On the Characters of Nilpotent Blocks over Small Ground-Fields

Yun Fan

Department of Mathematics, Wuhan University, Wuhan 430072, People’s Republic of China
E-mail: yunfan@whu.edu.cn

Communicated by Michel Broué

Received January 7, 2001

I characterize how the irreducible characters of a nilpotent block over a small ground-field are determined one by one by the irreducible characters of its defect groups. © 2001 Academic Press

Key Words: nilpotent block; ordinary character; Brauer character.

1. THE MAIN RESULTS

1.1

Modifying the Frobenius condition for finite \(p \)-nilpotent groups, Broué and Puig in [1] introduce nilpotent blocks, and in the case of large enough ground-fields, they proved that the characters of such a block are determined one-by-one by the characters of its defect group in the way of the so-called \(* \)-structure. Based on the theory of pointed groups, Puig in [7] shows that the Frobenius condition is equivalent to the local control condition and determined the precise structure of nilpotent blocks; the characters of such blocks are recharacterized in [7].

However, if the ground-field is small enough, as shown in [2], the Frobenius condition is weaker than the local control condition; with the latter the nilpotent blocks were defined (see 1.2 below), and the precise structure of such blocks was determined in [2]. Here we determine the characters of such a block: they are still determined one-by-one by the characters of its defect group but in a more delicate way. For notations, we follow [2, 6, 7].

265

0021-8693/01 $35.00

Copyright © 2001 by Academic Press
All rights of reproduction in any form reserved.
1.2

Let \mathcal{A} be a complete discrete valuation field of characteristic zero with valuation ring \mathcal{O} having residual field $k = \mathcal{O}/J(\mathcal{O})$ of characteristic p, where p is a prime integer. Let G be a finite group and let $\mathcal{O}G$ denote the group algebra. Let b be an \mathcal{O}-block of G and let $\mathcal{O}Gb$ be the block algebra. Recall that a local pointed group Q_β on $\mathcal{O}Gb$ means a pair (Q, β) of a p-subgroup Q of G and a conjugacy class β of primitive idempotents on the algebra $(\mathcal{O}Gb)^Q$ of the Q-fixed elements of $\mathcal{O}Gb$, such that $\text{Br}_\mathcal{O}'(\beta) \neq [0]$, where $\text{Br}_\mathcal{O}'(\beta): (\mathcal{O}G)^Q \to kC_G(Q)$ is the Brauer homomorphism associated with the coefficient \mathcal{O} and the p-subgroup Q, and a local pointed group R_δ is said to be included in Q_β, denoted by $R_\delta \subset Q_\beta$, if $R \subset Q$ and $ji = j = ij$ for some $j \in \delta$ and $i \in \beta$. The maximal local pointed groups P_γ on $\mathcal{O}Gb$ are called the defect pointed groups of the block. It is well known that the defect pointed groups P_γ of the block form exactly a G-conjugate class. The block b is said to be \mathcal{O}-nilpotent if for any local pointed group $Q_\beta \subset P_\gamma$ on $\mathcal{O}Gb$ and any $x \in G$ such that $(Q_\beta)^x \subset P_\gamma$, there are $u \in P$ and $z \in C_G(Q)$ such that $x = zu$.

1.3

From now on, we always assume that b is a nilpotent \mathcal{O}-block of G and P_γ is a defect pointed group of the block $\mathcal{O}Gb$. As usual $Z(\mathcal{O}Gb)$ denotes the center. It is an easy fact (see [3, 2.4.3 and 2.5.2]) that $k' = Z(\mathcal{O}Gb)/J(Z(\mathcal{O}Gb)) = k(\tau)$ is a cyclic Galois extension of k generated by a primitive root τ of unity of degree prime to p. By τ we also denote the corresponding primitive p'-root of unity over \mathcal{O} for short. Let $\mathcal{A}' = \mathcal{A}(\tau)$, $\mathcal{O}' = \mathcal{O}[\tau]$, and $k' = \mathcal{O}'/J(\mathcal{O}')$, which are cyclic extensions of \mathcal{A}, \mathcal{O}, and k, respectively. By tr$_{\mathcal{A}'/\mathcal{A}}(a')$ we denote the relative trace of $a' \in \mathcal{A}'$ over \mathcal{A}. It is easy to see that (cf. 2.1 below)

