−M − v)

SM (r+
M − v)

.

Canonical equations for Q-particles. The excited state canonical TBA equation for

YQ can be written in the form

log YQ = − LTBA ẼQ + log (1 + YM ) ?CM
KMQ

sl(2) + 2 log

(
1 +

1

YM |vw

)
?CM|w K

MQ
vwx

+ log
1− 1

Y−

1− 1
Y+

?C± KQ + log

(
1− 1

Y−

)(
1− 1

Y+

)
?C± KyQ . (4.17)

Taking the integration contours back to the real line of the mirror u-plane and us-

ing (A.5), we obtain

log YQ = − LTBA ẼQ + log
(
1 + YQ′

)
? KQ′Q

sl(2) + 2 log

(
1 +

1

YM ′|vw

)
?p.v K

M ′Q
vwx

+ log
1− 1

Y−

1− 1
Y+

?̂ KQ + log

(
1− 1

Y−

)(
1− 1

Y+

)
?̂ KyQ (4.18)

− logS1∗Q
sl(2)(u1, v)

S1Q
sl(2)(u

(1)
2 , v)

S1Q
sl(2)(u

(1)
3 , v)

+ log
S2Q
sl(2)(u

(1)+
2 , v)

S2Q
sl(2)(u

(2)+
2 , v)

S2Q
sl(2)(u

(2)−
3 , v)

S2Q
sl(2)(u

(1)−
3 , v)

− logS1Q
vwx(u1, v) + logS1Q

vwx(r0, v)− logSQ(r−0 − v)− logSyQ(r−0 , v) .

The driving terms dependent on S1Q
sl(2) of the mirror-mirror region can be rewritten in

terms of S1∗Q
sl(2) of the string-mirror region by noting that u

(1)
2 lies in overlap of the string

and mirror regions, meaning that S1Q
sl(2)(u

(1)
2 , v) = S1∗Q

sl(2)(u
(1)
2 , v), and that u

(1)
3 lies in overlap

of anti-string and mirror regions, meaning that we can use crossing relations [50] to replace

S1Q
sl(2)(u

(1)
3 , v) with 1/S1∗Q

sl(2)(u
(1)
3 , v).

S1Q
sl(2)(u

(1)
3 , v)S1∗Q

sl(2)(u
(1)
3 , v) =

1

hQ(u
(1)
3 , v)2

, (4.19)

where hQ(u, v) is defined as [51]

hQ(u, v) =
xs

(
u− i

g

)
− x

(
v + i

gQ
)

xs

(
u− i

g

)
− x

(
v − i

gQ
) 1− 1

xs
(
u+ i

g

)
x
(
v+ i

g
Q
)

1− 1

xs
(
u+ i

g

)
x
(
v− i

g
Q
) . (4.20)

We would also like to point out that since u
(1)
3 is in the second strip we can rewrite

hQ(u
(1)
3 , v) as

h2
Q(u

(1)
3 , v) =

SyQ(u
(1)+
3 , v)

SyQ(u
(1)−
3 , v)

SQ(u
(1)+
3 − v)SQ(u

(1)−
3 − v) . (4.21)
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5 Simplified and hybrid TBA equations

The canonical TBA equations can be used to derive the simplified and hybrid TBA equa-

tions following the consideration in [10, 13]. To this end we apply the operator (K+ 1)−1
NM

to both sides of the canonical TBA equations, sum over N and use identities listed in

appendix B.

Simplified equations for YM |w. The simplified TBA equations for YM |w are found

to be

log YM |w = log(1 + YM−1|w)(1 + YM+1|w) ? s (5.1)

+δM1 log
1− 1

Y−

1− 1
Y+

?̂ s− logS(r−M−1 − v)S(r−M+1 − v) .

The above driving terms appear due to the zero of 1 − Y− at r−0 and the zeroes of 1 +

YM |w at r−M .

Simplified equations for YM |vw. The simplified equations for YM |vw are found by

applying (K + 1)−1 and subsequently rewriting them by using the simplified equation for

Y+/Y−, convoluted with s. This gives the following equations for vw strings

log YM |vw =− log(1 + YM+1) ? s+ log(1 + YM−1|vw)(1 + YM+1|vw) ? s

+ δM1 log
1− Y−
1− Y+

?̂ s (5.2)

+ δM1

(
log

S(u
(2)+
2 − v)

S(u
(2)−
3 − v)

− logS(u−1 − v)S(r−0 − v)

)
.

The contour deformation trick explains the driving terms for M = 1 as follows. From 1+Y2

we get

logS(u
(2)+
2 − v)− logS(u

(1)+
2 − v) + logS(u

(2)−−−
3 − v)− logS(u

(3)−−−
3 − v) .

Next, 1 − Y− contributes + logS(u
(1)+
2 − v) − logS(r−0 − v), while 1 − Y+ contributes

− logS(u−1 − v). Finally, 1 +Y2|vw gives + logS(u
(3)−−−
3 − v). Summing this up we get the

desired driving terms.

The contributions from the poles of 1 + YM+1 for higher M cancel the contribution

from the poles of 1 + YM−1|vw and 1 + YM+1|vw. Note that to explain the driving terms in

the simplified equations we would have to take into account the poles of YM |vw outside the

analyticity strip.

Simplified equations for Y±. The simplified TBA equation for the ratio Y+/Y− coin-

cides with (4.10).

To derive the equation for Y+Y−, we need to compute the infinite sums involving the

YM |w and YM |vw-functions which is done in appendix B. Using these formulae, the TBA
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equation (4.10) for Y+/Y−, and the identities from appendix B , the TBA equation for

Y+Y− can be transformed to the simplified form

log Y+Y− = 2 log
1 + Y1|vw

1 + Y1|w
? s− log (1 + YQ) ? KQ + 2 log(1 + YQ) ? KQ1

xv ? s

+ 2 logS(r−1 − v)− 2 logS1∗1
xv (u1, v) ? s+ logS2(u1 − v) ? s

− 2 log
S11
xv(u

(1)
2 , v)

S11
xv(u

(1)
3 , v)

? s+ log
S1(u

(1)
2 − v)

S1(u
(1)
3 − v)

(5.3)

− log
S2(u

(1)+
2 − v)

S2(u
(2)+
2 − v)

S2(u
(2)−
3 − v)

S2(u
(1)−
3 − v)

+ 2 log
S21
xv(u

(1)+
2 , v)S21

xv(u
(2)−
3 , v)

S21
xv(u

(2)+
2 , v)S21

xv(u
(1)−
3 , v)

? s .

We recall that the integration contours run a bit above the real line. The driving terms in

this equation can obviously be explained by our choice of integration contours. To be sure

that no other driving terms appear the kernelKQ1
xv ?s and its S-matrix should be analytically

continued to complex points in the mirror and string u-planes. This is non-trivial because

KQ1
xv has poles, and we have not attempted to derive (5.3) starting with the simplified

equation with deformed contours. We have however checked that Y− satisfies its Y-system

equation [52] which requires a very delicate balance of the driving terms in (5.3) and (4.10).

Let us finally present yet another form of the simplified TBA equation

log Y+Y− = 2 log
1 + Y1|vw

1 + Y1|w
? s− log (1 + YQ) ? KQ + 2 log(1 + YQ) ? KQ1

xv ? s

+ 2 logS(r−1 − v)−
∑
i

log

(
S1∗1
xv

)2
S2

? s(u
(1)
i , v) + log

S(u
(1)
2 − v)

S(u
(1)
3 − v)

(5.4)

− log
S2(u

(1)+
2 − v)

S2(u
(2)+
2 − v)

S2(u
(2)−
3 − v)

S2(u
(1)−
3 − v)

+ 2 log
S21
xv(u

(1)+
2 , v)S21

xv(u
(2)−
3 , v)

S21
xv(u

(2)+
2 , v)S21

xv(u
(1)−
3 , v)

? s ,

where we used identities from appendix B to replace the mirror-mirror S-matrices S11
xv with

the string-mirror S1∗1
xv . As before this form indicates that it might be possible to choose

the integration contours for YQ so that they would only enclose the zeroes of 1 + Y1 in the

string region, and all zeroes and poles of Y2 in the analyticity strip of the mirror u-plane.

Such a choice, however, would require very intricate integration contours for the auxiliary

Y-functions which we will not attempt to describe.

Simplified TBA equations for YQ. Applying (K + 1)−1 to the canonical equations,

the terms which depend on the Y-functions (and involve only the kernels) produce the

usual contributions [10, 16]. The contribution of the driving terms can be found through

the identities from appendix B. This yields the following simplified TBA equations for

Q-particles

• Q ≥ 4

log YQ = log

(
1 + 1

YQ−1|vw

)2(
1 + 1

YQ−1

)(
1 + 1

YQ+1

) ? s (5.5)
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The contributions of the zeroes of 1 + YQ cancel each other for Q ≥ 3, and therefore

no driving term appears.

• Q = 3

log Y3 = logS(u
(2)+
2 − v)− logS(u

(2)−
3 − v) + log

(
1 + 1

Y2|vw

)2(
1 + 1

Y2

)(
1 + 1

Y4

) ? s . (5.6)

The driving terms are explained by the zeroes of 1 + Y2 at u
(2)+
2 and u

(2)−−−
3 . The

contributions of the two zeroes of 1 + Y4 cancel each other.

• Q = 2

log Y2 = logS(u
(1)
2 − v)− logS(u

(1)
3 − v) + log

(
1 + 1

Y1|vw

)2(
1 + 1

Y1

)(
1 + 1

Y3

) ?p.v s , (5.7)

The contribution due to the zero of 1 + Y1 at u1 in the string region is canceled

because of the zero of Y1|vw at u1. Next, both Y1|vw and Y1 have zeroes at u = r0

which contributions cancel each other. The contributions of the two zeroes of 1 + Y3

cancel each other, and we are left with the two driving terms produced by the zeroes

of 1 + Y1 at u
(1)
2 and u

(1)−−
3 .

• Q = 1

log Y1 = log

(
1− 1

Y−

)2

?̂ s− log

(
1 +

1

Y2

)
? s+ log

S(u
(2)+
2 − v)

S(u
(2)−
3 − v)

− 2 logS(r−0 − v)

− ∆̌v ?̌ s+ log Š1 ?̌ s(u1, v)− log Š1 ?̌ s(r0, v) + 2 log Š ?̌ s(r−0 , v) (5.8)

+ log Σ̌2
1∗(u1, v)

Σ̌2
1(u

(1)
2 , v)

Σ̌2
1(u

(1)
3 , v)

?̌ s− log
Σ̌2

2(u
(1)+
2 , v)Σ̌2

2(u
(2)−
3 , v)

Σ̌2
2(u

(1)−
3 , v)Σ̌2

2(u
(2)+
2 , v)

?̌ s

where

∆̌v = LĚ + log

(
1− 1

Y−

)2(
1− 1

Y+

)2

?̂ Ǩ + log

(
1 +

1

YM |vw

)2

?p.v. ǨM

+ 2 log(1 + YQ) ? ǨΣ
Q . (5.9)

Note that the terms + log Š1 ?̌ s(u1, v) − log Š1 ?̌ s(r0, v) on the second line of (5.8)

combine with log
(

1 + 1
YM|vw

)2
?p.v. ǨM and remove the principal value prescription

in the integral. The driving terms in this equation can be explained by the zero of

1 − Y− at r−0 , the zeroes of Y1|vw at r0 and u1, the zeroes and poles of 1 + YQ, and

our choice of the integration contours. The infinite sum involving YM |vw-functions

in (5.9) can be computed in the same way as it was done in [16], producing additional

driving terms.
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Using the identities in appendix B, the TBA equation for Y1 can be rewritten to contain

Σ̌1∗-terms similar to the ones for the Konishi state, namely

log Y1 = log

(
1− 1

Y−

)2

?̂ s− log

(
1 +

1

Y2

)
? s+ log

S(u
(2)+
2 − v)

S(u
(2)−
3 − v)

S(r+
0 − v)

S(r−0 − v)

− ∆̌v ?̌ s+
∑
i

log Σ̌2
1∗Š1(u

(1)
i , v) ?̌ s+

∑
j=2,3

log
Š(u

(1)+
j , v)

Š(u
(1)−
j , v)

?̌ s (5.10)

+ log
Š(r−0 , v)

Š(r+
0 , v)

?̌ s− log
Σ̌2

2(u
(1)+
2 , v)Σ̌2

2(u
(2)−
3 , v)

Σ̌2
2(u

(1)−
3 , v)Σ̌2

2(u
(2)+
2 , v)

?̌ s .

