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1. Introduction 

Elastic spaces were introduced by Tamano and Vaughan in [16] as a natural general- 

ization of stratifiable spaces. It turns out that they share many properties: for example, 

every elastic space is paracompact [ 161 and monotonically normal [2]. Pope proved in 

[1.5] that every regular first countable space in which all but countably many points are 

isolated, is elastic. Hence, the well-known Michael line [13] is elastic. This provided 

the first example of an elastic space which is fundamentally different from a stratifiable 

or linearly stratifiable space [17]. Much more recently the authors have shown [8] that 

every proto-metrisable space is elastic. The class of proto-metrisable spaces is rather 

wide, containing, for example, the Michael line, and is essentially disjoint from the 

class of stratifiable spaces in the sense that every stratifiable proto-metrisable space is 

metrisable. 

It is well known that the closed continuous image of a (linearly) stratifiable space 

is again (linearly) stratifiable, and that another class of spaces, very closely related to 

elastic spaces, the well ordered (F) spaces [7], are also invariant under the action of closed 

continuous maps. Thus it was hardly surprising that Tamano and Vaughan conjectured, in 
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their original paper, that the class of elastic spaces was also closed under closed continuous 

maps. However, in this paper we will develop techniques for constructing spaces which 

fail-but only barely-to be elastic. One application of this construction demonstrates 

that the perfect image of an elastic space need not be elastic. Other examples answer a 

question of Borges. 

In the next section, notation is fixed and the definitions of elastic and proto-metrisable 

spaces given. Section 3 introduces the two methods (the scattering process, and du- 

plication) used in this paper for constructing spaces, and gives sufficient conditions for 

elasticity to be preserved by these processes. Then in Section 4 a “machine” is developed 

for destroying elasticity. Finally, the examples are presented in Section 5. 

2. Elastic and proto-metrisable spaces 

Suppose that X is a set and P = (A, B) IS a pair of subsets of X. We shall denote 

A, the first element of the pair P, by Pi, and L? by P2. If p is a collection of pairs, then 

for i = 1,2, p, will denote {P;: P g p}. 

Notation concerning maps and pairs will be abused in the following way. If X, Y and 

Z are sets, and f :X 4 Y and g:I’ + Z are functions, then if P is a pair of subsets 

of Y and p is a collection of pairs of subsets, of Y, then 

f-‘(p) = (j-V& f-V,)). L?(P) = (!IUKY(%). 

f_‘(P) = {f_‘(P): P E p}. g(P) = {g(P): P E p}. 

Suppose now that p is a collection of pairs of subsets of the set S, and - is a relation 

on p. The relation w is said to befrrrrlring provided that P, P’ are related by - whenever 

PI n P[ # 8. We have to consider the situation where a topology is refined by adding a 

number of isolated points. For each CL E S define p(a) to be the pair ({ u}~ {u}). Now 

define the poirzt extension of - to be the relation M on p U {p(a): a E X} which is 

the transitive closure of the relation N* obtained by taking the union of N and all pairs 

(P, p(a)) with a E PI. 

We are now in a position to give some of the main definitions. 

Definition (Pair-base). If X is a space (i.e., a Ti topological space), then P is a pair-base 

on X provided: 

(1) the set p consists of pairs of subsets of X, 

(2) every element of IIDl is open. and 

(3) if U is an open neighbourhood of a point .I’, then there is a P E p such that 

x E P, 2 Pz 2 u. 

Definition (Elastic). If X is a space, P a pair-base on X and - a relation on l?, then - 

is an elastic relation provided: 

(1) the relation N is transitive and framing, and 
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(2) if P E IF' and p’ Cr {P’ E IF P' - p}, then 

6.5 

U{P;: P’ E P’} c: U{P;: P' E ED'}. 

A space X is said to be elastic if there is a pair-base p with an elastic relation - on 

P. 