(1.3.1) There are a nilpotent $\mathcal{O}'G$-block b' and a defect pointed group P_γ' of $\mathcal{O}'Gb'$ such that $bb' = b'$ and $i = ib' \in \gamma'$ for any $i \in \gamma$. In the following, we fix such an $\mathcal{O}'G$-block b' and an $i \in \gamma$; hence P_γ' and $i' = ib' \in \gamma'$ are also fixed.

For a p-element $u \in G$, let $T_G(u, P) = \{g \in G | u^g \in P\}$. If $\langle u \rangle_{b'}$ is a local pointed group on $\mathcal{O}'Gb'$, we also write it as $u_{b'}$ and call it a local pointed element on $\mathcal{O}'G$, and we write $u_{b'} \in P_\gamma'$ if $\langle u \rangle_{b'} \subset P_\gamma'$. Since b' is \mathcal{O}'-nilpotent, it is known from [3, 2.3.5] that

(1.3.2) For any $g \in T_G(u, P)$ there is a unique local pointed element $u_{\mathcal{O}'G}$ such that $u_{\mathcal{O}'G}^g \in P_\gamma'$.

Let $\text{Br}_\mathcal{O}'(\mathcal{O}'G)^u : k'C_G(u)$ denote the Brauer homomorphism. Then $\text{Br}_\mathcal{O}'(\mathcal{O}'G)^u$ is a conjugacy class of primitive idempotents of $k'C_G(u)$, so
it gives a simple $k'C_G(u)$-module and hence affords an irreducible Brauer character $\varphi_{\tilde{g}(u,g)}$ of $\sigma'C_G(u)$.

Theorem 1.4. Notations as above. Let $\text{Irr}(\mathcal{A}Gb)$ and $\text{Irr}(\mathcal{A}'P)$ denote the sets of all the irreducible characters of $\mathcal{A}Gb$ and $\mathcal{A}'P$, respectively. Then there is a bijection $\text{Irr}(\mathcal{A}Gb) \rightarrow \text{Irr}(\mathcal{A}'P)$, $\chi \mapsto \lambda'$, and a class function $\omega: P \to \{\pm 1\}$ such that

$$\chi(us) = \sum_{g \in C_G(u) \setminus \text{Tr}(u,P)/P} \omega(u^g) \cdot \text{tr}_{\mathcal{A}'/\mathcal{A}}(\lambda'(u^g) \varphi_{\tilde{g}(u,g)}(s))$$

for any p-element $u \in G$ and any p'-element $s \in C_G(u)$.

1.5

Let ε be a primitive $\exp(P)$-th root of unity where $\exp(P)$ denotes the exponent of P. Similar to (1.3.2), we have the Brauer character $\varphi_{\tilde{g}(u,g)}$ of $\sigma'C_G(u)$ determined by the unique local pointed element $u_{\tilde{g}(u,g)}$ on $\sigma'G$ such that $(u_{\tilde{g}(u,g)})^\varepsilon \in P$.

Corollary 1.6. If $\mathcal{A}' \cap \mathcal{A}(\varepsilon) = \mathcal{A}$, then

$$\chi(us) = \sum_{g \in C_G(u) \setminus \text{Tr}(u,P)/P} \omega(u^g) \lambda'(u^g) \varphi_{\tilde{g}(u,g)}(s).$$

1.7. Remark. The corollary covers at least the following two cases:

1. $(\mathcal{A}, \sigma) = (\mathcal{H}B, \sigma)$ is split for $Z(\mathcal{H}B)$, i.e., $\sigma' = \sigma$;
2. $\sigma = \mathbb{Z}_p$, the ring of p-adic integers.