The simplified equations for the Y-functions can be used to prove their real analyticity.

Hybrid TBA equations for YQ. The hybrid form of the TBA equations for YQ is

derived from the corresponding canonical equations and the simplified equations for YM |vw
in the same way as was done in [13]. To make the presentation transparent, we introduce a

function which combines the terms on the right hand side of the hybrid ground state TBA

equation

GQ(v) = −LTBA ẼQ + log
(
1 + YQ′

)
? (KQ′Q

sl(2) + 2s ? KQ′−1,Q
vwx ) (5.11)

+2 log
(
1 + Y1|vw

)
? s ?̂KyQ + 2 log(1 + YQ−1|vw) ? s

−2 log
1− Y−
1− Y+

?̂ s ? K1Q
vwx + log

1− 1
Y−

1− 1
Y+

?̂ KQ + log

(
1− 1

Y−

)(
1− 1

Y+

)
?̂ KyQ .

With the help of GQ, the hybrid TBA equations for YQ read as

log YQ(v) =GQ(v)− log
S1Q
sl(2)(u

(1)
2 , v)

S1Q
sl(2)(u

(1)
3 , v)

S1∗Q
sl(2)(u1, v) + log

S2Q
sl(2)(u

(2)−
3 , v)

S2Q
sl(2)(u

(1)−
3 , v)

S2Q
sl(2)(u

(1)+
2 , v)

S2Q
sl(2)(u

(2)+
2 , v)

− logS1Q
vwx(u1, v) + logS1Q

vwx(r0, v)− logSQ(r−0 − v)SyQ(r−0 , v)

+ 2 logS(u−1 , v)S(r−0 , v) ?p.v. K
1Q
vwx − 2 log

S(u
(2)+
2 , v)

S(u
(2)−
3 , v)

? K1Q
vwx . (5.12)

It is worth mentioning that the first two terms on the second line combine nicely with

the first term on the third line and give the term 2 logS(u−1 , v)S(r−0 , v) ? K1Q
vwx with the

usual integration contour, i.e. running above u1 but below r0. Finally, we point out that

equation (4.19) allows us to rewrite (5.12) in terms of the S-matrices S1∗Q
sl(2) which is useful

for analyzing the exact Bethe equations and for numerics.

6 Exact Bethe equations

In this section we discuss the exact Bethe equations (quantization conditions) for the roots

u1 and u
(1,2)
i where i = 2, 3. Let us recall that according to the discussion in section 3 we

can choose the following equations as our quantization conditions

Y1∗(u1) = −1 , Y1(u
(1)++
2 ) = −1 ⇔ Y1(u

(1)−−
3 ) = −1 , (6.1)

Y2(u
(2)+
2 ) = −1 ⇔ Y2(u

(2)−
3 ) = −1 . (6.2)
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This is the simplest set of exact Bethe equations because the complex roots u
(Q)++
2 and

u
(Q)+
2 are inside the analyticity strip of the mirror u-plane and the analytic continuation of

the TBA equations for YQ functions to these points is straightforward - all we need to do is

to set in (5.12) the variable v to u
(1)++
2 in the equation for Y1 and to u

(2)+
2 in the equation

for Y2, and then equate the result to 2πin. Note that since u
(2)
2 ≈ u(1)

2 for small g the mode

number appearing in the equation for u
(2)
2 depends on the one for u

(1)
2 . The exact Bethe

equations for u3 are equivalent to those for u2 due to the real analyticity of Y-functions.

For the real rapidity u1 the quantization condition is unique and we must analytically

continue the hybrid equation for Y1 to the string region. Following the derivation in [13]

and using the identities from appendix C, we get

2πin1 =G1∗(u1)− log
S11∗
sl(2)(u

(1)
2 , u1)

S11∗
sl(2)(u

(1)
3 , u1)

+ log
S21∗
sl(2)(u

(2)−
3 , u1)

S21∗
sl(2)(u

(1)−
3 , u1)

S21∗
sl(2)(u

(1)+
2 , u1)

S21∗
sl(2)(u

(2)+
2 , u1)

− 2 log
S(u

(2)+
2 , u1)

S(u
(2)−
3 , u1)

? K11∗
vwx − logS1(r−0 − u1)Sy1∗(r

−
0 , u1)

+ 2 log ResS ? K11∗
vwx(r−0 , u1)− 2 log

(
u1 − r0 −

2i

g

)
x+
s (r0)− x+

s (u1)

x+
s (r0)− x−s (u1)

(6.3)

+ 2 log ResS ? K11∗
vwx(u−1 , u1)− 2 log

(
− 2i

g

x−s (u1)− 1
x−s (u1)

x−s (u1)− 1
x+s (u1)

)
.

where G1∗(u1) is obtained by analytically continuing (5.11)

G1∗(u1) = iLTBA p1 + log (1 + YQ) ? (KQ1∗
sl(2) + 2s ? KQ−1,1∗

vwx ) (6.4)

+2 log
(
1 + Y1|vw

)
? (s ?̂Ky1∗ + s̃)

−2 log
1− Y−
1− Y+

?̂ s ? K11∗
vwx + log

1− 1
Y−

1− 1
Y+

?̂ K1 + log

(
1− 1

Y−

)(
1− 1

Y+

)
?̂ Ky1∗ ,

and s̃(u) = s(u−). Since the root u1 is real while u2 and u3 are complex conjugate to each

other the real part of equation (6.3) must vanish. We show that this is indeed the case in

appendix C.

We further notice that we can express all S11∗
sl(2) S-matrices via S1∗1∗

sl(2) by using

S11∗
sl(2)(u

(1)
2 , u1) = S1∗1∗

sl(2) (u
(1)
2 , u1) ,

S11∗
sl(2)(u

(1)
3 , u1)S1∗1∗

sl(2) (u
(1)
3 , u1) = 1/h1∗(u

(1)
3 , u1)2 = h1(u1, u

(1)
3 )2 , (6.5)

where the last formula is the analytic continuation of the identity (4.19). The representa-

tion of the exact Bethe equations via S1∗1∗
sl(2) is useful in proving the vanishing of the real

part of equation (6.3) and in checking the Bethe-Yang equations in the limit g → 0 as

discussed below.

Equivalence of quantization conditions. An important fact to emphasize is that the

equations (6.1) and (6.2) are not the only quantization conditions. In addition we should
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have

Y1(u
(1)
2 ) = −1 ⇔ Y1(u

(1)
3 ) = −1 , (6.6)

Y2(u
(2)+++
2 ) = −1 ⇔ Y2(u

(2)−−−
3 ) = −1 , (6.7)

since these conditions have also been used to derive the TBA equations. These extra

quantization conditions obviously have to be equivalent to (6.1) and (6.2) respectively, i.e.

we want to verify

Y1(u
(1)
2 ) = −1

?⇐⇒ Y1(u
(1)++
2 ) = −1 , (6.8)

Y2(u
(2)+
2 ) = −1

?⇐⇒ Y2(u
(2)+++
2 ) = −1 , (6.9)

and we will do so by making use of the Y-system. As can be checked, the Y-functions which

solve the TBA equations also solve the corresponding Y-system equations. In particular

Y1 and Y2 satisfy the following equations

Y1(v−)Y1(v+) =

(
1− 1

Y−

)2

1 + 1
Y2

(v) , (6.10)

Y2(v−)Y2(v+) =

(
1 + 1

Y1|vw

)2(
1 + 1

Y1

)(
1 + 1

Y3

)(v) , (6.11)

which are valid for any v on the mirror u-plane (excluding points on its cuts).

Now let us consider the equation for Y1 at v = u
(1)+
2 and the equation for Y2 at

v = u
(2)++
2 . Then taking into account that

Y2(u
(1)+
2 ) = Y−(u

(1)+
2 ) =∞ , Y1(u

(2)++
2 ) = Y3(u

(2)++
2 ) = Y1|vw(u

(2)++
2 ) =∞ ,

we find

Y1(u
(1)
2 )Y1(u

(1)++
2 ) = 1 , Y2(u

(2)+
2 )Y2(u

(2)+++
2 ) = 1 (6.12)

which clearly implies the equivalence of the quantization conditions.

Mirror and string quantization conditions. In addition to the quantization condi-

tions discussed above, we could also expect to have the exact Bethe equation Y1∗(u
(1)
3 ) =

−1, where Y1∗ is the analytic continuation of Y1 to the string region. In other words, we

would then have

Y1(u
(1)−−
3 ) = −1 ⇔ Y1(u

(1)
3 ) = −1 ⇔ Y1∗(u

(1)
3 ) = −1 . (6.13)

The last condition in (6.13) is not necessary for our derivation of the TBA equations

because the point u
(1)
3 of the string u-plane is not enclosed by the integration contours.

Nevertheless, we will show that this condition holds and therefore the exact Bethe equations

can be written in precisely the same form as for real momenta

Y1∗(u
(1)
i ) = −1 , i = 1, 2, 3 , (6.14)
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where we have also taken into account that u
(1)
2 lies in the overlap of the mirror and string

regions, so that Y1(u
(1)
2 ) = Y1∗(u

(1)
2 ).

To show that the quantization condition Y1(u
(1)
3 ) = −1 in the mirror region implies

the usual exact Bethe equation Y1∗(u
(1)
3 ) = −1 in the string region, we will analytically

continue the TBA equation for Y1 to a point v close to u
(1)
3 in the mirror u-plane, and

to the same point in the string u-plane. The resulting two equations are then added up

and used to show that Y1(u
(1)
3 )Y1∗(u

(1)
3 ) = 1. The considerations below require the use

of crossing relations for various kernels and S-matrices because the point u
(1)
3 lies in the

overlap of the mirror and anti-string regions. We find it easier to handle the canonical TBA

equation (4.18) for Y1 because its kernels and S-matrices have simpler properties under the

crossing transformation.

The analytic continuation of the canonical TBA equation (4.18) to v ≈ u
(1)
3 of the

mirror u-plane is straightforward and gives

log Y1(v) =− LTBA Ẽ1 + log (1 + YQ) ? KQ1
sl(2) + 2 log

(
1 +

1

YQ|vw

)
?p.v K

Q1
vwx

+ log
1− 1

Y−

1− 1
Y+

?̂ K1 + log

(
1− 1

Y−

)(
1− 1

Y+

)
?̂ Ky1

− logS1∗1
sl(2)(u1, v)

S11
sl(2)(u

(1)
2 , v)

S11
sl(2)(u

(1)
3 , v)

+ log
S21
sl(2)(u

(1)+
2 , v)

S2Q
sl(2)(u

(2)+
2 , v)

S21
sl(2)(u

(2)−
3 , v)

S21
sl(2)(u

(1)−
3 , v)

− logS11
vwx(u1, v) + logS11

vwx(r0, v)− logS1(r−0 − v)Sy1(r−0 , v)

− log(1 + Y2(v−)) + 2 log

(
1− 1

Y−(v−)

)
, (6.15)

where the terms on the last line of (6.15) appear because of the poles of K21
sl(2)(t, v) and

(K1 +Ky1)(t, v) at v = t+ i/g.

The analytic continuation of the canonical TBA equation for Y1 to v ≈ u
(1)
3 in the

string region is discussed in detail in appendix C, and the resulting TBA equation for

v ≈ u(1)
3 is

log Y1∗(v) = − LTBA Ẽ1∗ + log (1 + YQ) ? KQ1∗
sl(2) + 2 log

(
1 +

1

YQ|vw

)
?p.v K

Q1∗
vwx

+ log
1− 1

Y−

1− 1
Y+

?̂ K1 + log

(
1− 1

Y−

)(
1− 1

Y+

)
?̂ Ky1∗ − log(1 + Y2(v−))

+ 2 log

(
1− 1

Y+∗̂(v
+)

)
+ 2 log

(
1 +

1

Y1∗̂|vw(v)

)
+ 2 log

(
1 +

1

Y2|vw(v−)

)

− log
S11∗
sl(2)(u

(1)
2 , v)

S11∗
sl(2)(u

(1)
3 , v)

S1∗1∗
sl(2) (u1, v) + log

S21∗
sl(2)(u

(2)−
3 , v)

S21∗
sl(2)(u

(1)−
3 , v)

S21∗
sl(2)(u

(1)+
2 , v)

S21∗
sl(2)(u

(2)+
2 , v)

− logS11∗
vwx(u1, v) + log

S11∗
vwx(r0, v)

S1(r−0 v)Sy1∗(r
−
0 , v)

. (6.16)
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In the above, Y1∗̂|vw and Y+∗̂ are the analytic continuations of Y1|vw and Y+ through their

cuts at i/g and 2i/g respectively, cf. appendix C.

