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Abstract

The aim of this paper is to determine an exact definition of the reheat temperature for a generic pertur-
bative decay of the inflaton. In order to estimate the reheat temperature, there are two important conditions 
one needs to satisfy: (a) the decay products of the inflaton must dominate the energy density of the universe, 
i.e. the universe becomes completely radiation dominated, and (b) the decay products of the inflaton have 
attained local thermodynamical equilibrium. For some choices of parameters, the latter is a more stringent 
condition, such that the decay products may thermalise much after the beginning of radiation–domination. 
Consequently, we have obtained that the reheat temperature can be much lower than the standard-lore es-
timation. In this paper we describe under what conditions our universe could have efficient or inefficient
thermalisation, and quantify the reheat temperature for both the scenarios. This result has an immediate 
impact on many applications which rely on the thermal history of the universe, in particular gravitino abun-
dance.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

The transition from a cold inflating universe to a hot thermal universe depends solely on the 
inflaton mass, mφ , its coupling αφ to the relevant degrees of freedom (d.o.f.), and the dominant 
coupling between the decay products. In the case of Standard Model (SM) particles, it is predom-
inantly the strong interaction, αs ∼ 1/30. This epoch is known as reheating [1], or preheating [2]
(for a review see [3]). In this paper we will mostly concentrate on the case where the inflaton 
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has a small Yukawa coupling to the relevant d.o.f., which would typically yield a perturbative 
decay of the inflaton to its almost massless quarks, leptons and gluons. This is well justified for 
an SM gauge singlet inflaton, since the SM quarks and leptons are chiral in nature, and there-
fore the lowest order couplings are determined by the dimensional 5 operators in the potential, 
see [4]. Inflation could be driven by many independent sectors [5], but what matters is the last 
field which is responsible for finally reheating the universe in our patch for the success of Big 
Bang Nucleosynthesis (BBN) [6].

Especially, an SM gauge singlet inflaton could also couple to the SM Higgs with a 4-dimen-
sional coupling, but through quartic coupling the inflaton never decays unless φ develops a VEV 
(vacuum expectation value): it rather leads to φφ ↔ HH scatterings, where φ is the inflaton and 
H denotes the SM Higgs. In order to deplete the inflaton quanta it is still important to rely on the 
perturbative decay of the inflaton [7].1

Typically, the reheating process is assumed to be instantaneous, with an efficient energy den-
sity conversion from the inflaton to the relativistic plasma. Within this framework the concept of 
reheating temperature Trh has been defined, see [1,11], ultimately relying on the assumption of 
the presence of local thermal equilibrium (LTE) at the very instant of conversion from the initial 
coherent oscillations of the inflaton domination to the radiation domination.

The aim of this work is to determine a proper definition of the reheat temperature of the 
universe keeping in mind when the LTE is established along with the fact that the inflaton has 
completely decayed into radiation. When and how should we evaluate the reheat temperature is 
an important question for a number of applications ranging from evaluating the baryonic asym-
metry, dark matter abundance and the success of BBN [11]. In this paper we shall put down the 
criteria of estimating the reheat temperature, based on when the inflaton decay products attain 
their thermalisation. Depending on whether the decay products of the inflaton thermalise before 
or after the radiation has dominated the universe, the reheat temperature will be very different. 
In either situation the notion of reheat temperature only makes sense when the universe is com-
pletely dominated by the radiation bath.

If thermalisation of the ambient plasma occurs during the coherent oscillations of the inflaton, 
one may be able to associate a maximum temperature with the relativistic species [11,12], but if 
the thermalisation time scale is longer than that of the inflaton-to-radiation domination transition 
time scale, the notion of temperature does not make sense until the universe reaches its full LTE. 
In this respect there could be three regimes of interest which we will discuss in this paper:

1. Instant thermalisation: when the inflaton decay products instantly thermalise upon decay.
2. Efficient thermalisation: when the inflaton decay products thermalise right at the instant 

when radiation epoch starts dominating the universe.
3. Delayed thermalisation: when the inflaton decay products thermalise deep inside the radia-

tion dominated epoch after the transition from inflaton-to-radiation domination had occurred.