In fact, (1.7.1) obviously implies the hypothesis of 1.6. For (1.7.2), $\mathbb{Q}_p(\tau)$ is a totally unramified extension over \mathbb{Q}_p, while $\mathbb{Q}_p(\varepsilon)$ is a totally ramified extension, where \mathbb{Q}_p is the field of the p-adic rationals. Hence $\mathbb{Q}_p(\omega) \cap \mathbb{Q}_p(\varepsilon) = \mathbb{Q}_p$; see [8, Chap. IV, Sect. 4, Remark 2].

1.8. Remark. For 1.6, in most cases $\text{Irr}(\mathcal{A}'P)$ can be replaced by $\text{Irr}(\mathcal{A}P)$. In fact, under its hypothesis there is clearly a bijection $\text{Irr}(\mathcal{A}'P) \rightarrow \text{Irr}(\mathcal{A}P)$, $\lambda' \mapsto \lambda$, such that $\lambda' = \lambda/s_g(\lambda')$, where $s_g(\lambda')$ is the **relative Schur index** of λ' over \mathcal{A} and $s_g(\lambda') = 1$ unless $p = 2$ and $\sqrt{-1} \not\in \mathbb{A}$ and $4 \mid \exp(P)$ (see [5, 10.14]), and in the exceptional case, $s_g(\lambda') \leq 2$.

1.9. Remark. It is clear that in the case (1.7.1) the version of 1.4 has the same form as that over large enough ground-fields; see [7, 1.13] or [9, 52.8]. Otherwise the following example shows that, in general, there is no bijection $\text{Irr}(\mathcal{A}Gb) \rightarrow \text{Irr}(\mathcal{A}P)$ making (1.4.1) hold, and the bijection $\text{Irr}(\mathcal{A}Gb) \rightarrow \text{Irr}(\mathcal{A}'P)$ in 1.4 is not unique, which depends in fact on the choice of b' in (1.3.1); cf. 2.1 below.
1.10. Example. Let \(p = 2 \), let \(\mathcal{A} = \mathbb{Q}_p(\sqrt{3}) \), and let \(\mathcal{O} \) be the valuation ring of \(\mathcal{A} \). Let \(G = \langle s \rangle \times \langle u \rangle \) with orders \(|s| = 3 \) and \(|u| = 4 \); let \(b = 1 - (1 + s + s^2)/3 \), which is the non-principal block of \(\mathcal{O}G \). Then \(\mathcal{A}' = \mathcal{A}(\tau) = \mathcal{A}(e) \) since \(\tau = (-1 + \sqrt{3} e)/2 \), where \(\tau \) is a primitive 3rd root of unity and \(e \) is a primitive 4th root of unity. It is clear that

\[
\mathcal{A}G \cong \mathcal{A}(\tau) \otimes \mathcal{A}P,
\]

where \(\mathcal{A}(\tau) \) corresponds to the irreducible Brauer character \(\varphi: s \mapsto \text{tr}_{\mathcal{A}'/\mathcal{A}}(\tau) \). Take the simple \(\mathcal{A}P \)-module \(\mathcal{A}(e) \) such that \(u \mapsto e \); its character is \(\lambda: u \mapsto \text{tr}_{\mathcal{A}'/\mathcal{A}}(e) \). We have the following decomposition of simple \(\mathcal{A}G \)-modules

\[
\mathcal{A}(\tau) \otimes \mathcal{A}(e) \cong V_1 \oplus V_2,
\]

where \(V_1 \cong V_2 \) as \(\mathcal{A} \)-vector spaces, but the representation of \(V_1 \) maps \(u \) to \(\varepsilon t \), while the representation of \(V_2 \) maps \(u \) to \(-\varepsilon t \). In other words, the first one affords the character \(\chi_1: u \mapsto \text{tr}_{\mathcal{A}'/\mathcal{A}}(\varepsilon t) \), while the second one affords the character \(\chi_2: u \mapsto \text{tr}_{\mathcal{A}'/\mathcal{A}}(-\varepsilon t) \). The two different irreducible characters \(\chi_1 \) and \(\chi_2 \) of \(\mathcal{A}G \) correspond to one and the same pair: the irreducible \(\mathcal{A}P \)-character \(\lambda \) and the irreducible Brauer character \(\varphi \).