We observe that the above definition differs from that given in [ 161. Unfortunately 

the original definition of elasticity is ambiguous since it is not clear how one defines 

the “frame map” when there are distinct P, P' E P such that PI = P/. Even if there 

is no problem defining the frame map for a space X, the same problem arises when 

attempting to show that subspaces of X are elastic. However, if one analyzes proofs of 

results involving elastic spaces (particularly Theorem 2 of [ 1611, then it is clear that the 

above is the intended definition. 

There are many characterisations of proto-me&able spaces. One (due to Gruenhage 

and Zenor [9]) is that a space, X, is proto-metrisable provided it has a pair-base IF’ such 

that, if P, P' E iF and PI n P{ # (D, then either PI C Pi or P,' C P2. (Such a pair-base 

is called a “rank-l” pair-base). Another is formulated in terms of the scattering process 

(see the next section for details). The characterisation given below was obtained in [8] 

and is ideally suited for our current purposes. 

Definition (Proto-metrisable). If X is a space, then (P. -) is a unitary point extendable 

pair-base if: 

(1) the set p is a pair-base on X, 

(2) the relation - on p is transitive and framing, and 

(3) if % is the point extension of - and p’ C {P E IIt P = p(a)} for some a E X. 

then there is a Pnr E P' such that 

U{P,: PEIY}CP~* and u,EP~'. 

A space is proto-metrisable if it has a unitary point extendable pair-base. 

3. The scattering process and duplication 

If C is a class of topological spaces, then we define S(C) to be the class of spaces 

which are obtained by the following process: take any space in C, isolate all the points 

of some subset, replace each such point by a space in C, and repeat transfinitely, taking 

some subspace of the inverse limit at limit ordinals. Observe that C C S(C). We shall 

say that C is closed under the scattering process if C = S(C). 

Nyikos [ 141 has shown that the class of proto-metrisable spaces is S(Metrizable). 

The Alexandroff duplicate D(X) of a space X is. by definition, the set X x (0, 1). 

topologized so that (x, 1) is isolated for every n: E X, and so that a local base for the 

point (~~0) (x E X) is {(U x (0, 1)) \ {(r, 1)): U open in X and s E U}. 

Duplication and scattering are related processes, and lie at the heart of many con- 

structions in topology (see, for example. [ 171). It remains unclear whether elasticity is 
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preserved by the scattering process. To give the most general positive result known to 

the authors, we require a further definition. 

If X is a space, then define (P, -) to be a n,euX-11 point extendable pair-base if: 

(1) 
(2) 
(31 

the set P is a pair-base on S. 

the relation - on IP is transitive and framing, and 

if M is the point extension of - and P’ C {P E P: P z p(a)} for some n E X, 

then 

u {P,: P E P’} c [u {Pg P E p’}] u {a}. 

The relevance of this definition should be clear from the following pair of results, 

Lemma 1. If the space 9 has n weakly point extendable pair-base, therl X is elastic. 

Proof. Let (IP’, -) be a weakly point extendable pair-base for X. It suffices to show that 

- is an elastic relation on IP. Suppose that P E P’ and P’ C {P’ E P: P’ N P}. Note 

that if a E PI then IP’ C {P’: P’ FZ p(n)}. and hence 

u {P/: P’ E JY} c [u {Pi: P’ E PI}] u {CL}. 

If Pi is the singleton {u} say, then R is isolated and clearly 

ct, 

u {P;: P’ E ED’} c u {Pi: P’ E p’} 

in this case. If PI consists of more than one point, then by considering (t) for two 

different points of PI we again see that 

u { P[: P’ E FJ’} c u {Pi: P’ E ID’} 

as required. 0 

Theorem 2 [8]. The class of spaces with weakly point extendable pair-bases is closed 

under the scattering process. 

The next theorem shows that the duplicate of a proto-me&able space is elastic. 

However, Examples 9 and 10 will show that duplication can kill elasticity. 

Theorem 3. Ifa space X has a unitary point exterldable pair-base, then the space D(X) 

has a weakly point extendable pair-base. 