To proceed further we add the right hand sides of equations (6.15) and (6.16). Then, by

using the crossing relations (C.9) for the bound-state dressing factors and other identities

from appendix C, we find for v ≈ u(1)
3

log Y1(v)Y1∗(v) =− 2 log (1 + YQ) ? (KQ1
xv (v)−KQy(v

−))

+ 2 log

(
1 +

1

YQ|vw

)
?p.v KQ1(v) + 2 log

1− 1
Y−

1− 1
Y+

?̂ K1(v)

− 2 log(1 + Y2(v−)) + 2 log

(
1− 1

Y−(v−)

)(
1− 1

Y+∗̂(v
+)

)
+ 2 log

(
1 +

1

Y1∗̂|vw(v)

)
+ 2 log

(
1 +

1

Y2|vw(v−)

)

− log
S11
sl(2)(u

(1)
2 , v)S11∗

sl(2)(u
(1)
2 , v)

S11
sl(2)(u

(1)
3 , v)S11∗

sl(2)(u
(1)
3 , v)

S1∗1
sl(2)(u1, v)S1∗1∗

sl(2) (u1, v)

+ log
S21
sl(2)(u

(2)−
3 , v)S21∗

sl(2)(u
(2)−
3 , v)

S21
sl(2)(u

(1)−
3 , v)S21∗

sl(2)(u
(1)−
3 , v)

+ log
S21
sl(2)(u

(1)+
2 , v)S21∗

sl(2)(u
(1)+
2 , v)

S21
sl(2)(u

(2)+
2 , v)S21∗

sl(2)(u
(2)+
2 , v)

− logS2(u1 − v) + log
S2(r0 − v)

S1(r−0 − v)2
. (6.17)

To show that the right hand side of this equation in fact vanishes at v = u
(1)
3 , we use

the canonical TBA equations for vw-strings continued to v ≈ u
(1)
3 through the cut at i/g.

Noting that KQ1∗̂
xv (u, v) = KQ1

xv (u, v)−KQy(u, v
−), it reads

Y1∗̂|vw(v) = log

(
1 +

1

YQ|vw

)
? KQ1(v) + log

(
1 +

1

Y2|vw(v−)

)
+

+ log
1− 1

Y−

1− 1
Y+

?̂K1 − log(1 + YQ) ? (KQ1
xv (v)−KQy(v

−)) (6.18)

− log(1 + Y2(v−)) +
1

2
log

S2(r0 − v)

S2(u1 − v)
− logS1(r−0 − v)

− log
S11
xv(u

(1)
3 , v)

S11
xv(u

(1)
2 , v)

+ log
S1y(u

(1)
3 , v−)

S1y(u
(1)
2 , v−)

+ S1∗1
xv (u1, v)− logS1∗y(u

(1)
1 , v−)

− log
S21
xv(u

(1)+
2 , v)S21

xv(u
(2)−
3 , v)

S21
xv(u

(2)+
2 , v)S21

xv(u
(1)−
3 , v)

+ log
S2y(u

(1)+
2 , v−)

S2y(u
(2)+
2 , v−)

S2y(u
(2)−
3 , v−)

S2y(u
(1)−
3 , v−)

Using this equation and crossing relations (C.9), all driving terms and convolution terms

cancel and we find a simple result

Y1(v)Y1∗(v) = (1 + Y1∗̂|vw(v))2

(
1− 1

Y−(v−)

)2(
1− 1

Y+∗̂(v
+)

)2

.
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It is now straightforward to show that Y1(u
(1)
3 )Y1∗(u

(1)
3 ) = 1. Firstly, considering the

equation for Y1∗̂|vw at u
(1)
3 , it is clear that we have

Y1∗̂|vw(u
(1)
3 ) = 0 , (6.19)

because S1y(u
(1)
3 , u

(1)−
3 ) is zero, while the poles of Y2 at u

(1)−
3 and S21

xv(u
(1)−
3 , v) at u

(1)
3

cancel each other and all other terms in (6.18) are finite. Then, analytically continuing the

canonical equations for y-particles, we find that after crossing the cut at 2i/g

log Y+∗̂(u
(1)+
3 ) ∼ log

(
1 +

1

Y1∗̂|vw

)
+ reg. ⇒ Y+∗̂(u

(1)+
3 ) =∞ , (6.20)

so that we obtain the desired result

Y1(u
(1)
3 )Y1∗(u

(1)
3 ) = 1 . (6.21)

Exact Bethe equations for roots rM . The TBA equations also depend on additional

roots rM . The exact Bethe equations for the roots are just obtained by analytically con-

tinuing the equations for −Y− and YM |w to r−0 and r−M respectively, and setting the values

of these functions to −1.

Relation to the asymptotic Bethe Ansatz. In the asymptotic limits g → 0 with J
fixed or J →∞ with g fixed the exact quantization conditions for the Bethe roots should
reduce to the Bethe-Yang equations

πi(2nk + 1) = ipkJ −
3∑

j=1

logS1∗1∗
su(2)(uj , uk) , nk ∈ Z , (6.22)

where S1∗1∗
su(2) is the S-matrix in the su(2)-sector related to S1∗1∗

sl(2) as

S1∗1∗
su(2)(uj , uk) = S1∗1∗

sl(2) (uj , uk)

3∏
j=1

x+
k − x

−
j

x−k − x
+
j

√√√√x+
j x
−
k

x−j x
+
k

2

. (6.23)

Since in these equations the S-matrix has both arguments in the string region it is con-

venient to express all S11∗
sl(2) S-matrices in the exact Bethe equations via S1∗1∗

sl(2) at the final

stage of deriving the Bethe-Yang equations from them.

According to the discussion in section 3 in the asymptotic limit u
(2)
2 → u

(1)
2 and

u
(2)
3 → u

(1)
3 , and by using (3.3) we find

u
(2)
2 − u

(1)
2 ≈ −ResY2(u

(1)+
2 ) , u

(1)
2 − u

(2)
2 ≈ −ResY1(u

(2)++
2 ) , (6.24)

where we have taken into account that 1 + Y1 has a zero at u
(1)++
2 and a pole at u

(2)++
2

while 1 + Y2 has a zero at u
(2)+
2 and a pole at u

(1)+
2 . Comparing these two expressions we

immediately conclude that in the asymptotic limit the residues of Y1 and Y2 must obey the

relation

ResY2(u+
2 ) + ResY1(u++

2 ) = 0 , (6.25)
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where we have equated u
(2)
2 = u

(1)
2 ≡ u2. This is indeed satisfied, as can be readily verified

through the Bajnok-Janik formula (3.6) for YQ functions.

Restricting ourselves for definiteness to the limit g → 0 with J fixed and rescaling

the rapidities u → u/g so that the rescaled Bethe roots have a finite limit as g → 0, we

find that the leading term of ResY2(u
(1)+
2 ) scales as g2L. Hence, we arrive at the following

asymptotic relation for the rescaled rapidities

u
(2)
2 − u

(1)
2 = g2La+O(g2L+1) , (6.26)

where the constant a can be found either from the TBA equation for Y2 or from the Bajnok-

Janik formula (3.6). This formula shows that as expected at weak coupling the corrections

to the asymptotic Bethe ansatz start at L-loop order.

Taking the limit u
(2)
2 → u

(1)
2 ≡ u2 and u

(2)
3 → u

(1)
3 ≡ u3 and dropping the subleading

terms log(1 +YQ) in the exact Bethe equation (6.3) for u1 is straightforward, and it is easy

to verify numerically that the resulting equation coincides with (6.22).
Considering the asymptotic limit of the exact quantization condition for the complex

root u
(1)
2 is more involved and it is convenient to do this by using the equation Y1(u

(1)
2 ) = −1

because there the S11
sl(2) S-matrices depend on u

(1)
i only. To write down the exact Bethe

equation for u
(1)
2 , we need to analytically continue the hybrid TBA equation7 for Y1 to this

point. This is done in appendix C and the resulting exact Bethe equation at u
(1)
2 is

log(−1) = log Y1(u
(1)
2 ) = G1(u

(1)
2 ) + 2 log

(
1 + Y1|vw

)
? s̃− log

S11
sl(2)(u

(1)
2 , u

(1)
2 )

S11
sl(2)(u

(1)
3 , u

(1)
2 )

S1∗1
sl(2)(u1, u

(1)
2 )

− 2 log
S(u

(2)+
2 , u

(1)
2 )

S(u
(2)−
3 , u

(1)
2 )

? K11
vwx − logS1(r−0 − u

(1)
2 )Sy1(r−0 , u

(1)
2 )

+ log
S21
sl(2)(u

(2)−
3 , u

(1)
2 )

S21
sl(2)(u

(1)−
3 , u

(1)
2 )

+ log
ResS21

sl(2)(u
(1)+
2 , u

(1)
2 )

S21
sl(2)(u

(2)+
2 , u

(1)
2 ) ResY2(u

(1)+
2 )

(6.27)

+ 2 log ResS ? K11
vwx(u−1 , u

(1)
2 )− log

(
u1 − u(1)2 −

2i

g

)2
x−s (u1)− 1

x−(u
(1)
2 )

x−s (u1)− 1

x+(u
(1)
2 )

2

+ 2 log ResS ? K11
vwx(r−0 , u

(1)
2 )− log

(
r0 − u(1)2 +

2i

g

)2
(
x+s (r0)− x+(u

(1)
2 )

x+s (r0)− x−(u
(1)
2 )

)2

.

Taking the limit u
(2)
2 → u

(1)
2 in this equation is not straightforward because the S-

matrix S21
sl(2)(u

(2)+
2 , u

(1)
2 ) develops a singularity. For u

(2)
2 ∼ u(1)

2 we have

logS21
sl(2)(u

(2)+
2 , u

(1)
2 ) = log

ResS21
sl(2)(u

(1)+
2 , u

(1)
2 )

u
(1)
2 − u

(2)
2

+ o(δu) , (6.28)

where δu = u
(1)
2 −u

(2)
2 . Taking into account (6.24), we get that in the limit u

(2)
2 → u

(1)
2 the

terms on the third line of equation (6.27) vanish, and therefore equation (6.27) acquires

7Of course we can perform the analytic continuation at the level of the canonical or simplified equation

for Y1 as well. The hybrid form is preferred because it is the simplest one.
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the form

log(−1) =Gasympt
1 (u2) + 2 log

(
1 + Y1|vw

)
? s̃− log

S11
sl(2)(u2, u2)

S11
sl(2)(u3, u2)

S1∗1
sl(2)(u1, u2)

− 2 log
S(u+

2 , u2)

S(u−3 , u2)
? K11

vwx − logS1(r−0 − u2)Sy1(r−0 , u2) (6.29)

+ 2 log ResS ? K11
vwx(u−1 , u2)− log

(
u1 − u2 −

2i

g

)2
(
x−s (u1)− 1

x−(u2)

x−s (u1)− 1
x+(u2)

)2

+ 2 log ResS ? K11
vwx(r−0 , u2)− log

(
r0 − u2 +

2i

g

)2(x+
s (r0)− x+(u2)

x+
s (r0)− x−(u2)

)2

,

where Gasympt
1 is G1 with the subleading terms log(1 + YQ) neglected.

It is worth mentioning that our consideration is valid for both the asymptotic limit

g → 0 with J fixed, and J → ∞ with g fixed. Thus, this formula should coincide with

the expression for the asymptotic Bethe ansatz for any value of g! In other words, if we

substitute the asymptotic expressions for the Y-functions in equation (6.29) it should turn

into the BY equation (6.22) for u2. This is indeed the case as we have verified numerically.