2. PROOFS OF THE RESULTS

2.1

The notations and assumptions in 1.3–1.5 are preserved throughout. Further, let \(\Gamma' = \text{Gal}(\mathcal{A}'/\mathcal{A}) \) be the Galois group, let \(\mathcal{A}'' = \mathcal{A}(e) \), and let \(\mathcal{O}'' \) be the corresponding valuation ring and let \(\Gamma = \text{Gal}(\mathcal{A}''/\mathcal{A}') \). Since \(b \) is \(\mathcal{O} \)-nilpotent, by [2, 4.3; 4, 5.2] we have

\[
(2.1.1) \quad b = \sum_{\iota \in \Gamma} b'' \] is a sum of \(\mathcal{O}G \)-block idempotents, and any \(b'' \) is \(\mathcal{O} \)-nilpotent.

As emphasized in (1.3.1), we fix such a \(b' \). Further, for any subgroup \(Q \leq G \) and any primitive idempotent \(j \in (\mathcal{O}G)^0 \), by [2, 3.3, 3.4.1, and 5.2.1], we have

\[
(2.1.2) \quad j = \sum_{\iota \in \Gamma} j'' \] is an orthogonal decomposition and \(j' = jb' \) is an absolutely primitive idempotent on \((\mathcal{O}G)^0 \).

Conversely, if \(j' \in (\mathcal{O}G)^0 \) is a primitive idempotent then, by the above fact, \(j' \) is absolutely primitive and \(j = \sum_{\iota \in \Gamma} j'' \) is a primitive idempotent
of \((\mathcal{O}Gb)^0\) and \(j^* = jb'.\) We state the latter fact in a refined form:

\[i = \sum_{r \in \Gamma} i'' \text{ is an } \mathcal{O}G\text{-block, and } j_i = \sum_{r \in \Gamma} j'' \text{ is a primitive idempotent of } (\mathcal{O}Gb)^0, \text{ where } \Gamma' \text{ is the centralizer of } \Gamma_i \text{ in } \Gamma'. \]

We will apply it to the fixed \(i \in \gamma\) and \(i' = ib' \in \gamma'\) (see (1.3.1)) and to the local pointed element \(u_{\delta(u, g)}\) and \(u_{\delta' (u, g)}\) (see (1.3.2) and 1.5. In particular, we have the following two conclusions.

\[i = \sum_{r \in \Gamma} i'' \text{ is an orthogonal decomposition and } i' \text{ is absolutely primitive.} \]

\[\varphi_{\delta(u, g)} = \sum_{r \in \Gamma} (\varphi_{\delta' (u, g)})' \text{ and } \varphi_{\delta' (u, g)} \text{ is absolutely irreducible.} \]

\[2.2 \]

By [2, 1.3] for the source algebra \(i\mathcal{A}Gi\) of the block \(\mathcal{O}Gb\) we have an interior \(P\)-algebra isomorphism

\[i\mathcal{A}Gi \cong S \otimes_\mathcal{O}P, \quad \text{where } S \cong \mathcal{M}_n(\mathcal{O}'), \]

but the matrix algebra \(S\) is considered as an interior \(P\)-algebra over \(\mathcal{O}\), though it is also an interior \(P\)-algebra over \(\mathcal{O}'\). Extending \(\mathcal{O}\) to \(\mathcal{A}\), we get a \(\mathcal{A}\)-algebra isomorphism