Proof. Let (IP, -up) be a unitary point extendable pair-base X. If P E p and s E PI then 

define 

D(P, .r) = ((PI qo. I})\{ (14 I,}. (P2 x (0, I})\{ (J. l)}) 

and set 

ID = {D(P,z): P E p and s E Pi} U {p((s,l)): z E X}. 
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Observe that D is a pair-base for 27(X). Let -D be the minimal transitive relation on ED 

satisfying: 

( 1) If P, P’ E IID and .r E PI, y E P{, then D(P. .r) -D, D(P’, y) if and only if 

P yu P’. 

(2) If D E D and .E E X. then D -p p( (x. 1)) whenever (.r. 1) E DI. 

Notice that ND is framing. It can now be verified without difficulty that (IIJJ, WC,) is the 

required weakly point extendable pair-base on D(5). q 

4. Destroying elasticity 

In this section we demonstrate how our two processes of scattering and duplication can 

be used to destroy elasticity while preserving other strong properties such as monotone 

normality and paracompactness. We begin by introducing some notation for a simple case 

of the scattering process. Suppose that S is a space with some isolated points. Define 

X0 to be _Y and inductively define X,+1 to be the space obtained from X,, by replacing 

all the isolated points of X, by copies of X. Let Xti be the inverse limit of the 9,‘s. 

Since the class of proto-metrisable spaces coincides with S(Metrizable), it is clear that 

if X is proto-metrisable then X, is proto-metrisable and hence by Theorem 3. D(S,) 

is elastic. Our aim is to show that if X is not proto-metrisable but is T3 and has a dense 

subset of isolated points, then 2)(X,) is not elastic. If X is elastic then. by the results of 

[7], D(X,) has W satisfying well-ordered (F) and hence is monotonically normal and 

hereditarily paracompact. Indeed, it can be shown that D(_XPd) is strongly stratonormal 

(see [3] for the definition). We proceed with a number of lemmas. The first establishes 

that if I is not proto-metrisable. but is Tj with a dense subset of isolated points, and P 

is a pair-base on X with a framing relation - on P, then there is an isolated point I and 

P. Q E p such that P N Q, .r E Q,, but JY 6 Pz. 

Lemma 4. Suppose that X is u T3 space with a dense subset of isolated points. Further 

suppose that X has a pair-base p w.ith u framing relation N sntisfiing 

(P-Q. .~EQ,> x isolated) =+ x E g. 

Then X is proto-metrisable. 

Proof. Since X is regular, {(Pt. E): P E p} is a pair-base for X. By Gruenhage and 

Zenor’s result, it suffices to show that this is a rank-l pair-base. Suppose that PI Q E p 

and PI n Q1 # 8. The relation - is framing and so we will assume that P - Q. Suppose 

that Ql g E. If this is the case then QI \P_ 7 is a nonempty open set and hence contains 

an isolated point x. Thus P N Q, x E Q,, .r isolated, but s 6 E contradicting the 

hypotheses. Hence, X is proto-metrisable. 0 

For the next three lemmas X will be a T3 space with a dense subset of isolated points, 

but S will not be proto-metrisable. If a < 13, < w. then j~_~ : S/j --f X, will be the 

usual map associated with the scattering process. 
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Lemma 5. For 0 < /3 < ul the mup ,jrj_rk is an open map. 

Proof. The fact that j,,,, is open follows directly from the definition of the S,‘s. To 

see that j,,, is open, consider any open 0 & 9,. If J’ E j,,, (0) and z is not isolated, 

then by the definitions of the XrL’s and the fact that XU is the inverse limit of the X,‘s, 

there is an open U in S,, such that .I’ E Ii and j&(U) C 0. Thus jti_n(O) is open 

as required. 0 

Lemma 6. Suppose that (P. -) is an elustic pair-base on 2)(X&), that TT is an isolated 

point @XT1 urzd (j&(r) x {0}) n PI # Qf or some P E p. Then there is m > n and 

open U in X,, such that: 

(1) x E j,4,(U), 

(2) j;!+,(U) x {O,l} C PI, and 

(3) P - p((y, 1)) for every :y E j;!_,,,(U). 