This paper is organised as follows. In Section 2 we set the stage and write down the relevant 
equations for our analysis. The standard lore about the reheating epoch is briefly commented in 
Section 3. Section 4 is devoted to present our analysis, in which we study the conditions under 

1 Our treatment is very general and it can be applicable to supersymmetric theories. However there is a word of caution 
on how the inflaton couples to the supersymmetric Standard Model degrees of freedom, which depends very much on 
the origin of the inflaton. If inflaton is SM gauge singlet, see [8], if inflaton is SM gauge invariant field, such as one 
belonging to the supersymmetric flat directions of squarks and sleptons [9], see [10].
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which the plasma attains thermalisation. Later on, in Section 5 we discuss the concept of reheat 
temperature such as to properly capture the issues of thermalisation. Finally, we conclude in 
Section 6.

2. Key assumptions and equations

For the sake of simplicity, we will assume universal inflaton coupling, αφ , to all its decay 
products, determined by the number of relativistic d.o.f. g∗. Since the decay products of the 
inflaton are light, just from kinematics, they will typically have an initial momentum roughly 
given by: mφ/2 for two-body decay, or mφ/3 for a three-body decay processes. The inflaton is 
assumed here to be an SM gauge singlet – it will decay universally to all its decay products, i.e. 
all the relativistic species g∗ would be excited.

Once the decay products are all excited there are two important processes which lead to ther-
malisation of all the d.o.f., or establish an LTE. Whereas a detailed thermalisation analysis of 
the plasma is out of the scope of this paper, some of its features are essential to our analysis, see 
Refs. [13,14]:

1. Kinetic equilibrium: Redistribution of the momentum between different decay particles. This 
can be achieved by number conserving 2 → 2 scatterings with gauge boson exchange in the 
t -channel [13,14].

2. Chemical equilibrium: Number violating 2 → 3 scatterings via t -channel are required to 
establish the chemical equilibrium [13,14]. Higher order process are suppressed by further 
powers of the gauge coupling. Typically 2 → 3 interaction rate is higher than that of 2 → 2.

The inelastic cross section for 2 → 3 processes are roughly estimated by [14]:

σ ∼ α3
s

p(t)2
log

(
m2

φ

p(t)2

)
, (1)

where αs ∼ 1/30 is the typical strong gauge coupling of the SM, and p(t) is the 3-momentum 
transferred in the scattering process.

There are two interesting regimes which we will discuss below:

1. t -channel enhancement: If the scatterings 2 → 3 processes via t -channel are mediated by 
light or massless gauge bosons, the cross section in question has an infrared divergence, 
which can be reasonably cut off by the Debye length, given by the inverse of the average 
separation between the two quanta, i.e. r̄ ∼ n−1/3, where n is the number density of the 
particles in the plasma. In this case the scattering rate is extremely fast due to the infrared di-
vergence and would yield an efficient thermalisation of the plasma, as discussed in Ref. [18].

2. t -chanel suppression: As noted in [8,18] this singularity is absent if, for example, the scat-
tering happens via exchange of massive gauge boson. There, the thermalisation process may 
be considerably delayed due to suppression in the scattering rate. Such examples have been 
investigated in Ref. [8], in presence of supersymmetric flat directions developing VEV or 
finite temperature effects, which naturally gives rise to massive gauge boson. In those cases, 
the most important processes for thermalisation are either 2 → 3 scatterings with scalar bo-
son exchanges, or s-channel resonant gauge boson exchange. In either case, the infrared di-
vergences disappear.
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In this work we are going to discuss both the possibilities, although we will concentrate more 
on the delayed scenario, since the situation with enhanced cross sections has been extensively 
discussed in the literature [18].

On the other hand, the evolution of the inflaton, and the relativistic decay product’s energy 
densities during the reheating period is described by the coupled set of Boltzmann equations, 
see [11]:{

ρ̇φ + 3H(t)ρφ = −Γφρφ

ρ̇R + 4H(t)ρR = Γφρφ + Γth
(
ρR − ρ

eq
R

)
,

(2)

where the dots denote derivatives w.r.t. the physical time, ρφ(ρR) is the energy density of inflaton 
(radiation), being ρeq

R the equilibrium one; H(t) is the Hubble parameter accounting for the ex-
pansion of the universe; Γφ ≡ αφmφ is the inflaton decay rate,2 and Γth is the reaction rate re-
sponsible for thermalisation of the radiation plasma. Of course, once LTE is attained, the direct 
and inverse interactions among relativistic species counterbalance each other and the evolution 
of ρR is dictated solely by the inflaton source and the Hubble expansion.