\[i\mathcal{A}Gi \cong S_K \otimes_\mathcal{A}P, \quad \text{where } S_K \cong \mathcal{M}_n(\mathcal{A}'), \]

because \(\mathcal{A} \otimes_\mathcal{O} \mathcal{O}' = \mathcal{A}'\). Further, by [6, 3.5; 3, 3.2.2] we have

\[(2.2.3) \text{ It is a Morita equivalence from the algebra } \mathcal{A}Gb \text{ to the algebra } i\mathcal{A}Gi \text{ to send a } \mathcal{A}Gb\text{-module } M \text{ to the } i\mathcal{A}Gi\text{-module } iM. \text{ In particular, } \mathcal{A}Gb \text{ and } i\mathcal{A}Gi \text{ have the same splitting fields.} \]

It is the same that \(\mathcal{A}'Gb'\) is Morita equivalent to

\[(2.2.4) \quad i'\mathcal{A}'Gi' \cong S'_K \otimes_{\mathcal{A}'} P, \quad \text{where } S'_K \cong \mathcal{M}_n(\mathcal{A}'). \]

Let \(V'\) be the unique (up to isomorphism) simple \(S'_K\)-module. It is clear that

\[(2.2.5) \text{ Any simple } i'\mathcal{A}'G'i'\text{-module is isomorphic to } V' \otimes_{\mathcal{A}'} N' \text{ for a unique (up to isomorphism) simple } \mathcal{A}'P\text{-module } N' \text{ and vice versa.} \]

At last, \(\mathcal{A}'\) is a splitting field for \(S'_K\), \(\mathcal{A}''\) is obviously a splitting field for \(\mathcal{A}P\), and

\[(2.2.6) \quad i'\mathcal{A}''Gi' \equiv \mathcal{A}'' \otimes_{\mathcal{A}'} (i'\mathcal{A}'Gi') \equiv S''_K \otimes_{\mathcal{A}''} P, \quad \text{where } S''_K \equiv \mathcal{M}_n(\mathcal{A}''). \]
Hence, by (2.2.3) we have

(2.2.7) Both \(\mathcal{A}''Gb' \) and \(\mathcal{A}''P \) are split algebras.

2.3

Let \(\chi \in \text{Irr}(\mathcal{A}Gb) \) be as in 1.4; let \(M \) be the \(\mathcal{A}Gb \)-module affording \(\chi \). Extending it to a \(\mathcal{A}'G \)-module, by (2.1.1) we have

\[
(2.3.1) \quad \mathcal{A}' \otimes M = \bigoplus_{i \in \Gamma'} b'' \cdot \left(\mathcal{A}' \otimes M \right) = \bigoplus_{i \in \Gamma'} M''',
\]

where \(M' = b' \cdot \left(\mathcal{A}' \otimes M \right) \).

We claim that

(2.3.2) \(M' \) is a simple \(\mathcal{A}'G \)-module.

To see it, first note that the fixed element set \((\mathcal{A}' \otimes M) \Gamma = M \). Suppose that \(M' = M_1 \oplus M_2 \) is a \(\mathcal{A}'G \)-decomposition, then \(M_1 = \Sigma_{\gamma \in \Gamma} (M_1') \subset M \) and is \(G \)-stable, and it is the same for \(M_2 = \Sigma_{\gamma \in \Gamma} (M_2') \); that is, \(M = M_1 \oplus M_2 \) is a \(\mathcal{A}G \)-decomposition.

Let \(\chi' \) denote the character of \(M' \). Noting that \(b' \) is fixed (see 1.3.1), we have

(2.3.3) There is a bijection \(\text{Irr}(\mathcal{A}Gb) \to \text{Irr}(\mathcal{A}'Gb') \), \(\chi \to \chi' \), such that \(\chi = \oplus_{\gamma \in \Gamma'} \chi'' \).