Proof. Pick y = (1~~~) E S, such that yn = .r and (y% 0) E Pi. Since (lP, -) is an elastic 

pair-base 

(~~0) $ ((2, 1): z E X4 and ~I((z> 1)) N P}. 

Hence there is an open subset A of _Y, for which 

(Y,@ E (A x (0.1)) \ { (~7 1)) c 8 

and P - I)((:, 1)) whenever z E A and ,z # y. Since .r is isolated in X, and is an 

element of j,,, (A), there is in > I). and B open in X, such that B is not a singleton, 

Ye E B, jm+-i(B) = {ynl-~}, and j;!_,, (B) C A. Define U = B\{y,}. It is clear 

that U satisfies (l)-(3) as required. 0 

Lemma 7. Suppose that p is N pair-base on X, tvith framing relation N on p. Further 

suppose that L is an isolated point of X, and C is the clopen copy of X that replaces 

5 in Xn+l. Then there is un isolated point y qf C und P7 Q E p such that: 

(4 P - Q, 
(b) Y $ jw-n+~ (Pz). 
(c) x E jw-I, and 

(4 .Y E j&-n+1 (QI 1. 

Proof. We begin with a definition. Suppose that 0 is an open subset of XU and 

J~_,+~(O) is a subset of C that contains some nonisolated points. Recall that, if 

a E ~+,~+i (0) is not isolated, then there is an open set U such that u E U 2 C 

and jJLn+, (U) C 0. Define 

V(O) = U {U: U open in C and j;i_lL+,(Cr) c 0} 

and notice that j&L+, (V(0)) 2 0. Now define iP* to be the set of all P in p such that 

jw-7L+~ (Pz) G C and jw-,l+l (9 1 contains some nonisolated points. For each P E p*, 

set PC = (V(Pl). jti_n+l(Pz)) and define 

E = {P’: P E p*} U {({o,}? {a}): a isolated in C}. 
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We now show that IE is a pair-base for C. Suppose that n E U C C. a is not isolated 

and U is open. Pick b E j;Ln+, (a) and P E p such that 

b E PI C PZ C j;!+,+, (U). 

Thus, a. E V(8) C: jw+n+~ (8) C .Ln+l (IS) G U and P E p*. Hence E is indeed 

a pair-base for C. Our next aim is to define a framing relation -E on E. Suppose that 

E is an element of YE. If E = ({a}, {a}) f or some isolated point u, then pick PE E p 

such that jw-n+i (PE) = E. If E E IE and El contains some nonisolated points, then 

pick PE E P such that E = (V(P,“), jw4n+l(P2E)). Now define -F. by E -E E’ if 

PE - PE' . To see that -E is framing recall that N is framing and observe that if a E El 

and El is not a singleton set, then j;:,+,(a) C PIE. 

Now, the space C is homeomorphic to X and hence is Tj with a dense subset of isolated 

points, but C is not proto-me&able. Thus by Lemma 4, there is an isolated point y of C 

and E. F E IE such that E -E F, y E FI, but y $ E2. Let P and Q denote PE and PF 

respectively. Observe that P - Q, y E Fl C j,_,+i(Ql)-and y +Y! Ez = jd-,l+~(P2). 

Finally notice that s E jn+lAn(El ) C j,,, (PI) as required. 0 

We are now in a position to prove the theorem. 

Theorem 8. Suppose that X is a T3 space with a dense subset of isolated points, but 

that X is not proto-metrisable. Then V(X,) is not elastic. 

Proof. Suppose for contradiction that (p3 -) is an elastic pair-base on D(X,). We will 

inductively define a point .r = (.r) of S, such that x, is isolated in X,, for every n. 

and for each n in some infinite subset I of N, we will define various sets, including an 

element Q” of p such that (j~‘_~(.r~) x (0)) n Q; # 0. The induction is begun by 

defining TO to be any isolated point of Xa and Q” to be any element of p such that 

(j;L,(xa) x (01) n Q? # 0. Th e number 0 will be an element of I. Suppose that we 

have defined ~0, . . . , x, so that: 

(9 2, is isolated in X, for each m, 

(ii) jm+i-m(xm+i) = zm for each m, and that 

(iii) n E 1 and we have defined Q” E p so that (j;!+,(xn) x (0)) n Q; # 8. 