3. Assuming LTE is established soon after inflaton decay

Previous works which are relevant to our study have assumed LTE while studying the evo-
lution of the relativistic species during the reheating period [11], see however [12–14,18] for 
emphasising the importance of acquiring LTE. At any epoch during reheating, as long as there is 
a relativistic bath in thermal equilibrium, we can extract an instantaneous temperature as:

T (t) =
[

30

π2
ρR(t)/g∗(t)

]1/4

(3)

For a constant g∗ during the whole period, the evolution of the temperature according to Eq. (3)
is such that it has a maximum Tmax [11,12], which can be estimated as:

Tmax �
[

1.57

π3g∗

]1/4√
MP (ΓφHI )

1/4, (4)

being HI the initial Hubble rate. Indeed, Tmax can be potentially much larger than the reheating 
temperature, Trh. The latter is usually defined as the temperature of the plasma assuming an 
instantaneous conversion of the inflaton’s energy density into radiation, at the time when H(t) ≈
Γφ , such that:

Trh =
(

90

8π3g∗

)1/4√
ΓφMP . (5)

4. When is LTE attained?

However, LTE has to be attained and should not be taken for granted from the onset of the 
inflaton decay. In our analysis we do not assume LTE as a given condition for the relativistic 
species. Instead, we evaluate when and for which region of the inflaton parameters, mφ and αφ

for a fixed αs = 1/30, this condition is achieved.

2 See [19] for a recent very detailed analysis on Γφ .
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Fig. 1. Radiation energy density (blue line), ρR , and inflaton energy density (red line), ρφ , as a function of the scale 
factor, for mφ = 1013 GeV and αφ = 10−11. The power laws indicate the behaviour of ρR in the different regimes. 
The region in grey represents the reheating epoch, which by the standard lore finishes when radiation dominates the 
expansion (see text for details). (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.)

There are (as justified later) two regions of the parameter space (αφ, mφ), for which Eq. (2)
can be simplified such that the term Γth(ρR − ρ

eq
R ) can be safely discarded:

1. Very small αφ and very large mφ , for which Γth is very small:

Γth 	 Γφ ·
(

ρφ

ρR

)
, Γth 	 H (6)

2. Very large αφ and very small mφ , for which ρR ≈ ρ
eq
R :

Γth 
 Γφ ·
(

ρφ

ρR

)
, Γth 
 H (7)

We will justify the notion of very small and very large below. For these two cases, Eq. (2) simpli-
fies to (working with a comoving coordinate, x ≡ a(t) ×mφ , where a(t) is the scale factor) [12]:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dΦ

dx
= −

(√
3

8π

MP

mφ

αφ

)
xΦ√

R + xΦ

dR

dx
=

(√
3

8π

MP

mφ

αφ

)
x2Φ√
R + xΦ

(8)

with

Φ ≡ ρφm−4
φ x3, R ≡ ρRm−4

φ x4. (9)

The initial condition is:

R(xI ) = 0, ΦI ≡ Φ(xI ) = H 2
I M2

P

8π/3
· m−4

φ x3
I , (10)

where the subindex I refers to initial values. In many inflationary scenarios it is a good approxi-
mation to take HI ∼ mφ .

We have solved Eq. (8) numerically, and the result is shown in Fig. 1, where for illustration we 
have taken mφ = 1013 GeV and αφ = 10−11. We can infer that the radiation energy density (blue 
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line) peaks very fast, around x = xmax ∼ 1.5xI , followed by a dilution due to the expansion. The 
position of the maximum is independent of the inflaton parameters. We also show for reference 
the inflaton energy density (red line), which as we can see completely dominates the expansion 
of the universe until the end of the reheating epoch. Analytically, during the inflaton–dominated 
period the radiation energy density goes like:

ρid
R (x) ≈ 2

5

√
3

8π
Γφm2

φMP

√
ΦIx

−3/2, xI 	 x < xrh

≈ 0.15

π
M2

P m2
φαφ

(
xI

x

)3/2

(11)

whereas for radiation–domination the expected x−4-law is recovered:

ρrd
R (x) ≈ ρid

R (xrh)

(
xrh

x

)4

, xrh < x. (12)

Here xrh (to be computed below) encodes the moment at which reheating ends. The super-indices 
(id) and (rd) stem for (inflaton–domination) and (radiation–domination), respectively.