Moreover, there are a simple \(\mathcal{A}''Gb' \)-module \(M'' \) and a positive integer \(s_{\mathcal{A}'}(M'') \), i.e., the relative Schur index of \(M'' \) over \(\mathcal{A}' \), such that

\[
(2.3.4) \quad \mathcal{A}'' \otimes M' = s_{\mathcal{A}'}(M'') \cdot \left(\bigoplus_{r \in \Gamma / \Gamma_{M'}} M'' \right),
\]

where \(\Gamma_{M'} = \{ r \in \Gamma \mid M'' \cong M'' \} \) is the stabilizer of \(M'' \) in \(\Gamma \). By \(\chi'' \) we denote the character afforded by \(M'' \); then

\[
(2.3.5) \quad \chi' = s_{\mathcal{A}'}(\chi'') \cdot \left(\bigoplus_{r \in \Gamma / \Gamma_{M'}} \chi'' \right),
\]

where \(s_{\mathcal{A}'}(\chi'') = s_{\mathcal{A}'}(M'') \) and \(\Gamma_{\chi'} = \Gamma_{M'} \). Multiplying \(i' \) to the two sides of (2.3.4), we get an equality of modules over \(i'\mathcal{A}''Gi' \cong S'_{\mathcal{A}'} \otimes \mathcal{A}''P \),

\[
(2.3.6) \quad \mathcal{A}'' \otimes i'M' = s_{\mathcal{A}'}(M'') \cdot \left(\bigoplus_{r \in \Gamma / \Gamma_{M'}} i'M'' \right),
\]

and \(i'M'' \) is a simple \(i'\mathcal{A}''Gi' \)-module as \(\mathcal{A}''Gb' \) is Morita equivalent to \(i'\mathcal{A}''Gi' \); see (2.2.3).
2.4

On the other hand, by the same argument, from (2.3.2) we have that $i'M'$ is a simple $i'G'i$-module. So, by (2.2.5) there is a simple $\mathcal{A}'P$-module N' such that

\[(2.4.1) \quad i'M' \cong V' \otimes N'.\]

Similar to (2.3.4), there are a simple $\mathcal{A}''P$-module N'' and an integer $s_{\mathcal{A}'}(N'')$ such that

\[(2.4.2) \quad \mathcal{A}'' \otimes N' = s_{\mathcal{A}'}(N'') \cdot \left(\bigoplus_{r \in \Gamma / \Gamma_{N'}} N''^r \right).\]

Combining (2.3.6), (2.4.1), and (2.4.2), we have

\[
s_{\mathcal{A}'}(M'') \cdot \left(\bigoplus_{r \in \Gamma / \Gamma_{M'}} i'M''^r \right) = \mathcal{A}'' \otimes i'M' = \mathcal{A}'' \otimes \left(V' \otimes N' \right) = (\mathcal{A}'' \otimes V') \otimes (\mathcal{A}'' \otimes N') = V'' \otimes \left(s_{\mathcal{A}'}(N'') \cdot \bigoplus_{r \in \Gamma / \Gamma_{N'}} N''^r \right),
\]

where $V'' = \mathcal{A}'' \otimes_{\mathcal{A}'} V'$ is the unique simple $S_{\mathcal{A}'}$-module. Hence we get

\[(2.4.3) \quad s_{\mathcal{A}'}(M'') \cdot \left(\bigoplus_{r \in \Gamma / \Gamma_{M'}} i'M''^r \right) = s_{\mathcal{A}'}(N'') \cdot \left(\bigoplus_{r \in \Gamma / \Gamma_{N'}} V'' \otimes N''^r \right),\]

where $V'' \otimes_{\mathcal{A}'} N''$ is a simple $i'\mathcal{A}''G'i$-module; cf. (2.2.6). Thus there is an N''^r on the right-hand side, say N'' up to a replacement, such that

\[(2.4.4) \quad i'M'' \cong V'' \otimes N'',\]

and by (2.2.5) such N'' is uniquely determined by M''. Since V'' is the unique (up to isomorphism) $S_{\mathcal{A}'}$-module, it follows from (2.4.4) that

\[(2.4.5) \quad \Gamma_{M''} = \Gamma_{i'M''} = \Gamma_{V'' \otimes_{\mathcal{A}'} N''} = \Gamma_{N''}.\]

