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Abstract

A split complete weight enumerator in six variables is used to study the 3-colored designs
held by codewords of 0xed composition in Type III codes containing the all-one codeword. In
particular, the ternary Golay code contains 3-colored 3-designs. We conjecture that every weight
class in a Type III code with the all-one codeword holds 3-colored 3-designs. c© 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Colored designs were introduced in [1] to study the Harada designs [6] held by
the lifted Golay over Z4: They produce ordinary designs by bleaching and are easily
understood in terms of split (complete) weight enumerators. Colored t-designs are
known to exist when the permutation part of the automorphism group is t-transitive
[1]. This is the case, for instance, of the doubled Golay code in [2], which is invariant
under the action of M24:
In the present work, we investigate the tricolore 3-designs held by codewords of

extremal Type III codes. It is well known that the ternary Golay is invariant under
the monomial action of the 5-transitive group M12: The permutation part of that group,
however, is not even 1-transitive [8, Section 5.1]. We show that the codewords of
given composition in the ternary Golay, the symmetry code of length 24, the extended
quadratic residue code of length 24, hold tricolore 3-designs. Similarly, as observed
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in [8, Section 5.2], the permutation part of the automorphism group of the symmetry
code is not transitive.
We conjecture, based on these results and computations in lengths 36; 48; 60; that the

codewords of given composition in an extremal Type III code containing the all-one
codeword hold tricolore 3-designs.

2. De�nitions and notations

The composition of a vector c∈Fn
3 is the triple (n0(c); n1(c); n2(c)) where ni(c)

counts the number of j∈ [n] with cj = i: A ternary linear code C is a F3-subspace of
Fn
3: A Type III code is a ternary linear code self-dual w.r.t. the usual inner product. It

is said to be extremal if its minimum distance d=3(�n=12�+1): The complete weight
enumerator of C denoted by cweC is then

cweC(x; y; z) :=
∑
c∈C

xn0(c)yn1(c)zn2(c):

The weight enumerator (WC) is obtained by specialization:

WC(x; y) := cwe(x; y; y):

The split cwe (scweC;T ) in six variables a; b; c; x; y; z is de0ned for any set of coordinate
places T ⊆ [n] as

scweC;T :=
∑
c∈C

ar0(c)xs0(c)br1(c)ys1(c)cr2(c)zs2(c);

where ri (resp. si) is the composition on T (resp. [n]\T ). Observe that JC;T is an ho-
mogeneous polynomial of degree n\|T | in x; y; z and degree |T | in a; b; c: Specialization
gives the 4-variables Jacobi polynomial introduced in Ozeki [9].

scweC;T (a; b; b; x; y; y)=: JC;T (a; b; x; y):

3. Colored designs

A colored incidence structure � is a set P of “points”, a set B of “blocks”, a set C
of “colors”, together with a function

� :P × B → C;

we will say that B has color �(P; B) at P.
The application we have in mind is the situation where the characteristic vectors of

B are supports of words x say of some code over a not q-ary alphabet with coordinate
places P and �(P; B) is a function of xP:

An incidence structure is clearly just a colored incidence structure with two colors,
“incident”, and “not incident”. We will say that a colored incidence structure is uniform
if there is a function n :C → Z , the palette, such that for each color c, every block
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uses color c n(c) times. For instance, when the alphabet is Z4 then we can take [1]
C=0; 1; 2 and n(i)= ni for i=0; 1; 2: See [11] for the case C=0; 1; 2; 3:

A colored incidence structure is simple if no two blocks assign the same coloring
to �.
There are two natural ways to colorize the notion of a t-design. A simple, uniform

colored incidence structure � is a colored t-design if for each t-multiset of colors
(repeated choices allowed), there is a number � such that for any choice of t points,
exactly � blocks use that set of colors for those points. A strong colored t-design is
one in which the colors and points are ordered. It is easy to see that a t-design is a
strong colored t-design with two colors. In general, however, a colored t-design is not
strong.

Lemma 1. A (strong) colored t-design D is also a (strong) colored t′-design for all
t′6 t.