The condition under which the plasma enters in thermal equilibrium can be naively estimated 
by the requirement

Γth = nR(x)
〈
σ(x)v

〉
> H(x), (13)

where we approximate the cross-section σ by Eq. (1), v ≈ c for relativistic species, and nR(x) is 
the relativistic number density. The latter can be directly extracted by solving Eq. (8) in terms of 
number densities instead of energy densities. Assuming 2-body decays of the inflaton (our results 
will not be affected much if we assume 3-body decay of the inflaton), see also [14]:

nR(x) ≈ 2nI
φ

[
1 − e

(−Γφ

∫ x
x0

dx̃
x̃·H(x̃)

)](xI

x

)3

(14)

where the initial inflaton number density, nI
φ ∼ ρI

φ/mφ , as well as H(x), are computed according 
to the our numerical solution of Eq. (8). Analytical estimations of Eq. (14) can be obtained, as for 
the case of ρR , in two regimes.

1. During inflaton–domination: In this case, R(x) gives a negligible contribution to the Hub-
ble rate, whereas Φ remains approximately constant, Φ ≈ ΦI . In this case, it is straightfor-
ward to obtain:

nid
R(x) � 2nI

φ

(
1 − e−κx3/2)(xI

x

)3

≈ 2nI
φκx3

I x−3/2 � 0.5

π
M2

P mφαφ

(
xI

x

)3/2

, (15)

with κ = (2/3)αφ/x
3/2
I . The superscript ‘id’ denotes inflaton–domination, since the inflaton 

oscillations are dominating over the relativistic species.
2. During radiation–domination: On the other hand, for radiation–domination, denoted be-

low by the superscript ‘rd’, we clearly have:

nrd
R (x) � 2nI

φ

(
xI

x

)3

= 3

4π
M2

P mφ

(
xI

x

)3

. (16)
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Fig. 2. Radiation number density as a function of the scale factor, for mφ = 1013 GeV and αφ = 10−11. The solid red 
line is the solution of Eq. (14), where H(x) is computed numerically from Eq. (8). Dashed black line is the solution 
in Eq. (15), whereas the dotted black line is the solution in Eq. (16). The solid black vertical lines is the value of xrh
according to Eq. (17). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)

The value xrh at which the regime changes could be computed in several ways, one of which is 
demanding nid

R(xrh) = nrd
R (xrh), resulting in:

xrh = κ−2/3 � 1.3xI

α
2/3
φ

. (17)

Note that this value is independent of mφ – heavier inflaton would have a shorter lifetime, but at 
the same time they would cause a faster expansion rates at early times.

We have shown in Fig. 2 the perfect agreement of the analytical estimations made in 
Eqs. (15)–(17) w.r.t. the numerical solution in Eq. (14).

4.1. Evolution of the momenta of relativistic particles

Coming back to the thermalisation analysis, since we cannot rely on an equilibrium distribu-
tion at this point, we take the typical momentum p̄(x) in Eq. (1) to be:

p̄(x) = dρR(x)

dnR(x)
= dρR(x)

dx
·
[

dnR(x)

dx

]−1

. (18)

This expression directly follows from the definitions of nR and ρR , without assuming any par-
ticular shape of the distribution function f (p). We would like to emphasise here that Eq. (3), 
in the absence of LTE, should not even have an interpretation of mean kinetic energy, since its 
functional shape incorporates the assumption of LTE-like f (p).

Taking then Eq. (18) as a measure of the mean kinetic energy Ē of particles in the plasma, 
we compare Ē(x) with the temperature T (x), extracted from Eq. (3) under the assumption of 
thermal equilibrium. This is shown in Fig. 3. As can be observed, Ē is constant over almost the 
whole reheating period, whereas after reheating its evolution follows the same law as for T (x), 
i.e. the well-known T ∝ x−1 behaviour of the radiation–dominated universe, resulting in:

Ēid ≈ mφ

3
, Ē(x)rd � 0.5mφ

α
2/3

xI

x
. (19)
φ
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Fig. 3. Comparison of the mean kinetic energy as computed according to Eq. (18), and the temperature assuming LTE 
from the very onset of the inflaton decay as in Eq. (3), for mφ = 1013 GeV, αφ = 10−11. One can see the obvious 
distinction and the importance of understanding when one should associate a temperature to the decay products of the 
inflaton.

Physically it makes sense: during inflaton–domination the plasma (containing the relativistic 
species from the inflaton decay) is getting constantly reheated by the inflaton decay, and it turns 
out that it does so at a rate which is equal to the cooling rate due to the expansion. Afterwards, 
when the inflaton has decayed completely and only radiation remains, the energy of the relativis-
tic species gets only redshifted by the expansion of the universe.