7 Conclusions

In this paper we have developed a description of string excited states with complex momenta

in the framework of the mirror Thermodynamic Bethe Ansatz. For suitably small g the

asymptotic solution is reliable and the corresponding TBA equations can be constructed

by applying the contour deformation trick. However, as soon as g exceeds a certain critical

value, the description of a state through the BY equations breaks down as its energy

becomes complex. In our main example of the L = 7 three-particle state this happens for

g & 0.53. Therefore, it is important to understand how the TBA equations may cure this

problem, and what happens to the state at large values of coupling. The answers to these

questions do not appear to be straightforward, requiring analysis of the coupled system of

TBA and exact Bethe equations. However, the following scenario seems quite plausible;

due to the TBA corrections to the BY equations the motion of the complex Bethe roots

towards the boundaries of the analyticity strip slows down so that they actually freeze

as g → ∞. Indeed, for g = 0.5 which is close to the problematic value of 0.53 the

asymptotic YQ-functions are very small, see figure 4 and 5, and they approximate the

exact Y-functions with very high precision. At the same time the exact positions of the

Bethe roots uk can change much more noticeably because the roots u2 and u3 are close to

the lines Im(u) = ±1/g, and some of the kernels appearing in the exact Bethe equations

develop singularities as Im(u2,3) → ±1/g and give large contributions to the r.h.s. of the

equations. It is less clear what might happen to complex roots of states which fall in the

kth strip at weak coupling. The BY equations allow for these roots to move towards the

k = 1 analyticity strip as g increases. For the exact Bethe equations, various scenarios can

take place, for instance, the roots always stay in the kth strip or, just as in the asymptotic
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Figure 4. The asymptotic Y1- and Y3-functions on the real mirror line at g = 0.5.
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Figure 5. The asymptotic Y2-function on the real mirror line at g = 0.5.

case, they move towards the boundaries of the first strip and get frozen there. Clearly,

understanding of these issues will shed further light on how the string spectrum is organized.

Recently a way of obtaining excited state TBA equations alternative to the contour

deformation trick has been discussed in the literature. It has been argued in [43, 49] and

shown for a large class of states from the sl(2) sector [53] that the Y-system functional

relations [52] supplied with the jump discontinuity conditions and with some analyticity

assumptions on the distribution of zeroes and poles of the Y- functions are sufficient to

transform the Y-system to TBA integral equations. It is not difficult to see that the TBA

lemmas [53–55] allow us to also reconstruct the TBA equations for YM |w- and YM |vw-

functions for the cases we study here. How this method is applied for Y± and Y1 requires

more careful considerations which we have not attempted. In general, it would be of

interest to understand how the Y-system can be transformed into TBA integral equations

for states from the su(2) sector. This is undoubtedly possible because all TBA equations

we constructed are compatible with the Y-system functional relations, as we have checked.

Also, the driving terms in the simplified TBA equations can be rewritten to depend on the

positions of zeros and poles of Y-functions inside the analyticity strip. We should stress

however that the Y-system does not provide an intrinsic definition of the energy formula,

and for this reason the integration contour is still essential in determining the energy.
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Finally, we would like to mention that there has been recent interesting

progress [48, 56, 57] towards obtaining a finite set of non-linear integral equations (NLIE)

as a complementary approach to the TBA description of the spectrum of the AdS5 × S5

superstring. It would be important to see how states with complex momenta from the

su(2) sector whose TBA equations we have proposed can be accommodated within the

NLIE approach. Another interesting direction is to understand implications of our results

to the spectral problem in β-deformed and orbifold theories [58]–[63].
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A Contribution from log(1 + YQ) ?CQ
KQ

In this appendix we consider the contribution of the terms of the form log(1 + YQ) ?CQ
KQ

where KQ is an arbitrary kernel and SQ is the corresponding S-matrix. First we will discuss

the contribution for the L = 7 state considered in the main text. Below we also discuss

the contribution for a three-particle state with rapidities in the kth strip.

L = 7. Taking the contour described in the main text back to the real line, we obtain

the following contributions from the different YQ functions

• Q = 1

logS1(u
(2)−−
3 , v)− logS1(u

(1)−−
3 , v)− logS1(u

(1)
2 , v)− logS1∗(u1, v) (A.1)

• Q = 2

+ logS2(u
(1)+
2 , v) + logS2(u

(3)−−−
3 , v)

− logS2(u
(2)+
2 , v)− logS2(u

(2)−−−
3 , v) (A.2)

• Q ≥ 3

+ logSQ
(
u

(Q−1)
3 − i

g
(Q− 1), v

)
+ logSQ

(
u

(Q+1)
3 − i

g
(Q+ 1), v

)
− logSQ

(
u

(Q)
3 − i

g
(Q− 1), v

)
− logSQ

(
u

(Q)
3 − i

g
(Q+ 1), v

)
(A.3)
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Now let us assume that SQ satisfies the discrete Laplace equation

SQ−1(u, v)SQ+1(u, v) = SQ(u−, v)SQ(u+, v) .

Then we take a sum over Q ≥ 3 of the terms in (A.3) and get

∞∑
Q=3

log
SQ
(
u

(Q−1)
3 − i

g (Q− 1), v
)
SQ
(
u

(Q+1)
3 − i

g (Q+ 1), v
)

SQ
(
u

(Q)
3 − i

g (Q− 1), v
)
SQ
(
u

(Q)
3 − i

g (Q+ 1), v
) = log

S3(u
(2)−−
3 , v)

S2(u
(3)−−−
3 , v)

. (A.4)

Adding the contributions from Q = 1, 2, we finally get the driving terms originating from

log(1 + YQ) ?CQ
KQ

− logS1∗(u1, v)− log
S1(u

(1)
2 , v)

S1(u
(1)
3 , v)

+ log
S2(u

(1)+
2 , v)

S2(u
(2)+
2 , v)

S2(u
(2)−
3 , v)

S2(u
(1)−
3 , v)

. (A.5)

In the asymptotic limits g → 0 with J fixed or J →∞ with g fixed the last term in (A.5)

goes to 0. Using the discrete Laplace equation, equation (A.5) can be also written in the

form

− logS1∗(u1, v) + log
S2(u

(1)++
2 , v)

S2(u
(1)−−
3 , v)

S2(u
(2)−
3 , v)

S2(u
(2)+
2 , v)

. (A.6)

It is worth mentioning that all the driving terms in (A.5) depend only on the singu-

larities of Y1 and Y2 functions, and in fact they can also be explained by the integration

contours which pick up the contribution of the real zero of 1 +Y1 in the string u-plane, the

zeroes u
(1)
2 and u

(1)
3 of 1+Y1 in the mirror u-plane, and all zeroes and poles of 1+Y2 in the

analyticity strip of the mirror u-plane, but avoid all the other zeroes and poles of 1 + YQ
even those which are inside the analyticity strip of the mirror u-plane.

General three-particle states. Here we give the generalization of the above contribu-

tion for the L = 7 state to three-particle states with rapidities in the kth strip. Let us

discuss the u3 contribution in some detail. Since the poles and zeroes associated to u3 are

always shifted down, we simply need to determine when they start to contribute. If u3 is in

the kth strip, it needs to be shifted down k times to lie below the real line and contribute.

This means we get all contributions from YQ≥k+1

∞∑
Q=k+1

log
SQ
(
u

(Q−1)
3 − i

g (Q− 1), v
)
SQ
(
u

(Q+1)
3 − i

g (Q+ 1), v
)

SQ
(
u

(Q)
3 − i

g (Q− 1), v
)
SQ
(
u

(Q)
3 − i

g (Q+ 1), v
) = (A.7)

= log
Sk+1

(
u

(k)
3 − i

gk, v
)

Sk
(
u

(k+1)
3 − i

g (k + 1), v
) .

Next, from Yk we get a contribution

log
Sk
(
u

(k+1)
3 − i

g (k + 1), v
)

Sk
(
u

(k)
3 − i

g (k + 1), v
) ,
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while from Yk−1 we get

log
Sk−1

(
u

(k)
3 − i

gk, v
)

Sk−1

(
u

(k−1)
3 − i

gk, v
) .

Summing these up immediately yields

log
Sk+1(u

(k)
3 − i

gk, v)Sk−1(u
(k)
3 − i

gk, v)

Sk−1(u
(k−1)
3 − i

gk, v)Sk(u
(k)
3 − i

g (k + 1), v)
=

= log
Sk
(
u

(k)
3 − i

g (k − 1), v
)
Sk
(
u

(k)
3 − i

g (k + 1), v
)

Sk−1

(
u

(k−1)
3 − i

gk, v
)
Sk
(
u

(k)
3 − i

g (k + 1), v
)

= log
Sk
(
u

(k)
3 − i

g (k − 1), v
)

Sk−1

(
u

(k−1)
3 − i

gk, v
)

= log
Sk
(
u

(k)
3 − i

g (k − 1), v
)

Sk
(
u

(k−1)
3 − i

g (k − 1), v
) Sk−1

(
u

(k−1)
3 − i

g (k − 2), v
)

Sk−2

(
u

(k−1)
3 − i

g (k − 1), v
)

= log
Sk
(
u

(k)
3 − i

g (k − 1), v
)

Sk
(
u

(k−1)
3 − i

g (k − 1), v
)S1(u

(k−1)
3 , v) (A.8)

All identities follow from the discrete Laplace equations. The last identity in particular is

immediately clear by rewriting the discrete Laplace equation as

SQ

(
u− i

g (Q− 1), v
)

SQ−1

(
u− i

gQ, v
) =

SQ−1

(
u− i

g (Q− 2), v
)

SQ−2

(
u− i

g (Q− 1), v
) . (A.9)

Similarly summing up the u2 contributions, the total contribution is then

− logS1∗(u1, v) + log
S1(u

(k−1)
3 , v)

S1(u
(k−1)
2 , v)

+ log
Sk
(
u

(k−1)
2 + i

g (k − 1), v
)

Sk
(
u

(k)
2 + i

g (k − 1), v
) Sk

(
u

(k)
3 − i

g (k − 1), v
)

Sk
(
u

(k−1)
3 − i

g (k − 1), v
) , (A.10)

where we also added the string contribution for u1. Note that in generalizing the L =

7 case, the generic contribution (A.10) has lost its seemingly obvious connection to the

singularities of Y1.

B Identities to simplify the TBA equations

Here we collect the identities necessary to derive the simplified TBA equations from the

canonical ones. For brevity we have unified the discussion of the identities used for the
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L = 7 state, with rapidities in the second strip, and the L = 40 state, with rapidities in

the third strip respectively. The basic identities hold for rapidities u2 and u3 in the second

strip; additional terms which arise upon changing the location of u2 and u3 to the third

strip are indicated in blue and are underlined.

Before listing the specific identities, let us discuss a frequently encountered situation;

integrating log f of a complex function f over an integration contour which runs either a

bit above or below the real line. For any function f(t) which has real zeroes at uoi and real

poles at u∞j we define log f as

log f(t) ≡ log

(
f(t)

∏
j(t− u∞j )∏
i(t− uoi )

)
+
∑
i

log(t− uoi )−
∑
j

log(t− u∞j ) . (B.1)

Since f̃(t) ≡ f(t)
∏

j(t−u∞j )∏
i(t−uoi ) has no real zeroes or real poles, the cuts of log f̃ can and must

be chosen so that they would not intersect the real line. With such a choice of the cuts of

log f̃ the imaginary part of log fp.v is continuous on the real line where the function fp.v.

is defined as fp.v.(t) ≡ f(t)
∏
j sign(t− u∞j )

∏
i sign(t− uoi ). If f(t) is real for real t and

f(∞) > 0 then fp.v.(t) = |f(t)|. The function fp.v. is used to define the principal value

prescription by the formula

log f ?p.v. K ≡ log fp.v. ? K , (B.2)

where on the right hand side the Cauchy principal value of the integral is computed over the

real line. This definition is a generalization of the one used in [13] to complex functions f .

The formulae (B.1) and (B.2) are also used if some of the zeroes or poles coincide, e.g.

if f has a real double pole at u∞ then log f is understood as

log f(t) ≡ log
(
f(t)(t− u∞)2

)
− 2 log(t− u∞) , (B.3)

and a similar expression if f has a real double zero.

In all the formulae below we define two actions of the operator (K + 1)−1
NM on any set

of functions log fN . The first one is defined as

log fN (K + 1)−1
NM ≡ log fM − log fM−1 ? s− log fM+1 ? s , (B.4)

where the integration contour for the ?-convolution runs a bit above the real line to deal

with zeroes and poles of fM−1 and fM+1 on the real line.

The second action explicitly takes into account the real zeroes and poles by using the

principal value prescription defined above

log fN ?p.v. (K + 1)−1
NM ≡ log fp.v.