Clearly, the parameters of a (strong) colored t-design depend only on the number
of blocks and the palette. For this reason, we will often refer to a t-design as a
t-(|P|; (n(1); n(2); : : :); |B|) design. Thus, for example, the 5-(24; 8; 1) design would be
a 5-(24; (8; 16); 759). The following is trivial:

Lemma 2. If D is a t-(v; (n1; n2; n3; : : : nk); b), then

�j1j2j3 :::jk =

∏
i

(
ni
ji

)
|B|

(
n
t

) :

It is left to the reader to determine which standard transformations of uncolored
designs can be extended to (strong) colored designs. One new transformation is to
identify colors (we will call this operation “bleaching”) to obtain a structure with
fewer colors. It is easy to see that this preserves the t-design property (except for
possibly introducing repeated blocks).
The relation with split weight enumerators goes as follows. The codewords of given

composition in a ternary code C hold 3-colored t-designs iM scweC;T does not depend
on T for |T |= t: The structure constants �j1j2j3 :::jk can then be easily computed from
the datum of scweC;T :

4. Invariant theory

It should be noted that when T is void the Jacobi polynomial coincide with the cwe
of C: In the case of C a type III code containing the all-one vector it was shown in
[7, Chapter 19] that the cwe was left invariant by a group G3 of order 2592 generated
by four matrices M1; M2; M3; M4 corresponding respectively to MacWilliams transform,
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and some congruence conditions:

M1 :=
1√
3


 1 1 1

1 j j2

1 j2 j




with j := exp(2 
√−1=3); and M2 = !I3 with ! := exp( 

√−1=6); and M3 = diag(1; j; 1)
and M4 := diag(1; 1; j): It is a simple exercise to show that, for any T , the split cwe is
invariant under the same group acting in the same way on each set of three variables.
This a simultaneous invariant in the sense of Issai Schur [10] for the diagonal action of
G3: In other words, it is an invariant for the direct sum G3⊕G3 obtained by replacing
each element g∈G3 by the 6× 6 matrix(

g 0
0 g

)
:

Let Ml;k denote the dimension of the space Ml; k of invariant polynomials in a; b; c; x; y; z
of degree k in a; b; c and l in x; y; z: Consider the bivariate Molien series

f(u; v) :=
∑
k;l

Ml;kukvl:

Formula (13) in [11] specializes into the following bivariate analogue of Molien’s
theorem:

f(u; v)=
1
|G|

∑
g∈G

1
det(1− ug)det(1− vg)

:

In the case of G3 a Magma computation gives an explicit if unwieldy rational function.
A Taylor expansion yields

f(u; v) := 1 + 2a12 + 2ba11 + 3b2a10 + 4b3a9 + · · · :
An important practical tool to compute bases of the spaces Ml; k is the Reynolds
operator, which we now de0ne. The Reynolds operator attached to a matrix group G
acting on polynomials f by linear substitutions is

R(f;G) :=
∑
g∈G

g:f;

where the image of f by action of g∈G is denoted by g:f. It is well known that
R(f;G) is an invariant of G: It is an easy observation that Reynolds operators respect
the bigrading. If f has bidegree l; k then R(f;G3 ⊕ G3)∈Ml; k :

5. Polarizations

5.1. Two variables

If P is a polynomial in 4 variables a; b; x; y of total degree n de0ne a diMerential
operator called the normalized polarization operator A4 by the formula

A4(P) := (aP′
x + bP′

y)=n:
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We shall require the following lemma. De0ne a ternary code to be t-homogeneous if
the codewords of given Hamming weight hold a t-design.

Lemma 3. If C is t-homogeneous and of minimum Hamming distance ¿t then for
all T of size t we get

JC;T =At4WC:

5.2. Three variables

If P is a polynomial in 6 variables a; b; c; x; y; z of total degree n de0ne a diMerential
operator called the normalized polarization operator A6 by the formula

A6(P) := (aP′
x + bP′

y + cP′
z)=n:

De0ne the specialization operator S by

S(P)(a; b; c; x; y; z) :=P(a; b; b; x; y; y):

De0ne a ternary code to be colorwise t-homogeneous if the codewords of given com-
position hold a tricolore t-design. The analogue of Lemma 3 is then

Lemma 4. If the ternary code C is colorwise t-homogeneous and if C has minimum
Hamming distance ¿t then for all T of size t we get

scweC;T =At6cweC;T :

6. Length 12

We now give a basis of the space of interest.