While this estimation for a typical momentum is reasonable in the scenario of delayed LTE, 
in the pure SM for example the emitted soft particles (out of the 2 → 3 inelastic processes) may 
have momenta as low as:

p̄cut ∼ n
1/3
R (20)

where nR is given approximately by Eq. (15) or (16) depending on the period of energy density 
domination. Comparing p̄cut with Ē for the two regimes, we have that p̄cut < Ē for:

mφ � 2MP α
1/2
φ

(
xI

x

)3/4

, (id-epoch) (21)

mφ � 1.4MP αφ, (rd-epoch).

This means that in scenarios where the infrared enhancement is accessible, the thermalisation is 
much faster than in the delayed scenario, mainly for larger inflaton masses and smaller couplings.

4.2. Evaluating the thermalisation time

As for the thermalisation condition is concerned, depending on the value of (αφ, mφ), in the 
delayed scenario the LTE can be attained during inflaton–domination or afterwards, during radi-
ation–domination. We should evaluate Γth by making use of the mean energies, Ē, instead of the 
temperature, since as we pointed out above – we cannot rely at this point on thermal distribution. 
In the case of efficient thermalisation we use p̄cut instead. We then compare Γth, according to the 
case, with:

H(x) ≈

⎧⎪⎨
⎪⎩

2.9mφ | 0.6x
3/2
I√

πx3/2 − 0.1αφ |, (id-epoch)

1.6 mφ√
πα

1/3
x2
I

x2 , (rd-epoch)
(22)
φ
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Fig. 4. Reaction rate Γ as a function of x for the delayed (efficient) scenario in red (black), as compared to the Hubble 
parameter (blue). Break in the slopes determine the transition from inflaton–domination to the radiation–domination. 
Note that thermalisation time scale in the delayed scenario is larger than the matter-to-radiation transition scale. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

where in inflaton–domination, the Hubble rate is approximately given by: H ∝ (ρid
φ )1/2, whereas 

in radiation–domination case, we have: H ∝ (ρrd
R )1/2.

We have shown in Fig. 4 the comparison of Γth and H from the numerical solution of Eq. (8), 
using αφ = 10−11 and mφ = 1013 GeV, for the sake of illustration, in the two scenarios: delayed 
and efficient thermalisation.

For the efficient scenario, the thermalisation happens much before the beginning of radiation–
domination epoch, as expected.

On the other hand, for the delayed scenario, the evolution of Γth is parallel to that of H for 
nearly the whole reheating period. Indeed, in this region σ(x) is nearly constant (because Ē
is) and thus Γth scales as nR(x), the latter evolving as ρR(x) as was already deduced above 
(see Eqs. (11) and (15)). On the other hand the Hubble rate, even if dominated by the inflaton 
oscillations, also evolves as ρR(x).3 It is only after the inflaton population decreases substantially 
that the universe starts being radiation–dominated, thus the thermalisation processes become 
faster than the expansion rate and thermal equilibrium is achieved. The numerical solution for 
the thermalisation time, xth, is around xth ∼ 1010xI for this choice of parameters.

Analytically it is possible to obtain the value of x at which the thermalisation occurs, 
Γth(xth) = H(xth). We just need to build up Γth from Eqs. (16) and (1), whereas the Hubble 
rate is approximated by Eq. (22). As we are considering a delayed LTE scenario, we evaluate our 
cross section using (19) as explained above.

For the sake of illustration, assuming a total thermalisation cross-section which goes like σth =
α3

s /E
2, see Eq. (1), we obtain the following solution for xth:

xrd
th

xI

≈ m2
φ

α3
s M

2
P α

5/3
φ

(23)

for the case of a radiation–dominated thermalisation. However when including the log contribu-
tion, see Eq. (1), it is not possible to obtain an analytical solution of xth. In this more accurate 
case, the solution is numerical and the thermalisation time xth is between 10 and 100 times 
smaller than what Eq. (23) predicts.

3 This can be deduced from Eq. (10) under the assumption of Φ ≈ const.
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On the other corner of the parameter space, for large αφ and small mφ , it usually happens that 
thermalisation happens very fast, xid

th � xmax, when the inflaton still dominates the expansion.
This is one of the main results of our analysis: for some choices of the pair (αφ, mφ), the 

plasma does not reach thermalisation at the time when the universe becomes radiation–domi-
nated, but later. This happens for:

αφ � (0.01–0.1) ×
(

1

α3
s

)(
mφ

Mp

)2

, (24)

where in the RHS we have corrected for the fact that a realistic xth may be 10−2 smaller than that 
of (23).

As an example for illustration, for a heavy mass, mφ = 1014 GeV, thermalisation reactions 
driven by 2 → 3 processes of strong gauge coupling (as in Eq. (1)), the relativistic species reaches 
thermal equilibrium later than the beginning of the radiation–domination era as long as αφ �
10−8.