M − log fM−1 ?p.v. s− log fM+1 ?p.v. s . (B.5)

To simplify the notations, in this paper we often use the conventions

f(u− v) ?K ≡
∫

dt f(u− t)K(t, v) , g(u, v) ?K ≡
∫

dt g(u, t)K(t, v) ,

where f , g, and K are arbitrary kernels or functions. Notice that according to our other

conventions

f(u− v) ?K ≡ f ?K(u, v) , g(u, v) ?K ≡ g ?K(u, v) . (B.6)
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Identities for YM |w. Firstly we have

∞∑
N=1

logS1N (r0 − v)(K + 1)−1
NM = δ2,M logS(r0 − v) , (B.7)

and

1
2

∑∞
P,N=1 log

SPN (r+N−v)

SPN (r−N−v)
?p.v. (K + 1)−1

NM =

{
− log |S(r−M−1 − v)S(r−M+1 − v)| if M 6=1 ,

− log |S(r−2 − v)| if M=1 ,

where the p.v. prescription has been used to deal with zeroes and poles of SN−1,N and

SN+1,N at v = rN .

Moreover, we need the sum

∞∑
N=1

logSN (r−0 − v) ?p.v. (K + 1)−1
NM =


0 for M ≥ 3 ,

1
2 logS(r0 − v) for M = 2 ,

log |S(r−0 − v)| for M = 1 .

(B.8)

Identities for YM |vw. In addition to the identities for Yw we also need

logS1∗Q
xv ?p.v. (K+1)−1

QM (u1, v)

= δM,1

(
logS1∗y ? s(u1, v)− logS(u−1 − v)

)
+

1

2
δM,2 logS(u1 − v) ,

log
S1Q
xv (u2, v)

S1Q
xv (u3, v)

? (K + 1)−1
QM

= δM,1

(
logS1∗y ?̂ s(u2, v) + logS1∗y ?̂ s(u3, v) + log

S(u+
2 − v)

S(u−3 − v)

)
+δM,2

(
log

S(u3 − v)

S(u2 − v)

)
(B.9)

where we have rewritten S1y in terms of S1∗y. Next we have the identities

log
S2Q
xv (u+

2 , v)

S2Q
xv (u−3 , v)

(K + 1)−1
QM = δM,1

(
log

S2y(u
+
2 , v)

S2y(u
−
3 , v)

?̂ s+ log
S(u+

2 − v)

S(u−3 − v)

)
+δM,2 log

S(u3 − v)

S(u2 − v)
, (B.10)

and

log
S3Q
xv (u++

2 , v)

S3Q
xv (u−−3 , v)

(K + 1)−1
QM = δM,1

(
log

S3y(u
++
2 , v)

S3y(u
−−
3 , v)

?̂ s

)
+ δM,2 log

S(u3 − v)

S(u2 − v)
.
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Identities for Y+Y−. To simplify the canonical TBA equation for Y+Y− we need to

compute the infinite sums involving Yw and Yvw functions. Using the method from sec-

tion 8.4 of [13] which we modify slightly due to the presence of zeroes of Y-functions and

driving terms, we get the following two formulae

∞∑
M=1

log

(
1+

1

YM |vw

)
?p.v. KM = log

(
1 + Y1|vw

)
? s (B.11)

− log
1−Y−
1−Y+

?̂ s ? K1+

∞∑
M=1

log(1+YM+1) ? s ? KM

−
(

log
S(u

(2)+
2 −v)

S(u
(2)−
3 −v)

− logS(u−1 −v)S(r−0 −v)

)
?p.v. K1 ,

and

∞∑
M=1

log

(
1 +

1

YM |w

)
?p.v. KM = log

(
1 + Y1|w

)
? s− log

1− 1
Y−

1− 1
Y+

?̂ s ? K1 (B.12)

+

∞∑
M=1

logS(r−M−1 − v)S(r−M+1 − v) ?p.v. KM .

The sum on the second line of equation (B.12) can be transformed to the form

∞∑
M=1

logS(r−M−1 − v)S(r−M+1 − v) ?p.v.KM = logS(r−0 − v) ?p.v. K1 (B.13)

− logS(r−1 − v) +
1

2

∞∑
M=1

log
SM (r−M − v)

SM (r+
M − v)

.

Then we also use

logS(u−1 − v) ?p.v. K1 = log |S1(u−1 − v)| ? s , (B.14)

logS1∗y(u1, v) ?̂ K1 = logS1∗1
xv (u1, v)− logS1(u+

1 − v) , (B.15)

log |S1(u−1 − v)| ? s+ logS1(u+
1 − v) ? s =

1

2
logS2(u1 − v) ? s , (B.16)

logS1∗1
xv (u1, v) ? s− 1

2
logS2(u1− v) ? s =

1

2
log

S1∗1
xv (u1, v)2

S2(u1 − v)
? s , (B.17)

log
S(u

(2)+
2 − v)

S(u
(2)−
3 − v)

? K1 = log
S1(u

(2)+
2 −v)

S1(u
(2)−
3 −v)

? s+ log
S1(u−−3 −v)

S1(u++
2 −v)

S(u3−v)

S(u2−v)
,

log
S(u3 − v)

S(u2 − v)
? K2 = log

S1(u++
2 − v)

S1(u−−3 − v)
− log

S(u3 − v)

S(u2 − v)
,
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log
S1y(u

(1)
2 , v)

S1y(u
(1)
3 , v)

?̂ K1 = log
S11
xv(u

(1)
2 , v)

S11
xv(u

(1)
3 , v)

− log
S1(u

(1)+
2 − v)

S1(u
(1)−
3 − v)

, (B.18)

log
S2y(u

(1)+
2 , v)

S2y(u
(1)−
3 , v)

?̂ K1 = log
S21
xv(u

(1)+
2 , v)

S21
xv(u

(1)−
3 , v)

− log
S1(u

(1)+
2 − v)

S1(u
(1)−
3 − v)

, (B.19)

log
S3y(u

++
2 , v)

S3y(u
−−
3 , v)

?̂ K1 = log
S31
xv(u

++
2 , v)

S31
xv(u

−−
3 , v)

− log
S2(u++

2 − v)

S2(u−−3 − v)
, (B.20)

logS11
xv(u

(1)
3 , v) = − logS1∗1

xv (u
(1)
3 , v) + logS2(u

(1)
3 − v) , (B.21)

log
S1(u

(1)
2 − v)

S1(u
(1)
3 − v)

− 2 log
S11
xv(u

(1)
2 , v)

S11
xv(u

(1)
3 , v)

? s = − log
S1∗1
xv (u

(1)
2 , v)2

S2(u
(1)
2 − v)

S1∗1
xv (u

(1)
3 , v)2

S2(u
(1)
3 − v)

? s

+ log
S(u

(1)
2 − v)

S(u
(1)
3 − v)

− log
S(u

(1)
2 − v)

S(u
(1)
3 − v)

.

Identities for YQ. Let us start by recalling that the S1∗Q
sl(2) S-matrix has the following

structure

logS1∗Q
sl(2)(u, v) = −2 log Σ1∗Q(u, v)− logS1Q(u− v) (B.22)

= −2 log Σ1∗Q(u, v)− logSQ−1(u− v)− logSQ+1(u− v) .

Thus identities involving S1∗M
sl(2) follow from the corresponding identities for Σ1∗Q and SQ.

Firstly for SQ with the both arguments in the analyticity strip we have the following

identity

logSM ? (K+1)−1
MQ = logSQ − logSQ−1 ? s− logSQ+1 ? s = δQ1 logS(u− v) , u ∈ R .

Analytically continuing this identity in the variable u outside the analyticity strip to the

locations of u2 and u3, we get for u2 and u3 in the second strip (L = 7)

logSM ? (K + 1)−1
MQ(u2, v) = δQ1 logS(u2 − v) + δQ2 logS(u+

2 − v) ,

logSM ? (K + 1)−1
MQ(u3, v) = δQ1 logS(u3 − v) + δQ2 logS(u−3 − v) ,

while for rapidities in the third strip (L = 40) the relevant identities are

logS1M ? (K + 1)−1
MQ(u2, v) = δQ1 logS(u+

2 − v)− δQ2 logS(u2 − v)

+δQ3 logS(u+
2 − v)− δQ4 logS(u2 − v) , (B.23)

logS1M ? (K + 1)−1
MQ(u3, v) = δQ1 logS(u−3 − v)− δQ2 logS(u3 − v)

+δQ3 logS(u−3 − v)− δQ4 logS(u3 − v) , (B.24)

The next identity is for the dressing factor Σ1∗Q with the first argument on the real line of

the string u-plane, e.g. equal to u1

log Σ1∗M ? (K + 1)−1
MQ(u1, v) = δQ1 log Σ̌1∗ ?̌ s(u1, v) . (B.25)
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It was derived in [13] where the precise definition of Σ̌1∗ can be found, see equation (8.24)

there. It is worth mentioning that the expression (8.24) in [13] for Σ̌1∗(u, v) is valid for

any real v and any complex u on the string u-plane because the cuts there are inside the

vertical strip −2 ≤ Reu ≤ 2.

It is convenient to use the canonical TBA equations in the form (4.18). This means

we need identities for Σ1Q with the both arguments in the mirror u-plane. Since Σ1Q is

a holomorphic function in the mirror region they have the same form for any value of the

first argument, i.e. also for u2 and u3

log Σ1M ? (K + 1)−1
MQ(ui, v) = δQ1 log Σ̌1 ?̌ s(ui, v) . (B.26)

We also need the standard identities

log Σ2M (K + 1)−1
MQ = δQ,1 log Σ̌2 ?̌ s , (B.27)

and

logS2M (K + 1)−1
MQ = (δQ,1 + δQ,3) logS , (B.28)

logS3M (K + 1)−1
MQ = (δQ,2 + δQ,4) logS , (B.29)

which can be applied directly since the relevant arguments lie within the analyticity strip

in both the L = 7 and L = 40 cases.

Finally we need the following identities for the auxiliary S-matrices

logS1M
vwx ? (K + 1)−1

MQ(u, v) = δQ2 logS(u− v)− δQ1 log Š1 ?̌ s(u, v) , u, v ∈ R ,

logSyM ?p.v. (K + 1)−1
MQ(r−0 , v) = δQ,1(logS(r−0 − v)− 2 log Š ?̌ s(r−0 , v))

+
1

2
δQ,2 logS(r0 − v) . (B.30)

For the L = 7 state, to replace Σ̌1 by Σ̌1∗ in the simplified TBA equation for Y1 we

also need

Σ̌1(u2, v) = Σ̌1∗(u2, v) , 1/Σ̌1(u3, v) = Σ̌1∗Š1(u3, v) . (B.31)

The last identity uses

Š1(u3, v) = Š(u+
3 , v)/Š(u−3 , v) , (B.32)

Other useful identities are

Š1(u1, v) = Š(u+
1 , v)Š(u−1 , v) , Š1(u2, v) = Š(u−2 , v)/Š(u+

2 , v) . (B.33)

Finally let us also note this identity for rapidities u2 and u3 in the third strip (L = 40)

S2Q
vwx(u+

2 , v)

S1Q
vwx(u++

2 , v)
= hQ(u2, v) ,

S2Q
vwx(u−3 , v)

S1Q
vwx(u−−3 , v)

= hQ(u3, v) . (B.34)

– 39 –



J
H
E
P
0
2
(
2
0
1
2
)
0
1
4

C Identities for the exact Bethe equations

Identities for the exact Bethe equation for u1. The derivation of the exact Bethe

equation for the real root u1requires the following identities

2 logS ?v.p. K
11
vwx(u−1 , v)− logS11

vwx(u1, v) =

2 log ResS ? K11
vwx(u−1 , v)− 2 log

(
u1 − v −

2i

g

) x−s (u1)− 1
x−(v)

x−s (u1)− 1
x+(v)

, (C.1)

2 logS ?v.p. K
11
vwx(r0, v) + logS11

vwx(r0, v) =

2 log ResS ? K11
vwx(r−0 , v)− 2 log

(
v − r0 −

2i

g

)
x+
s (r0)− x+(v)

x+
s (r0)− x−(v)

, (C.2)

where we use the notation

log ResS ? K11∗
vwx(u−, v) =

∫ ∞
−∞

dt log
[
S(u− − t)(t− u)

]
K11∗
vwx(t+ i0, v) . (C.3)

To show that the real part of equation (6.3) vanishes we use the following identities

valid for real t and v

Re
(

2s ? KQ,1∗
vwx (t, v)

)
= KQ(t− v) (C.4)

Re
(
KQ1∗

sl(2)(t, v) + 2s ? KQ−1,1∗
vwx (t, v)

)
= −KyQ ?̂ K1(t, v) (C.5)

which allow us to prove that

Re
(
G1∗(u1)

)
= − log (1 + YQ) ? KyQ ?̂ K1(u1) + log

Y+

Y−
?̂ K1(u1) (C.6)

= −
∑
i

logS1∗y(u
(1)
i , u1) ?̂ K1 + log

S2y(u
(1)+
2 , u1)

S2y(u
(1)−
3 , u1)

S2y(u
(2)−
3 , u1)

S2y(u
(2)+
2 , u1)

?̂ K1 .