Lemma 5. A basis of M3;9 is obtained by applying R(f;G3 ⊕ G3) with f running
over the monomials

a3x9; a3x3y6; a3x3y3z3; a2bx4y5:

It is important to observe that specialization is one-to-one on those spaces.

Lemma 6. For l=1; 2; 3 we have

dim S(Ml;12−l)= dim(Ml;12−l):

Proof. This is checked by taking the image by S of the preceding bases.

Such good fortune cannot happen in length 24; since the bimolien series for the group
G′′

3 of order 144 generated by M1; M2; M3 corresponding, respectively, to MacWilliams
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transform, and some congruence conditions.

M1 :=
1√
3

(
1 2
1 −1

)

and M2 = !I2 with ! := exp( 
√−1=6); and M3 = diag(1; j) with j := exp(2 

√−1=3); is

1 + · · ·+ 3u24 + 4vu23 + 6v2u21 + 8v3u21 + · · ·

while the bimolien series for G3 reads

1 + · · ·+ 4u24 + 6vu23 + 10v2u21 + 15v3u21 + · · · :

Note that the homogeneous part of degree 12 of both series begins with

1 + · · ·+ 2u12 + 2vu11 + 3v2u10 + 4v3u9 + · · · :

Observe that the preceding lemma together with the bivariate Molien series entails
Lemma 5.
We are now in a position to prove the main result of this section.

Theorem 7. The codewords of ?xed composition in the ternary Golay hold tricolore
3-designs.

Proof. We need to show that scweC;T does not depend on T for |T |=3: Since it lives
in M3;9 we can expand it with indeterminate coePcients on the basis given in Lemma 5.
Recall that the ternary Golay is 5-homogeneous [7], hence 3-homogeneous. By spe-
cialization and Lemmas 3 and 6 we determine these completely by solving a 4 × 4
linear system.

Note that this result is best possible since the ternary Golay cannot be colorwise
4-homogeneous as applying 4 times the operator A6 to its cwe results in fractionnary
coePcients, thus contradicting Lemma 4.

Corollary 8. The cwe of the (i times shortened) Golay code G is the coe@cient of
aib0c0 in Ai6cweG for i=1; 2; 3:

When i=1 this is WG11 in [8, p. 661].

7. Length 24

The approach is the same as in the preceding section. The matter is complicated,
however, by the larger size of the coePcients of the bimolien series as previously
mentioned.
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Lemma 9. A basis of M3;21 is obtained by taking R(f;G3⊕G3) with f running over
the monomials:

a3x9y3z9; a3x21; a3x12y6z3; a3x9y12;

a3x9y6z6; a3x6y12z3; a3x3y15z3; a3y15z6;

a2bx13y5z3; a2bx13y2z6; a2bx10y11;

a2bx10y2z9; a2bx7y11z3; a2bx7y8z6; a2cxy15z5:

We now consider an extremal code of length 24 containing the all-one codeword.
Let J6 denote an arbitrary Jacobi polynomial attached to that code and to some set of
coordinate places T of size 3: We expand it on a basis say ei of M3;21:

J6 :=
15∑
i=1

miei:

De0ne the restitution operator R6 as the operator acting on C[a; b; c; x; y; z] by the
substitution a= x; b=y; c= z: We know that A6 and R6 are inverse of each other.
Since dim(M0;12)= 4; restitution gives us four independent relations between

the mi’s.
Let J4 :=A2

4WC: We know that such a code is 3-homogeneous. Therefore by
specialization

SJ6 = J4:

This gives 5 relations amongst the mi’s. We obtain 4 further relations by writing that
the sum of the exponents of b; c; x; y is at least 9; and one more relation by writing
that, as inspection of the cwe shows, there is no codeword of shape 01519: We are
now in a position to prove the main result of this section.