By Lemma 6, there is ‘rn > ‘n and open U = U, in X, such that: 

(1) x, E j,+,(U), 

(21 j;!+,(U) x (0. I> C Q?, and 

(3) Q” - P((Y, 1)) for every y E .L!+,W). 

Since the isolated points of X are dense in X, the isolated points of _U, are dense 

in Xi,. Hence, since x, is isolated in X,, we can pick an isolated x, E U such 

that jm_n(xm) = z~. For ‘n < r < m, define x, = jm+.(zm). The number m + 1 

will be the smallest element of I larger then n. In the construction of Xm+l, x, is 

replaced by a clopen copy of X. Denote this copy by C. The pair-base (p, -) induces a 

framed pair-base on X”. Hence by Lemma 7, there is an isolated point x,+1 of C and 
pm+l .Q m+’ E P such that: 
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To complete the induction, notice that ,jm+ 1 -171 (.rrrr+ 1) = .c, . 

Let I* = I\(O). 

Claim 1. If 71 E I*, rhm P” - p( (.I.. I)). 

To see this, suppose that 11 E I* and ~1. + I is the next element of I. By construction, 

there is an open set Urn of X,,, containing .r,,, such that Q” N JJ((VJ> 1)) whenever 

:r~ E j$_,,, (U,,), and thus Q” - ~j((.r. I)). Again by construction, Pn N Q” and hence 

by the transitivity of -, P” - I,( (.r, I)). 

Claim 2. (.I-> 0) E U {P;‘: 71 E I*}. 

Suppose that U is open in X,,, and J E ,j;‘_,,, (tr) (recall sets of this type form a basis 

for S, ). Pick an n. t I* such that 71 > 7~. By construction, (j;r++, (JZ,_~) x {O})M’; # 

01. Thus (jZ!_,,,(.rrn) x (0)) n P;’ # (il and hence (j;!_,,(U) x (0)) n Py # 0. Therefore 
(J. 0) E IJ{ Py : n E I*} as required. 

Now (p, -) is an elastic pair-base. So. by the two claims, it must be that case that 

(.r,O) E U{Pi’: n E I*}. However, for each 71 E I”, (~J;,,(J~~) x (0)) n PT = 0. 

Hence (.c.O) $! U{P:: 11 E I*}. contradicting our assumption that D(X,) is elas- 

tic. 0 

5. Examples 

We finish with three applications of the above results. The first two demonstrate the 

limits of the theory from earlier sections. In addition. they provide counterexamples to 

a question of Borges [3] by givin g examples of strongly stratonormal spaces that are 

not elastic. The final application establishes that elasticity is not preserved by perfect 

maps. 

Example 9. The duplicate of a compact tirst countable elastic space need not be elastic. 

There is a compact first countable space which is strongly stratonormal but not elastic. 

Proof. Let S = D([O, 11) and YY = X,. As [O,l] is metrisable, by Theorems 2 and 3, 

X, has a weakly point extendable pair-base. II is easily seen to be first countable and 

is also a closed subset of the compact space n, S,,, hence is compact. The duplicate 

of any first countable compact space is first countable and compact. In [7] it is shown 

that the class of well ordered (F) spaces is closed under the scattering and duplication 

processes, and that any elastic space is well ordered (F). We also remark that the duplicate 

of a strongly stratonormal space is strongly stratonormal. Finally, recall that compact 
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proto-metrisable spaces are me&able [14]. Hence, X is not proto-metrisable but is 

T3 and has a dense subset of isolated points. Therefore, by Theorem 8, D(X,) is not 

elastic. Cl 

Example 10. There is a stratifiable space S such that D[S) is not elastic. 