To handle the driving terms in (6.3) we further use (6.5) to write

log
S11∗
sl(2)(u

(1)
2 , u1)

S11∗
sl(2)(u

(1)
3 , u1)

= log
S1∗1∗
sl(2) (u

(1)
2 , u1)S1∗1∗

sl(2) (u
(1)
3 , u1)

h1(u1, u2)h1(u1, u3)
+ log

h1(u1, u2)

h1(u1, u3)
. (C.7)

It can be shown that the first term on the r.h.s. is imaginary while the second one is real.

Then we need the identities

Re
S21∗
sl(2)(u

+
2 , u1)

S21∗
sl(2)(u

−
3 , u1)

=
S21
xv(u

−
3 , u1)

S21
xv(u

+
2 , u1)

, Re

(
2 log

S(u+
2 , u1)

S(u−3 , u1)
? K11∗

vwx

)
= log

S1(u+
2 − u1)

S1(u−3 − u1)
.

By using these identities it is then straightforward to check numerically that the real part

of (6.3) vanishes.
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Figure 6. The left picture depicts a continuation path connecting a point on the real line of the

mirror theory to the point u
(1)
3 in the string region. The right picture shows the same (homotopic)

path on the u-plane.

Exact Bethe equation for u3 in the string region. Here we discuss the continuation

of the canonical TBA equation for Y1 to v ≈ u
(1)
3 in the string region. Since Imu3 > 1/g

once we are in the string region we need to cross the real line and the line Im v = 1/g from

below and outside of (−2 + i/g, 2 + i/g), as illustrated in figure 6. Let us consider the

continuation of the relevant terms individually.

I) log (1 + YQ) ? KQ1
sl(2)(v). Continuation of this term gives

log (1 + YQ) ? KQ1
sl(2)(v)→ log (1 + YQ) ? KQ1∗

sl(2)(v)− log(1 + Y2(v−)) .

Note that the line Im v = −1/g is crossed twice during the continuation, giving

vanishing net contribution, while the line Im v = 1/g is crossed once.

II) 2 log
(

1 + 1
YQ|vw

)
?p.v.K

Q1
vwx(v). Nothing happen to the kernels upon crossing the line

Im v = −1/g. However entering the string region we have to change

2 log

(
1 +

1

YQ|vw

)
?p.v K

Q1
vwx(v)→ 2 log

(
1 +

1

YQ|vw

)
?p.v K

Q1∗
vwx(v) .

Continuing further we cross the real line where K11∗
vwx exhibits a pole, and crossing

the line Im v = 1/g we encounter a pole of K21∗
vwx

K11∗
vwx(u, v) = − 1

2πi

1

u− v
+ reg. , K21∗

vwx(u, v) = − 1

2πi

1

u− v + i/g
+ reg.

Resolving these singularities gives

2 log

(
1+

1

YQ|vw

)
?p.v K

Q1
vwx(v)→ 2 log

(
1 +

1

YQ|vw

)
?p.v K

Q1∗
vwx(v) (C.8)

+2 log

(
1+

1

Y1∗̂|vw(v)

)
+ 2 log

(
1+

1

Y2|vw(v−)

)
,
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where Y1∗̂|vw is the analytic continuation of Y1|vw across its cut at Im v = 1/g.

III) log
(
1− 1

Y−

)
?̂ (K1+Ky1). Taking into account the pole of (K1+Ky1)(t, v) at v = t−i/g

we get

log

(
1− 1

Y−

)
?̂ (K1 +Ky1)→ log

(
1− 1

Y−

)
?̂ (K1 +Ky1∗) + 2 log

(
1− 1

Y+∗̂(v
+)

)
Here Y+(v+) appears because we continue Y− across its cut on the real line; Y+∗̂

denotes Y+ analytically continued across its cut at 2i/g.

IV) log
(
1− 1

Y+

)
?̂ (−K1 +Ky1). This term does not produce any extra term.

The resulting analytic continuation of the TBA equation to the string region for v ≈ u
(1)
3

is given by (6.16).

To proceed further, we recall that the crossing relations for the bound-state dressing

factors imply the following identity for the SQ1
sl(2) S-matrix [65]

SQ1
sl(2)(v1, v2)SQ1∗

sl(2)(v1, v2) =

x+
1 − x

+
2

x−1 − x
+
2

1− 1
x+1 x

−
2

1− 1
x−1 x

−
2

2

=

(
SQy(v1, v

−
2 )

SQ1
xv (v1, v2)

)2

. (C.9)

This identity in its turn leads to the following crossing relations

KQ1
sl(2)(t, v) +KQ1∗

sl(2)(t, v) = 2KQy(t, v
−)− 2KQ1

xv (t, v) . (C.10)

Then we can easily check that for v ≈ u(1)
3

Ky1(t, v) +Ky1∗(t, v) = 0 , KQ1
vwx(t, v) +KQ1∗

vwx(t, v) = KQ1(t− v) .

Thus, adding the right hand sides of equations (6.15) and (6.16) and using the above

crossing relations, we find equation (6.17) for v ≈ u(1)
3 .

Asymptotic limit of the exact Bethe equation for u2. Here we analytically continue

the hybrid TBA equation for Y1 to the point u
(1)
2 . Recall that u

(1)
2 is in the intersection of

the string and mirror regions and it lies below the line − i
g in the mirror theory. We have

log (1 + YQ) ? KQ1
sl(2) = − log (1 + YQ) ? KQ1 − 2 log (1 + YQ) ? KΣ

Q1 .

Since the dressing kernel is holomorphic in the region containing the continuation path [64],

it is sufficient to consider − log (1 + YQ) ? KQ1. Since Kn1 = Kn+1 +Kn−1 and at u− v −
i
gQ ∼ 0

KQ(u− v) =
1

2πi

1

u− v − i
gQ

+ . . . , (C.11)

we conclude that only the term with K21 containing K1 plays a role for analytic contin-

uation to u
(1)
2 . Continuing beyond the line Im(v) = −1/g from above produces the term

log (1 + Y2) (v + i/g). Taking this into account we get for Im(v) < −1/g

− log (1 + Y2) ? K21(v)→ − log

(
1 + Y2

(
v +

i

g

))
− log (1 + Y2) ? K21(v) . (C.12)
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Figure 7. The solution to the Bethe Yang equation for u2. The imaginary part of the rapidity has

been rescaled by a factor of g.

Thus the continuation to v = u
(1)
2 produces an extra term − log(1 + Y2(u

(1)+
2 )) = − log∞

which is actually divergent! However, the equation (5.12) contains the driving term

+ log
S21
sl(2)

(u
(1)+
2 ,v)

S21
sl(2)

(u
(2)+
2 ,v)

. Since

SQQ
′

sl(2)(u, v) = SQQ
′
(u− v)−1ΣQQ′(u, u

′)−2 , (C.13)

upon continuation of this term to u
(1)
2 we get another divergent contribution arising due

to the S-matrix S21

logS21
sl(2)(u

(1)+
2 , u

(1)
2 )→ − logS21(u

(1)+
2 − u(1)

2 ) = − logS21(i/g) = − log 0 = log∞ ,

which precisely cancels the infinity coming from − log (1 + Y2) ? K21. Therefore, it makes

sense to combine these divergent terms into a regular expression

lim
v→u(1)2

log
S21
sl(2)(u

(1)+
2 , v)

1 + Y2(v+)
= log

ResS21
sl(2)(u

(1)+
2 , u

(1)
2 )

ResY2(u
(1)+
2 )

. (C.14)

Continuation of all the other terms in equation (5.12) goes without any difficulty and as a

result we find the exact Bethe equation (6.27) .

D The L = 40, n = 2, k = 3 three-particle state

In this appendix we discuss a three-particle state with one real rapidity and two complex

conjugate rapidities with 2/g < |Im(u)| < 3/g. The state we are considering is a solution

of the BY equations at L = 40 with n = 2. The numerical solution of the BY equation for

u2 has been plotted in figure 7. The asymptotic solution for this state has similar analytic

properties to the L = 7 state discussed in the main text, namely the poles of YQ functions

are at the same locations relative to the rapidities. However, this immediately implies that

some of these poles lie in different regions with respect to the universal integration contour,

as well as with respect to the string and mirror regions. We refer the reader back to figure 2

for a qualitative picture on the torus; the roots u2 and u3 can qualitatively be identified
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with u−2 and u+
3 respectively in the L = 7 picture.8 The upshot of this change is that the

contribution of the contour deformation trick for the YQ functions is now given by (A.10)

for k = 3

D(u123, v) ≡− logS1∗(u1, v)− log
S1(u

(2)
2 , v)

S1(u
(2)
3 , v)

+ log
S3(u

(2)++
2 , v)

S3(u
(3)++
2 , v)

S3(u
(3)−−
3 , v)

S3(u
(2)−−
3 , v)

.

The corresponding TBA equations confirm the general discussion in the main text, fitting

nicely into the picture painted there. Let us mention explicitly that exactly as for the

L = 7 state, most of the simplified equations immediately agree with their construction

through the TBA lemmas of [53].

Since the above combination of driving terms enters frequently, we will extensively use

the shorthand D below. Any additional labels the S-matrices have will label this shorthand

notation in the same way, for example

DQsl(2)(u123, v) = − logS1∗Q
sl(2)(u1, v)

S1Q
sl(2)(u

(2)
2 , v)

S1Q
sl(2)(u

(2)
3 , v)

S3Q
sl(2)(u

(3)++
2 , v)

S3Q
sl(2)(u

(2)++
2 , v)

S3Q
sl(2)(u

(2)++
3 , v)

S3Q
sl(2)(u

(3)++
3 , v)

.

Further analytic properties. Apart from the contributions from the contour deforma-

tion trick involving the rapidities indicated above, we also need to take into account exactly

the same type of roots for Yw functions as we observed for the L = 7 state. In addition

however, for this state YQ|vw has four real roots for Q = 1, . . . 4 and two for Q = 5, 6, at

g = 1
2 .9 Concretely we have

YM |vw(rM±1) = YM |vw(r̃M±1) = 0 , (D.1)

where rM is real and relevant to the equations for M = 0, . . . 5. Due to the asymmetric

configuration of the state, r 6= −r̃, but the roots are of opposite sign; we denote the negative

root by r. The YQ functions also have roots at these points in the usual fashion, removing

the need for a principal value prescription in the simplified equations for Q particles. As

usual, these roots give

YM |vw(r±M ) = YM |vw(r̃±M ) = −1 . (D.2)

Since this gives some less than pleasant looking driving terms in the canonical TBA equa-

tions, we will use the following shorthand for contributions of log(1 + 1
YQ|vw

) ?C KQ →
log(1 + 1

YQ|vw
) ?p.v. KQ

D(r, v) =
5∑

M=1

log
S(M+1)(rM , v)

S(M+1)(r̃M , v)
+

5∑
M=2

log
S(M−1)(rM , v)

S(M−1)(r̃M , v)

− 2
5∑

M=1

logSM (r−M , v)SM (r̃−M , v) . (D.3)

which is to be labeled analogously to D for the rapidities just above.