Physically speaking this can be understood as follows: even when the universe starts to be-
come dominated by the radiation energy density, the thermalisation reaction rates may still be 
inefficient because of the very large typical energies of the interacting particles, Ē � O(mφ), 
inherited from the inflaton decays and almost unaffected otherwise (see Fig. 3, for an illustrative 
point). These large energies penalise the cross-sections, until the redshift is important enough 
as for the scattering process to become efficient enough, such that Γth > H and LTE is finally 
attained. Of course this works as long as the population of soft particles is not large enough as 
for affecting noticeably the rate of scattering processes.

5. Definition of reheat temperature

Now let us define the reheating temperature, Trh, as computed according to energy density 
(cf. Eq. (3)), provided the radiation has just thermalised, and dominates the Hubble expansion 
rate of the universe.

Trh = T (x), x = max(xth, xrh). (25)

There are three cases of interest:

1. Instant thermalisation – (xth 	 xrh): Thermalisation of relativistic species is attained al-
most instantaneously (usually even around xmax), already during the coherent oscillations of 
the inflaton, and they maintained LTE throughout reheating and also at the time when the 
universe becomes radiation dominated. Following our prescription in Eq. (25), in this case 
the reheat temperature is determined by:

Trh(xth 	 xrd) ≈ 0.6

g
1/4∗

√
αφmφMP . (26)

A couple of points to note: we see that Trh(xth 	 xrd) behaves exactly as the usual Trh

of instant-reheating scenario, see Eq. (5), with an O(1)-difference in a prefactor. Indeed 
Trh(xth < xrd) is a bit smaller than the usual definition of reheating case, as assumed in 
Eq. (5), since the latter corresponds to a maximal thermalisation-efficiency by definition. 
In our case, the lower efficiency translates into a bit smaller reheating temperature (see Fig. 5
below). On the other hand, in this scenario, it is indeed possible to define a maximum tem-
perature of the relativistic species, Tmax ≡ T (xmax) > Trh.
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Fig. 5. Reheating temperature computed numerically by solving Eq. (8). This is represented with dots joined by solid 
lines for different values of αφ : 10−13 (blue), 10−11 (red), 10−9 (green) and 10−7 (cyan), for αs = 1/30. Delayed 
scenario is shown in top panel, whereas efficient scenario is shown in bottom panel. The blue dashed-line is an incorrect 
depiction of reheating temperature (as in Eq. (5)), corresponding to αφ = 10−13. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.)

2. Efficient thermalisation. This may be the case of the SM for example, where due to the 
presence of infrared divergences in Eq. (1), cured by a cut-off given in (20), we get xmax 	
xth ≤ xrh. In this case the estimation of Trh is again as in Eq. (26) following the recipe 
Eq. (25), and thermalisation happens within the inflaton–domination era.

3. Delayed thermalisation – (xth 
 xrh): Thermalisation happens deep inside the radiation 
dominated era, such that the reheat temperature is determined by:

Trh(xth 
 xrd) ≈ (7–70) × α3
s α

3/2
φ M

5/2
P

g
1/4∗ m

3/2
φ

. (27)

Note that Trh(xth 
 xrd) has an opposite behaviour with respect to mφ . This is the most 
important result of our work – in some region of the parameter space (αφ, mφ), where 
thermalisation happens after radiation starts dominating, the reheating temperature actually 
decreases with the inflaton mass. Physically this is due to the following. For larger mφ , larger 
is the mean energy Ē of the relativistic species. This penalises the cross-sections for the ther-
malisation reactions which occur at the beginning, when soft processes are still unimportant, 
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thus rendering the thermalisation rate less efficient at the end of the day, which is attained 
later. Consequently this lowers down Trh(xth 
 xrd).

For scenarios beyond SM where large VEVs of scalar fields prevent the appearance of infrared 
divergences in (1)4 we have shown in Fig. 5 (top) the reheating temperature Trh as a function of 
mφ for different values of αφ , computed numerically by solving Eq. (8) and represented with 
coloured dots joined by full lines. As commented above there are two regimes: one for which the 
thermalisation happens at inflaton–domination, where Trh(xth < xrd) grows with mφ and follows 
closely to Trh = (90/8π3g∗)1/4

√
ΓφMP (see dashed blue line in Fig. 5); and a second regime for 

which the thermalisation happens deep inside radiation–domination era, where Trh(xth > xrd)

decreases with mφ . Essentially, for the largest αφ and the smallest mφ , we are in the former 
regime, whereas for the smallest αφ and the largest mφ , we are in the latter regime.