Comparing the numbers of the simple summands of the two sides of (2.4.3), we see that

\[(2.4.6) \quad s_{\mathcal{A}'}(\chi'') = s_{\mathcal{A}'}(M'') = s_{\mathcal{A}'}(\lambda'') = s_{\mathcal{A}'}(\lambda''),\]

where λ'' is the character afforded by the $\mathcal{A}''P$-module N''. On the other hand, let $\lambda' \in \text{Irr}(\mathcal{A}'P)$ be the character afforded by the $\mathcal{A}'P$-module N';
then (2.4.2) turns out that
\[(2.4.7) \quad \lambda' = s_{\mathcal{A}}'(\lambda'') \cdot \left(\bigoplus_{r \in \Gamma_{\mathcal{A}}/\Gamma_{\mathcal{B}}} \lambda''^r \right),\]
where (the second equality is by (2.4.5))
\[(2.4.8) \quad \Gamma_{\mathcal{A}'} = \Gamma_{\mathcal{M}} = \Gamma_{\mathcal{M}'} = \Gamma_{\mathcal{A}''}.\]

2.5

Now we have enough information to complete a proof of Theorem 1.4. Since both the algebras $\mathcal{A}'' Gb'$ and $\mathcal{A}'' P$ are split (see (2.2.7)), by [7, 1.13.1] (cf. 1.1) there are a bijection determined by (2.4.4) $\text{Irr}(\mathcal{A}'' Gb') \rightarrow \text{Irr}(\mathcal{A}'' P)$, $\chi'' \mapsto \lambda''$, and a class function $\omega: P \rightarrow \{\pm 1\}$ such that (recall from (2.1.5) that $\varphi_{\subseteq (u, g)}$ is absolutely irreducible)
\[\chi''(us) = \sum_{g \in C_0(u) \setminus T_0(u, P)/P} \omega(u^g) \lambda''(u^g) \varphi_{\subseteq (u, g)}(s).\]
Combining it with (2.3.5) and (2.4.6)--(2.4.8), we have the computation
\[\chi'(us) = s_{\mathcal{A}}'(\chi'') \cdot \sum_{r \in \Gamma_{\mathcal{A}}/\Gamma_{\mathcal{B}}} \chi''(us)^r\]
\[= s_{\mathcal{A}}'(\chi'') \cdot \sum_{r \in \Gamma_{\mathcal{A}}/\Gamma_{\mathcal{B}}} \left(\sum_{g \in C_0(u) \setminus T_0(u, P)/P} \omega(u^g) \lambda''(u^g) \varphi_{\subseteq (u, g)}(s) \right)^r\]
\[= \sum_{g \in C_0(u) \setminus T_0(u, P)/P} \omega(u^g) \left(s_{\mathcal{A}}'(\chi'') \cdot \sum_{r \in \Gamma_{\mathcal{A}}/\Gamma_{\mathcal{B}}} (\lambda''(u^g))^r \varphi_{\subseteq (u, g)}(s) \right)\]
\[= \sum_{g \in C_0(u) \setminus T_0(u, P)/P} \omega(u^g) \lambda''(u^g) \varphi_{\subseteq (u, g)}(s).\]
Hence, by (2.3.3) and the definition of the relative traces, we have
\[\chi(us) = \sum_{t \in \Gamma_{\mathcal{A}}'} (\chi'(us))^t\]
\[= \sum_{t \in \Gamma_{\mathcal{A}}'} \left(\sum_{g \in C_0(u) \setminus T_0(u, P)/P} \omega(u^g) \lambda'(u^g) \varphi_{\subseteq (u, g)}(s) \right)^t\]
\[= \sum_{g \in C_0(u) \setminus T_0(u, P)/P} \omega(u^g) \cdot \sum_{t \in \Gamma_{\mathcal{A}}'} (\lambda'(u^g))^t \varphi_{\subseteq (u, g)}(s)^t\]
\[= \sum_{g \in C_0(u) \setminus T_0(u, P)/P} \omega(u^g) \cdot \text{tr}_{\mathcal{A}''/\mathcal{A}}(\lambda'(u^g) \varphi_{\subseteq (u, g)}(s)).\]
Thus the proof of Theorem 1.4 is completed.
Further, for \(\lambda' \in \text{Irr}(\mathcal{H}' P) \), let \(\mathcal{X}_\lambda' \) be the extension of \(\mathcal{X} \) generated by \(\lambda'(u) \) for all \(u \in P \), and let \(\mathcal{O}_{\mathcal{X}_\lambda} \) be the valuation ring of \(\mathcal{X}_\lambda' \). Then \(\mathcal{X}_\lambda' \) is a subfield of \(\mathcal{X}' \) and hence also a cyclic extension over \(\mathcal{X} \) and the centralizer \(\Gamma'_{\mathcal{X}_\lambda} = \text{Gal}(\mathcal{X}' / \mathcal{X}_\lambda) \); by (2.1.3) we have