8The actual solution to the BY equation places the rapidities much closer to the real mirror and string

lines however (of course within the same analyticity region), so that a quantitatively accurate picture would

place all details on top of each other.
9These roots are also present at g = 1

10
, hinting that these roots are not associated to critical behavior.
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Canonical TBA equations. Given the above discussion, we immediately derive the

following TBA equations

w strings.

log YM |w = log

(
1 +

1

YN |w

)
?p.v. KNM + log

1− 1
Y−

1− 1
Y+

?̂ KM (D.4)

+ 1
2

∞∑
N=1

log
SNM (r+

N − v)

SNM (r−N − v)
+ 1

2 logS1M (r0 − v)− logSM (r−0 − v) ,

vw strings

log YM |vw = log

(
1 +

1

YN |vw

)
?p.v. KNM + log

1− 1
Y−

1− 1
Y+

?̂ KM − log(1 + YQ) ? KQM
xv

+
1

2
log

S1M (r0 − v)

S1M (u1 − v)
− logSM (r−0 − v) +DMxv(u123, v) +DM (r, v) ,

y particles.

log
Y+

Y−
= log(1 + YQ) ? KQy +Dy(u123, v) , (D.5)

log Y+Y− =− log (1 + YQ) ? KQ + 2 log
1 + 1

YM|vw

1 + 1
YM|w

?p.v. KM (D.6)

+
∞∑

M=1

log
SM (r−M − v)

SM (r+
M − v)

+D(u123, v) +D(r, v) ,

Q particles.

log YQ =− L ẼQ + log
(
1 + YQ′

)
? KQ′Q

sl(2) + 2 log

(
1 +

1

YM |vw

)
?p.v K

MQ
vwx

+ log
1− 1

Y−

1− 1
Y+

?̂ KQ + log

(
1− 1

Y−

)(
1− 1

Y+

)
?̂ KyQ (D.7)

− log
SQ(r−0 , v)SyQ(r−0 , v)

S1Q
vwx(r0, v)

− logS1Q
vwx(u1, v) +DQsl(2)(u123, v) +DQ

vwx(r, v) .

Simplified TBA equations. Using the identities in appendix B we find the following

simplified TBA equations.10

w strings.

log YM |w = log(1 + YM−1|w)(1 + YM+1|w) ? s+ δM1 log
1− 1

Y−

1− 1
Y+

?̂ s

− logS(r−M−1 − v)S(r−M+1 − v) , (D.8)

10For brevity we omit presenting the simplified equation for Y1, instead presenting the hybrid equations

for Q particles below.
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vw strings.

log YM |vw(v) =− log(1 + YM+1) ? s+ log(1 + YM−1|vw)(1 + YM+1|vw) ? s (D.9)

+ δM1 log
1− Y−
1− Y+

?̂ s

+ δM1(log
S(u

(2)+
2 − v)

S(u
(2)−
3 − v)

− logS(u−1 − v)S(r−0 − v)) + δM2(log
S(u

(3)
3 − v)

S(u
(3)
2 − v)

)

− logS(r−M−1 − v)S(r̃−M−1 − v)S(r−M+1 − v)S(r̃−M+1 − v) .

Here the terms involving r and r̃ roots should naturally be interpreted in accordance with

their existence.

y particles.

log
Y+

Y−
= log(1 + YQ) ? KQy +Dy(u123, v) ,

log Y−Y+(v) = 2 log
1 + Y1|vw

1 + Y1|w
? s− log (1 + YQ) ? KQ + 2 log(1 + YQ) ? KQ1

xv ? s

+ 2 log
S(r−1 − v)

S(r−1 − v)S(r̃−1 − v)
−
∑
i

log

(
S1∗1
xv

)2
S2

? s(u
(2)
i , v)

+ 2 log
S(u

(2)
2 − v)

S(u
(3)
2 − v)

S(u
(3)
3 − v)

S(u
(2)
3 − v)

− log
S3(u

(2)++
2 − v)

S3(u
(3)++
2 − v)

S3(u
(3)−−
3 − v)

S3(u
(2)−−
3 − v)

+ 2 log
S31
xv(u

(2)++
2 , v)S31

xv(u
(3)−−
3 , v)

S31
xv(u

(3)++
2 , v)S31

xv(u
(2)−−
3 , v)

? s , (D.10)

Q particles.

• Q = 2

log Y2 = log

(
1 + 1

Y1|vw

)2(
1 + 1

Y1

)(
1 + 1

Y3

) ?p.v s+ log
S(u

(3)
3 − v)

S(u
(3)
2 − v)

+ 2 logS(r−1 −v)S(r̃−1 −v) ,

• Q = 3

log Y3 = log

(
1 + 1

Y2|vw

)2(
1 + 1

Y2

)(
1 + 1

Y4

) ? s+ 2 logS(r−2 − v)S(r̃−2 − v) + log
S(u

(2)+
2 − v)

S(u
(2)−
3 − v)

,

• Q = 4

log Y4 = log

(
1 + 1

Y3|vw

)2(
1 + 1

Y3

)(
1 + 1

Y5

) ? s+ 2 logS(r−3 − v)S(r̃−3 − v) + log
S(u

(3)
3 − v)

S(u
(3)
2 − v)

,
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• Q ≥ 5

log YQ = log

(
1 + 1

YQ−1|vw

)2(
1 + 1

YQ−1

)(
1 + 1

YQ+1

) ? s+ 2 logS(r−Q−1 − v)S(r̃−Q−1 − v) .

Again r contributions are to be taken in accordance with their existence.

• Hybrid equations

log YQ =− L ẼQ + log
(
1 + YQ′

)
? (KQ′Q

sl(2) + 2 s ? KQ′−1,Q
vwx )

+ 2 log
(
1 + Y1|vw

)
? s ?̂KyQ + 2 log(1 + YQ−1|vw) ? s

+ log
1− 1

Y−

1− 1
Y+

?̂ KQ + log

(
1− 1

Y−

)(
1− 1

Y+

)
?̂ KyQ

− 2 log
1− Y−
1− Y+

?̂ s ? K1Q
vwx (D.11)

+ 2
∑
i

logS(u
(2)−
i ) ? K1Q

vwx + 2 logS(r−0 ) ?p.v. K
1Q
vwx

− 2 log
S(u

(3)++
2 )

S(u
(3)−−
3 )

? K2Q
vwx − 2 logS(r−1 )S(r̃−1 )?̂KyQ

+DQsl(2)(u123, v)− log
SQ(r−0 , v)SyQ(r−0 , v)

S1Q
vwx(r0, v)

− logS1Q
vwx(u1, v) .

We would like to note here that similarly to the L = 7 case, some of the driving terms

can be rewritten by using identities such as (B.34).

Energy formula. As discussed in the introduction, the energy formula for the L = 40

state is given by

E = E(u123)− 1

2π

∞∑
Q=1

∫ ∞
−∞

du
dp̃Q
du

log(1 + YQ)

=
3∑
i=1

E(u
(2)
i )− 1

2π

∞∑
Q=1

∫ ∞
−∞

du
dp̃Q
du

log(1 + YQ) (D.12)

− ip̃3(u
(2)++
2 ) + ip̃3(u

(3)++
2 )− ip̃2(u

(3)−−
3 ) + ip̃3(u

(2)−−
3 ) .

We would like to point out once again that this expression does not explicitly depend on

the Bethe roots u
(1)
2,3.

E A four-particle state of two bound states

In this section we discuss a four-particle state given by a scattering state of two identical

bound-like states with opposite momenta. In other words, the momenta of the four particles

are arranged as {pi} = {p, p∗,−p,−p∗}. Such configurations exist at the level of the
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Figure 8. The solution to the Bethe Yang equation for u1. For the imaginary part, the rapidity

has been rescaled by a factor of g. Note that the rapidity asymptotes to 2 + i/g before breakdown

of the BY equations.

asymptotic Bethe ansatz, but the region on the z torus where such momenta exist depends

on the length of the state. For the three-particle states described in the main text, solutions

with rapidities inside the analyticity strip of the u plane do not exist. As such, here we

are most interested in potential states with complex rapidities inside this first strip. Such

solutions in fact exist for the configuration we are considering here, at least as long as the

length of the operator is ten or greater.

For numerical reasons we prefer to study a state of moderate length since the complex

solution of the Bethe-Yang equation which lies inside the analyticity strip appears to move

closer to the real line as the length is increased. The numerical solution of the Bethe-Yang

equations at length 16 for n = 2 is plotted in figure 8. We see that around g = 2.4 we

run into trouble similar to the length seven three-particle state discussed in the main text,

and from this point the solution of the Bethe-Yang equations can no longer be trusted. Up

to this point however, we can use the solution of the Bethe-Yang equations to study the

analytic properties of the asymptotic solution and use them to engineer the TBA equations

in the usual fashion. The main difference with the three-particle state naturally lies in the

fact that the rapidities are inside the physical strip leading to drastic simplifications in

the story. In fact this appears to remove the need for any explicit higher quantization

conditions. This leaves us with the simplest possible situation which is as close as possible

to previously studied states [13, 15]. The analytic properties of the asymptotic Y -functions

have been summarized in table 4. To make the differences with the three-particle state

apparent, we have also illustrated the location of the rapidities in the mirror and string

regions on the z-torus in figure 9.

The TBA equations. By means of the contour deformation trick with considerations

entirely analogous to those for Konishi-like states [13] we can derive a set of consistent TBA

equations for our state. We would like to emphasize that there appears to be no direct

need to introduce a sum over zeroes and poles of 1 + YQ. Analogously to the Konishi case,

we take a contour for YQ functions that encloses all rapidities in the string plane, but such

that any other potential contributions vanish. Next, the relevant contours should of course

– 48 –



J
H
E
P
0
2
(
2
0
1
2
)
0
1
4

Yo-function Zeroes Poles

YM |w ±rM±1

1 + YM |w (±rM )− , (±rM )+

Y1|vw ui , ±r0

Y− ±r1

Y+ ±r1 , u
±
i

1− Y− (±r0)− , (±r0)+

Y1 u±±i
Y2 u±i , u

±±±
i

YQ≥2 ui ± i
g (Q− 1) , ui ± i

g (Q+ 1)

Table 4. Relevant roots and poles of asymptotic Y-functions in the mirror region. Note that only

Y2 has poles within the analyticity strip.

enclose the points (±rM )− below the real mirror line. Finally we take a natural extension

of the principal value prescription normally taken for Y1|vw functions with roots at real

rapidities ui; the contour encloses the roots of Y1|vw at the rapidities above the real line,

i.e. u1 and u4. This contour gives both the canonical and simplified TBA equations. The

resulting equations are compatible with the asymptotic solution. For brevity, except for

the case of Q particles, in this appendix we only present the simplified equations. Finally,

let us note that once again the equations appear to be naturally compatible with the TBA

lemmas of [53].

Simplified, hybrid and exact Bethe equations. Below we present the simplified

TBA equations for w and vw strings, y particles and Q particles for Q > 1, the hybrid

TBA equations for Q particles, and the exact Bethe equations.

w strings.

log YM |w = log(1 + YM−1|w)(1 + YM+1|w) ? s+ δM1 log
1− 1

Y−

1− 1
Y+

?̂ s (E.1)

− logS((±rM−1)− − v)S((±rM+1)− − v) .

vw strings.

log YM |vw(v) =− log(1 + YM+1) ? s+ log(1 + YM−1|vw)(1 + YM+1|vw) ? s (E.2)

+ δM1

(
log

1− Y−
1− Y+

?̂ s− logS((±r0)− − v)
∏
i

S(u−i − v)

)
.

– 49 –



J
H
E
P
0
2
(
2
0
1
2
)
0
1
4

u1u1

u1
-u1
-
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+
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-
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+
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-
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+
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-
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+
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-
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+
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-
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+
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-
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+
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-
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-
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-
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-
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0
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Figure 9. The z-torus with the (shifted) rapidities ui at g = 1. The gray lines again correspond to

the contours Re(u(z)) = Re(ui), while the curved dashed lines indicate the lines −2i/g and −3i/g.

y particles.

log
Y+

Y−
= log(1 + YQ) ? KQy −

∑
i

logS1∗y(ui, v) , (E.3)

log Y+Y− = 2 log
1 + Y1|vw

1 + Y1|w
? s− log (1 + YQ) ? KQ + 2 log(1 + YQ) ? KQ1

xv ? s (E.4)

+ 2 logS((±r1)− − v)−
∑
i

log

(
S1∗1
xv

)2
S2

? s(ui, v) + log
S(u1 − v)S(u4 − v)

S(u2 − v)S(u3 − v)
.