Theorem 10. The codewords of ?xed composition in an extremal ternary self-dual
code of length 24 containing the all-one vector hold tricolore 3-designs.

Proof. We solve for the mi; i=1; : : : ; 15; a linear system in 4 + 5 + 5 + 1=15
equations.

Again, this is the best possible result, as applying A6 four times yields non-integral
coePcients.

Corollary 11. The cwe of the (i times shortened) symmetry code S of length 24 is
the coe@cient of aib0c0 in Ai6cweS for i=1; 2; 3:

Case i=1 of that corollary appears in [8, p. 662].
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8. Conjecture

Conjecture 12. The codewords of given composition in an extremal Type III code
containing the all-one codeword hold tricolore 3-designs.

9. Design parameters

9.1. Length 12

Corollary 13. There exist simple 3-colored 3-designs with the following parameters:
Three designs with parameters 3-(12; (n0; n1; n2); 220) where (n0; n1; n2) is equal to

(6; 3; 3) or any one of its three permutations.
Three designs with parameters 3-(12; (n0; n1; n2); 22) where (n0; n1; n2) is equal to

(6; 6; 0) or any one of its three permutations.

By bleaching colors in various ways we obtain the designs (in the ordinary sense)
with the following parameters 3-(12; 6; 20); 3-(12; 6; 2); 3-(12; 9; 84).

9.2. Length 24

Corollary 14. There exist simple 3-colored 3-designs with the following parameters:

Six designs with parameters 3-(24; (n0; n1; n2); 2024) where (n0; n1; n2) is equal to
(15; 6; 3) or any one of its six permutations.
Three designs with parameters 3-(24; (n0; n1; n2); 46) where (n0; n1; n2) is equal to

(12; 12; 0) or any one of its three permutations.
Six designs with parameters 3-(24; (n0; n1; n2); 10120) where (n0; n1; n2) is equal to

(12; 9; 3) or any one of its six permutations.
Three designs with parameters 3-(24; (n0; n1; n2); 41492) where (n0; n1; n2) is equal

to (12; 6; 6) or any one of its three permutations.
Three designs with parameters 3-(24; (n0; n1; n2); 111320) where (n0; n1; n2) is equal

to (9; 9; 6) or any one of its three permutations.

Proof. The block sizes are computed from the cwe.

Here again by bleaching colors in various ways, we obtain the following designs in
the ordinary sense.

Corollary 15. There exist 3-designs with possibly repeated blocks and the parameters
which are given in Table 1.
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Table 1

Blocks in the cwe Number of blocks Size of blocks �
(n0; n1; n2) after Bleaching
up to permutation

(15; 3; 6) 2024 3 1
6 20
15 455
9 84
18 816
21 1330

(12,12,0) 46 12 5

(12,9,3) 10 120 9 420
12 1100
15 2275
21 6650

(12,6,6) 41 492 6 410
12 4510
18 16 728

(9,9,6) 111 320 6 1100
9 4620
15 25 025
18 44 880

Appendix Weight enumerators

The cwe of the ternary Golay is given in [8] by

cweG := x12 + y12 + z12 + 220x3y3z3(x3 + y3 + z3)

+22x6y6 + 22 x6z6 + 22y6z6:

The cwe of the symmetry code of length 24 is computed in Magma [8,9] to be:

cweS := x24 + 2024x15y6z3 + 2024x15y3z6 + 46x12y12

+ 10120x12y9z3 + 41492x12y6z6 + 10120x12y3z9

+ 46x12z12 + 10120x9y12z3 + 111320x9y9z6

+ 111320x9y6z9 + 10120x9y3z12 + 2024x6y15z3

+ 41492x6y12z6 + 111320x6y9z9 + 41492x6y6z12

+ 2024x6y3z15 + 2024x3y15z6 + 10120x3y12z9

+ 10120x3y9z12 + 2024x3y6z15 + y24 + 46y12z12

+ z24:
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