Note that, for example, for αφ = 10−13 and mφ = 1013 GeV the usual Trh (as in Eq. (5)) 
largely overestimates the (more realistic) reheating temperature we have obtained in our analysis. 
For the second regime, where Eq. (27) applies, we obtain a prediction in the correct ballpark for 
the numerical solution shown in Fig. 5. On the other hand the parametric dependence of Eq. (27)
is verified.

A closer inspection of Fig. 5 reveals some values of mφ and αφ for which the numerical 
results are not shown. These “holes” in the scan are due to the limited validity of our numerical 
solution of Eq. (8). As discussed above this expression, the Γth(ρR −ρ

eq
R ) term is important when 

Γth becomes essentially comparable in size to the Hubble expansion and the inflaton source. 
Otherwise, either radiation-to-radiation terms are very inefficient (such that they do not play 
a role in the ρR-evolution), or if they are too efficient (such that production and annihilation 
balance each other in an equilibrium distribution), Eq. (8) is a reasonable simplification of the 
original Boltzmann set of equations Eq. (2).

We have also obtained Trh numerically in the “efficient thermalisation” case, for all the pa-
rameter space (see Fig. 5 (bottom)). There, Trh grows monotonically as approximated by Eq. (26)
even for the largest inflaton masses, contrary to the delayed scenario where Trh decrease with mφ .

6. Phenomenological implications of delayed thermalisation

The scenario of delayed thermalisation may have important implications for phenomenology 
and model building. We next briefly discuss some of the most direct ones:

6.1. Leptogenesis

In this scenario,5 the existence of right-handed (RH) neutrinos give rise to the observed baryon 
asymmetry by sphaleron conversion processes. The lightest RH neutrino N1 has to be massive 
enough as for producing sufficient CP asymmetry. Thus, since the thermal plasma needs to pro-
duce enough number density of those N1 for a successful mechanism, a lower bound on the 
reheating temperature is imposed. Here we quote Trh � 2 × 109 GeV [17]. By direct inspection 
of Fig. 5, we can see that the leptogenesis bound forbids couplings αφ � 10−11 for whatever 
value of the inflaton mass.

4 I.e. where the “efficient thermalisation” described above does not apply.
5 For a review see [15].
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Fig. 6. Upper bounds on the coupling αφ coming from BBN constraints. This have been obtained by convoluting one of 
the bounds presented in [16]. Upper (blue) line is for an inflaton mass of Mφ = 1013 GeV, whereas the lower (red) line 
uses Mφ = 1010 GeV. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.)

6.2. Gravitinos

Certainly one of the most important scenarios sensitive to the very early universe, the gravitino 
over-production poses a serious cosmological problem. The gravitinos are produced mostly at the 
reheating period out of the thermal bath and, if unstable, their late decays could potentially spoil 
the mechanisms leading to Big Bang Nucleosynthesis (BBN). On the other hand, if they are 
stable, they can over-close the Universe as dark matter candidates if the reheating temperature is 
large enough. Thus, in both cases we are able to place upper bounds on the reheating temperature.

6.2.1. Unstable gravitinos
In this scenario the bounds on Trh come from the abundance of light elements. Given a sit-

uation of delayed thermalisation as the one we have discussed in this work, we could translate 
these upper bounds on Trh from BBN to bounds on the coupling αφ for given inflaton masses, 
as a function of the gravitino mass. The result is shown in Fig. 6. Based on [16], we have, for 
each gravitino mass m3/2, maximum allowed values of Trh coming from the abundances of D, 
3He, 4He, 6Li and 7Li elements. We take for each m3/2 the strongest (i.e. the minimum) of these 
bounds, such that at the end of the day we have a convolution of these upper bounds as a function 
of m3/2. Then, in Fig. 6 we have translated the obtained universal upper bound on Trh, to up-
per bounds on αφ , given two fixed inflaton masses: 1010 and 1013 GeV, by making use of our 
result (27).

We see that in general the bounds from BBN greatly constrain the couplings αφ : even for 
inflaton masses as large as 1013 GeV, couplings larger than 10−12–10−10 are forbidden for a large 
range of gravitino masses. This bound goes in the opposite direction as the one from leptogenesis. 
Only if the gravitino is very heavy (larger than 104 GeV) the two constraints are compatible, since 
then the BBN bound becomes loose.