Q particles, Q > 1.
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• Q = 2

log Y2 = log

(
1 + 1

Y1|vw

)2(
1 + 1

Y1

)(
1 + 1

Y3

) ? s− log
S(u1 − v)S(u4 − v)

S(u2 − v)S(u3 − v)
. (E.5)

• Q > 2

log YQ = log

(
1 + 1

YQ−1|vw

)2(
1 + 1

YQ−1

)(
1 + 1

YQ+1

) ? s . (E.6)

Hybrid equations for Q particles.

log YQ(v) =− LTBA ẼQ + log (1 + YM ) ?
(
KMQ

sl(2) + 2 s ? KM−1,Q
vwx

)
(E.7)

−
∑
i

logS1∗Q
sl(2)(ui, v)+ 2 log

(
1+Y1|vw

)
? s ?̂KyQ + 2 log

(
1+YQ−1|vw

)
? s

− 2 log
1− Y−
1− Y+

?̂ s ? K1Q
vwx + log

1− 1
Y−

1− 1
Y+

?̂ KQ + log

(
1− 1

Y−

)(
1− 1

Y+

)
?̂ KyQ

+ 2
∑
i

logS ? K1Q
vwx(u−i , v)− 2 logS1Q

vwx(u1, v)S1Q
vwx(u4, v)

+ 2 logS ? K1Q
vwx((±r0)−, v)− logSQ((±r0)− − v)SyQ((±r0)−, v) .

Exact Bethe equations. Continuation of the hybrid equation for Q = 1 to the string

region is straightforward, and immediately gives the exact Bethe equations for u2 and u3

log(−1) =− LTBA Ẽ1∗ + log (1 + YM ) ?
(
KM1∗

sl(2) + 2 s ? KM−1,1∗
vwx

)
(E.8)

−
∑
i

logS1∗1∗
sl(2) (ui, uk) + 2 log

(
1 + Y1|vw

)
? (s ?̂Ky1∗ + s̃)

− 2 log
1− Y−
1− Y+

?̂ s ? K11∗
vwx + log

1− 1
Y−

1− 1
Y+

?̂ K1 + log

(
1− 1

Y−

)(
1− 1

Y+

)
?̂ Ky1∗

+ 2
∑
i

logS ? K11∗
vwx(u−i , uk)− 2 logS11∗

vwx(u1, uk)S
11∗
vwx(u4, uk)

+ 2 logS ? K11∗
vwx((±r0)−, uk)− logS1((±r0)− − v)Sy1∗((±r0)−, uk) .

As discussed in [13] there should in general be a log
(

1 + 1
Y+(u−k )

)
term in the above.

However, due to the pole of Y+ at u−k it does not contribute in the exact Bethe equations.

Upon continuation to u1 and u4 we necessarily cross the cut of f ? K1,1∗
vwx on the real
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line. Taking this into account we obtain

log(−1) =− LTBA Ẽ1∗ + log (1 + YM ) ?
(
KM1∗

sl(2) + 2 s ? KM−1,1∗
vwx

)
(E.9)

−
∑
i

logS1∗1∗
sl(2) (ui, uk) + 2 log

(
1 + Y1|vw

)
? (s ?̂Ky1∗ + s̃)

− 2 log
1− Y−
1− Y+

?̂ s ? K11∗
vwx + log

1− 1
Y−

1− 1
Y+

?̂ K1 + log

(
1− 1

Y−

)(
1− 1

Y+

)
?̂ Ky1∗

+ 2
∑
i

logS ? K11∗
vwx(u−i , uk)− 2 logS11∗

vwx(u1, uk)S
11∗
vwx(u4, uk)

+ 2 logS ? K11∗
vwx((±r0)−, uk)− logS1((±r0)− − v)Sy1∗((±r0)−, uk)

+ 2

(
log (1 + Y2) ? s− log

1− Y−
1− Y+

?̂ s+ logS((±r0)− − uk)
∏
i

S(u−i − uk)

)
.

As we show below, these equations are compatible with the complex conjugate nature of

the momenta.

Conjugation of the exact Bethe equations. The exact Bethe equation for u1, re-

spectively u3, should be anti-conjugate to the one for u2, respectively u4, however this is

not manifest from their derivation. Analogously to how crossing relations and the equa-

tions for vw strings were used to show equivalence of string and anti-string11 quantization

conditions for the three-particle state, here we will use conjugation relations together with

the equations for vw strings to show that the exact Bethe equations for u1 and u2 are

anti-conjugate, meaning that the resulting momenta are conjugate. The discussion is most

elegant at the level of canonical equations, which for Q particles are given by

log YQ = − LTBA ẼQ + log
(
1 + YQ′

)
? KQ′Q

sl(2) + 2 log

(
1 +

1

YM ′|vw

)
?p.v K

M ′Q
vwx

+ log
1− 1

Y−

1− 1
Y+

?̂ KQ + log

(
1− 1

Y−

)(
1− 1

Y+

)
?̂ KyQ

− log
∏
i

S1∗Q
sl(2)(ui, v) + log

S1Q
vwx((±r0), v)

SQ((±r0)− − v)SyQ((±r0)−, v)

− 2 logS1Q
vwx(u1, v)S1Q

vwx(u4, v) . (E.10)

Note the S1Q
vwx(u1,4, v) terms arising from the roots of Y1|vw. The continuation of the

canonical equation to u2 (equivalently u3) is trivial apart from a vanishing contribution of

11Again, for the three-particle states we consider u2 lies within the overlap of the string and mirror

regions.
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the form log(1 + 1
Y+

) and we directly obtain

log(−1) = iLTBA p2 + log
(
1 + YQ′

)
? KQ′1∗

sl(2) + 2 log

(
1 +

1

YM ′|vw

)
?p.v K

M ′1∗
vwx

+ log
1− 1

Y−

1− 1
Y+

?̂ K1 + log

(
1− 1

Y−

)(
1− 1

Y+

)
?̂ Ky1∗

− log
∏
i

S1∗1∗
sl(2) (ui, u2) + log

S11∗
vwx((±r0), u2)

S1((±r0)− − u2)Sy1∗((±r0)−, u2)

− 2 logS11∗
vwx(u1, u2)S11∗

vwx(u4, u2) . (E.11)

Next, continuation to the point u1 (equivalently u4) requires intersection of the cut of

log
(

1 + 1
Y1|vw

)
?p.v K

11∗
vwx, yielding a divergent contribution log

(
1 + 1

Y1|vw(u1)

)
which nat-

urally cancels the divergence of logS11∗
vwx(u1, u1), leaving behind

log(−1) = iLTBA p1 + log
(
1 + YQ′

)
? KQ′1∗

sl(2) + 2 log

(
1 +

1

YM ′|vw

)
?p.v K

M ′1∗
vwx

+ log
1− 1

Y−

1− 1
Y+

?̂ K1 + log

(
1− 1

Y−

)(
1− 1

Y+

)
?̂ Ky1∗

− log
∏
i

S1∗1∗
sl(2) (ui, u1) + log

S11∗
vwx((±r0), u1)

S1((±r0)− − u1)Sy1∗((±r0)−, u1)

− 2 logS11∗
vwx(u4, u1) + 2 log

1 + 1
Y1|vw(u1)

S11∗
vwx(u1, u1)

. (E.12)

In order to relate these two equations we will need certain conjugation relations. For real

t and u in the analyticity strip we have

(KQ1∗
sl(2))

∗(t, u) = −KQ1∗
sl(2)(t, u

∗)− 2KQ1
xv (t, u∗) ,

(KM1∗
vwx )∗(t, u) = −KM1∗

vwx (t, u∗) +KM,1(t, u∗) , (E.13)

(Ky1∗)
∗(t, u) = −Ky1∗(t, u

∗) ,

(K1)∗(t, u) = K1(t, u∗) .

Also, we have the following identities for the driving terms

(
S11∗
vwx(u, v)

)∗
= S11(u− v∗)

(
S11∗
vwx(u, v∗)S11∗

xv (u, v∗)S11∗
xv (u∗, v∗)

)−1
, (E.14)

where both u and v are in the analyticity strip, and(
S11∗
vwx(u, v)

S1(u− − v)Sy1∗(u
−, v)

)∗
=

S11(u− v∗)
S1(u− − v∗)2

, (E.15)
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where u is taken to be real. Finally, from the canonical exact Bethe equations (E.11)

and (E.12), and the above conjugation relations we find

(log(−1)− iLTBA p2)∗ = −(log(−1)− iLTBA p1) + 2 log

(
1 +

1

Y1|vw(u1)

)
+2 log

(
1 +

1

YM ′|vw

)
?p.v KM,1(u1) + 2 log

1− 1
Y−

1− 1
Y+

?̂ K1 − 2 log
(
1 + YQ′

)
? KQ1

xv (u1)

+2 log
∏
i

S1∗1
xv (ui, u1) + log

S11((±r0), u1)

S1((±r0)− − u1)2
− 2 logS11(u1 − u1)S11(u4 − u1) ,

=−(log(−1) + iLTBA p1) + 2 log

(
1+

1

Y1|vw(u1)

)
+ 2 log Y1|vw(u1) ,

=−(log(−1) + iLTBA p1) . (E.16)

In the first equality we have identified a large part of the conjugate of the exact Bethe

equation for p2 as minus the corresponding part of the exact Bethe equation for p1 by the

conjugation relations. Subsequently we used the canonical equation for Y1|vw, and finally

we note that Y1|vw is zero at u1. This shows that the exact Bethe equations are compatible

with the reality structure of our state.

F Transfer matrices

For the explicit form of eigenvalues of the transfer matrix T
sl(2)
a,1 in the sl(2)-grading, de-

pending on KI main roots, KII auxiliary roots of y-type and KIII auxiliary roots of w-type,

we refer the reader to the formula (4.14) from [33]. From the point of view of the sl(2)

grading, the su(2) sector is described by the following excitation numbers

KI = KII
α ≡M , KIII

α = 0 ,

where α = 1, 2 corresponds to the left and right wings of auxiliary Bethe equations. To

construct the asymptotic solution, the auxiliary y-roots must be found from their Bethe

equations and further substituted in the expression for T
sl(2)
a,1 . It is technically simpler

but equivalent to perform a duality transformation on y-roots, as in terms of the dual

description, the number of dual roots ỹ is

K̃II
α = KI −KII

α + 2KIII
α = 0

for states from the su(2) sector. Performing dualization,12 we find the following formula,

which is a particular case of (4.31) in [33]

T
su(2)
a,1 (v) =

(
x+

x−

)M
2

[
(a+ 1)

M∏
i=1

x− − x−i
x+ − x−i

− a
M∏
i=1

x− − x+
i

x+ − x−i

√
x−i
x+
i

− (F.1)

−a
M∏
i=1

x− − x−i
x+ − x−i

x−i −
1
x+

x+
i −

1
x+

√
x+
i

x−i
+ (a− 1)

M∏
i=1

x− − x+
i

x+ − x−i

x−i −
1
x+

x+
i −

1
x+

]
.

12This can be also regarded as switching from the sl(2) grading to the su(2) one.
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Here M is naturally interpreted as a number of excited string theory particles from the

su(2) sector. Also,

v = x+ +
1

x+
− i

g
a = x− +

1

x−
+
i

g
a .

The variable v takes values in the mirror theory v-plane, so that x± = x(v ± i
ga) with

x(v) being the mirror theory x-function. Similarly, x±j = xs(uj ± i
g ), where xs is the string

theory x-function.

Specifying the formula (4.34) from [33], we also get the eigenvalues of T
su(2)
1,s

T
su(2)
1,s (v) = Ms

[
Pc(x

−)

M∏
i=1

1

x− − x+
i

√
x+
i

x−i
− Pc

(
1
x+

) M∏
i=1

x+−x+i
(x−−x+i )

(
1

x−−x
−
i

) (F.2)

−
s−1∑
k=1

Pc

(
1

x
(
v− i

g
(s−2k)

))Pc(x(v − i
g (s− 2k)

)) M∏
i=1

1

(x−−x+i )
(

1
x−−x

−
i

)√x+i
x−i

]
.

Here Ms is the following normalization prefactor

Ms = (−1)s
(
x+

x−

)M
2

M∏
i=1

(
x−i
x+i

) s
2 x−−x+i
x+−x−i

s−1∏
k=1

x
(
v+ i

g
(s−2k)

)
−x+i

x
(
v− i

g
(s−2k)

)
−x−i

and Pc is a polynomial

Pc(y) =

M∏
i=1

(y − x+
i )

√
x−i
x+
i

−
M∏
i=1

(y − x−i ) .

Formulas (F.1) and (F.2) obey the Hirota equations and they are used to construct the

asymptotic Y-functions corresponding to an M -particle state from the su(2) sector.
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