Proof. We make two observations: first, if 7 is a stratifiable topology on a set Y, then 

so is 7’ where I’ is obtained by isolating a countable subset of points. Second, if Y is a 

stratifiable space with at most countably many isolated points, then the space Y’ is also 

stratifiable if Y’ is obtained from Y by replacing each isolated point of Y by a stratifiable 

space. Let B denote McAuley’s bow-tie space [ 121 and define X to be the space obtained 

from B by isolating all points with both coordinates rational which are not on the z- 

axis. Finally set S = X,. By the above observations X, is stratifiable for each n. Thus 

n,, X, is a stratifiable space which contains S as a subspace. Hence S is stratifiable. 

The space X is stratifiable, but not metrisable and therefore not proto-metrisable [14]. 

However, X has a dense subset of isolated points and hence by Theorem 8, D(S) is not 

elastic. 0 

We now prove that in certain cases D(Xti) is the perfect image of an elastic space. 

The authors do not know whether the result can be extended to any D(Xw) where X is 

elastic. 

Theorem 11. Suppose that the spuces X and Y and the function f :X + Y are such 

that: 

(1) X is proto-metrisable and Y has isolated points, 

(3) f is a closed, continuous surjection and the$bers off areJinite, 

(3) if ?J is an isolated point of Y, then f-‘(y) consists of just one point, and 

(4) ifx E X then, x is isolated in X ifand only if f (x) is isolated in Y. 

Then V(Xw) is an elastic space and there is g : V(Xd) + V(Yw) such that g is a closed, 

continuous surjection and the fibers of g are finite (hence g is a pelfect map). 

Proof. To see that D(XU) is elastic, recall that X, is proto-metrisable and apply 

Lemma 1 and Theorem 3. 

If o < p 6 w then let %p+ : Xp + X, and j,,, : Yp + Y, denote the 

usual maps associated with the scattering process. We will inductively define maps 

fi, : X, + Y,. Set fo = f and suppose fn has been defined so that x is iso- 

lated in X, if and only if fn( ,) x is isolated in Y,. Suppose that x E Xn+l and 

let a = i n+t_n (_E). If a is not isolated in X, then fn (CZ) is not isolated in Y, 

and .I: = a. In this case define fn+l(x) = fn(a) E Y,+t. Suppose now that a 

is isolated in X,. Set b = fn(a) and let X, and Y, denote the clopen copies 

of X and Y which replace a and b in the construction of Xn+t and Y,+t . Let 

fU : A-, + I”, be the function that corresponds to f : X + Y, and define fn+l (x) = 

fa(x). Notice that 2 is isolated in Xn+i if and only if fn+t (x) is isolated in 

>,+I. 
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We 

(1) 

(2) 

(3) 

(4) 

make the following observations concerning the above maps: 

If m > n, then the following diagram commutes: 

s,, fm I;,, 

Suppose that s E S,,, y E Y,, and y’ E Y,+t are such that fn(r) = y 

and j,+t,,(y’) = ,y, then there is z’ E Xn+t such that fVt+t(z’) = y’ and 

in+,--n(2’) = 2. 

For each 7~. fiL is surjective. has finite fibers. in continuous and closed. 

If y is an isolated point of Y,,. then f,;‘(y) consists of just one point. 

Now define fw : Xm + I’:, by 

f&(s) = (fn(:cll)) where s = (.t.) E X, 

By observation (1). fti(.r) is indeed an element of 1,;. From the definitions it is clear 

that the following diagram commutes: 

s, A 1; 

We will prove that fw is a closed, continuous surjection with finite fibers. 

Claim 1. fti is u surjection nnd has jit~ite~bers. 

Suppose y = (yn) E I”,. Pick .r() E Xu such that fu(xa) = yu. Assuming that JJ,, has 

been defined so that fn(.rll) = yin, observation (2) allows us to pick .r,,+t E Xn+t such 

that fn+l(sn+l) = yrL+l and in+~-n( .rrL+l) = ;c,,. Hence, if .c = (xn), then .r E XU 

and fti(.r) = y. Thus fw is a surjection. We now show that f;‘(y) is finite. Notice that 

if y, is isolated in Y,,, then there is a unique x‘n E -Ti,, such that fn(xCn) = yn. Hence, if 

y, is isolated in Y, for every 71,. then f;’ (71) consists of just one point. So, suppose that 

yYn is not isolated in k;, for some ~1. Let N be the least n such that yn is not isolated. 