6.2.2. Stable gravitinos
If the gravitinos were stable instead, thus dark matter candidates, their number density would 

freeze shortly after the reheating period. There are distinct ways in which gravitinos can be 
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Fig. 7. Values of the coupling αφ for two inflaton masses which give rise to the gravitino relic abundance as full dark 
matter candidate. Colour code is the same as in previous figure. See text for more details.

produced, for example, from direct perturbative decays of the inflaton [20]; from scatterings of 
the inflaton decay products (i.e. relativistic species of supersymmetric Standard Model), or from 
thermal processes once the radiation bath has attained thermal equilibrium, see [17]. However, 
as it is known the gravitino production before the thermalisation is attained gets diluted by the 
entropy release. Thus, it’s final population is in very good approximation given by the thermal 
production yield, at the time where T = Trh, the resulting relic abundance being6:

Ω3/2h
2 ≈ 1.7 × 10−3

(
m3/2

GeV

)(
Trh

1010 GeV

)(
γ (T )

T 6/M2
P

)
T =Trh

(28)

where γ (T ) is the total gravitino production rate, typically proportional to T 6/M2
P , and depen-

dent on the supersymmetric spectrum, particularly the gaugino masses. In Fig. 7 we show the 
prediction for a simplified scenario where the gaugino masses are degenerate and equal to 1 TeV 
at GUT scale. By fixing the gravitino relic abundance to Ω3/2h

2 = 0.12, in [17] they have ob-
tained a prediction for Trh(m3/2), which we then translate to a prediction for the coupling αφ

according to (27), in a similar fashion as above. Amusingly, the resulting couplings are in the 
same ballpark as the upper bounds obtained above from a completely independent analysis.

7. Conclusions and discussions

In this work we have studied inflationary reheating, in particular revisiting the study of the 
thermalisation of the inflaton decay products from both an analytical and numerical point of view, 
by analysing the dominant thermalisation process of the relativistic plasma as a whole. We have 
solved the coupled set of Boltzmann equations in two clearly defined regimes: a) The 2 → 3
processes leading to thermalisation are too inefficient to affect the global evolution of the radi-
ation energy-density itself, as a result the universe could be radiation dominated, but still not 
in local thermodynamical equilibrium (LTE), and b) when thermalisation process is very quick, 
at much larger rates compared to the Hubble expansion and the inflaton decay rate, in such a way 
that LTE of the decay products is attained very fast. In both regimes the Boltzmann equations are 
simplified in a similar fashion.

6 We have computed the evolution of the gravitino yield in this case. Our result is in agreement with [17].
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We have obtained the following important results:

• For sufficiently small αφ and sufficiently large inflaton-mass mφ , the relativistic plasma 
does not thermalises at the time where radiation–domination era begins, but (in some cases, 
much) later. When αφ is very small there are not enough relativistic species at the matter-
to-radiation transition to immediately thermalise, whereas for very large mφ , the species are 
too energetic as for the relevant scattering processes to be efficient enough. Although, this 
requires significant suppression in t -channel scattering rate, which may happen for a mas-
sive gauge boson mediated interactions due to VEV or finite temperature effects giving mass 
to the gauge bosons. If there is a t -channel enhancement due to massless gauge boson me-
diation, then the scattering rate is enhanced due to infrared effect and the Debye cut-off is 
determined by the number density of relativistic species present in the plasma. In this case 
thermalisation occurs during the inflaton oscillations dominating the universe.

• We have determined a proper definition of the reheat temperature, in a generic scenario of 
perturbative decays of the inflaton. Essentially, two necessary conditions have to be even-
tually fulfilled: the plasma have to attain LTE, and it must dominate the expansion rate of 
the universe. This is such that for some region of the inflaton parameters (precisely the one 
commented in the first point), the reheat temperature turns out to be much smaller than the 
standard estimations.

Finally, we have discussed some connection with phenomenology by presenting implications 
on the gravitino cosmology. In general, for unstable or stable gravitinos, the predicted inflaton 
couplings need to be very small, order αφ ∼ 10−12–10−10 for an inflaton mass of 1013 GeV.

Other phenomenological implications may be obtained in the context of Affleck–Dine baryo-
genesis (see e.g. [9]) and dark matter creation during reheating [18]. More recently in the context 
of freeze-in mechanism through heavy portals [21–23], we have other examples of DM which 
are sensitive to the reheat temperature. Some of this topical issues might as well have important 
implications for the inflaton mass and couplings, as for the gravitino case discussed above.
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