(2.6.1) There are a unique \(\mathcal{O}_{\mathcal{X}} G \)-block \(b_\lambda \) and a unique defect pointed group \(P_{\gamma_\lambda} \) of \(\mathcal{O}_{\mathcal{X}} G b_\lambda \) such that \(b_\lambda b' = b' \) and \(i_{\gamma} = i_{\gamma' \lambda} \in \gamma_\lambda \) and a unique local pointed element \(u_{b_\lambda(u, g)} \) on \(\mathcal{O}_{\mathcal{X}} G \) such that \((u_{b_\lambda(u, g)})^g \in P_{\gamma_\lambda}\) and the corresponding Brauer character \(\phi_{b_\lambda(u, g)} \) of \(\mathcal{O}_{\mathcal{X}} G(u) \) fulfills that

Thus, we have

\[
\text{tr}_{\mathcal{X}' / \mathcal{X}}(\lambda'(u^g) \phi_{b_\lambda(u, g)}(s)) = \text{tr}_{\mathcal{X}' / \mathcal{X}_\lambda}(\lambda'(u^g) \phi_{b_\lambda(u, g)}(s)) = \text{tr}_{\mathcal{X}' / \mathcal{X}}(\lambda'(u^g) \cdot \text{tr}_{\mathcal{X}' / \mathcal{X}_\lambda}(\phi_{b_\lambda(u, g)}(s))) = \text{tr}_{\mathcal{X}' / \mathcal{X}_\lambda}(\lambda'(u^g) \phi_{b_\lambda(u, g)})
\]

Therefore, we refine the formula (1.4.1) as follows.

2.7. Corollary. Notations are as in 1.4 and 2.6. Then

\[
(2.7.1) \quad \chi(us) = \sum_{g \in \mathcal{C}(u) \setminus \mathcal{T}(u, P)/P} \omega(u^g) \cdot \text{tr}_{\mathcal{X}' / \mathcal{X}}(\lambda'(u^g) \phi_{b_\lambda(u, g)}(s)).
\]

2.8

At last, it is clear that \(\lambda'(u) \in \mathcal{X}' \cap \mathcal{X}(e) \) for all \(u \in P \); i.e., \(\mathcal{X}_\lambda \subset \mathcal{X}' \cap \mathcal{X}(e) \). Then Corollary 1.6 follows immediately from 2.7.

ACKNOWLEDGMENT

Thanks are given to Lluis Puig for many enlightening suggestions and helpful discussions.

REFERENCES