Suppose that a E fi;‘(y~). Since yAv is not isolated, a is not isolated. Hence, there is a 

unique .r E X, such that xN = a. Notice that if 2 E f;‘(y), then zN E f&‘(y~). Thus, 

SinCe fi’(?JN) iS finite, f;‘(y) is finite as required. 

A direct proof that fw is closed and continuous is straightforward. Alternatively, The- 

orem 3.7.12 of [4] gives us the result since each function fil is perfect. 

Now define g : D(X,) + D(Y,) by 

g((x. i)) = (fw(~)> i) for i = 0.1. 
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Since fd is a surjection and has finite fibers, g is surjective and has finite fibers. We shall 

prove that g is closed and continuous. 

Claim 2. g is c.ontinuous. 

Since g-‘((y, I)) = f:‘(y) x (1) 1s o p en, it suffices to show that if 0 is open in Y, 

and y E 0, then g-‘(U) is open, where U = (0 x {O,l})\{(y, 1)). Notice that 

g-‘(V = (K’(O) x (09 U)\(f,-‘(u) x VI). 

Now, f;‘(O) x (0, l} is open in 27(X,) since fJ is continuous. Furthermore, f;‘(y) x 

{l} is finite and therefore closed. Hence g-’ (U) is open in D(Xw) as required. 

Claim 3. g is closed. 

Suppose that b E D(Yw). U an open subset of D(X,) and g-‘(b) C U. Since g is 

continuous it suffices, by [4, 1.4.131, to show there is an open V in D(Y@) such that 

b E V and g-’ (V) C U. If b is isolated, then let V = {b}. Consider the case when 

b = (y,O) for some y E Y,. Notice that g-‘(b) = f;‘(y) x (0). Define 

0 = U {T: T open in Xti and there is x E f;’ (y) 

such that (T x (0, l})\{ (JJ? l)} C U}. 

Observe that 0 is open in X,, f;’ (y) C 0. and 

(0 x {O,lI)\(f,-‘(Y) x (11) G u. 

Now. fr, is closed and so there is an open subset w of Y, such that y E it7 and 

f,-‘(IV) c 0. D fi e ne V = (II’ x (0, I})\{(y, 1)) and notice that b E V, V open in 

D(K). and 

s-‘(v) = (f,_‘Pv x {O~ll)\(f,_‘(Yl) x Ul) 

c (0 x 10, U)\(f,_‘(Y) x W) c u 

as required. 0 

Example 12. The perfect image of an elastic space need not be elastic. 

Proof. Let A be u/’ + 1 with the usual (order) topology refined so that cy is isolated 

whenever CI: < LJ’. Let B be a copy of the space LJ + 1 which is disjoint from -4. Let X 

be A 63 B, the topological sum of A and B. Observe that A and B are proto-metrisable 

and hence X is proto-metrisable. Denote the point of B corresponding to w by w*, and 

let E be the equivalence relation on X which identifies w’ and w* (and no other pair 

of distinct points). Define Y to be the quotient space S/E and denote the quotient map 

by f. Observe that X, Y and f satisfy the hypotheses of Theorem 11 and thus D(X,) 

is an elastic space and there is a map g : D(Xti) --f 27(Yw) such that g is a closed, 

continuous surjection and the fibers of g are finite. Observe that not every point of Y 



74 PM. Gartside. P.J. Moody / Topology nnd its Applicatiorzs 79 (1997) 63-74 

has a linearly ordered local base; hence Y is not proto-me&able. Thus, since Y is TX 

and has a dense subset of isolated points, we have, again by Theorem 8, that D(Y,) is 

not elastic. 0 
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