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INTRODUCTION

This paper arose from the following problem posed by Platonov in [4]:
describe all maximal subgroups of SL,{Z), where n > 3; among these are
there any with infinite index? A negative answer to the question would have
been of great significance to the description of maximal subgroups in
SL (Z). But we have shown that: (i) the indices of all maximal subgroups in
a finitely generated linear group G over a field are finite if and only if G is
solvable-by-finite (in particular, for n > 2 there exists a maximal subgroup of
SL (Z) of infinite index) and moreover (ii} if a finitely generated linear
group over a field is not solvable-by-finite, then the set of its maximal
subgroups of infinite index is uncountable; (iii} the group SL,(Z) has for
n >4 a maximal subgroup of infinite index, which dees not contain any free
group of finite index. Our paper is devoted to a demonstration of these three
main results. We prove our theorems constructing proper subgroups which
intersect every residue class modulo any subgroup of finite index. Although
essentially we use Tits’ techniques developed in [10], the most important step
of which is a reduction to linear groups over a local field, in the general case,
when the Zariski closure of the group is not necessarily connected, the
sitnation is considerably more complicated and requires some new ideas and
methods.
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2 MARGULIS AND SOIFER
0. NOTATION AND TERMINOLOGY

For fundamental definitions of algebraic group theory, group theory and
Lie group theory the reader is referred to |2, 5, 7]. The letters Z, N, Q, R, C,
Q, will as usual denote, respectively, the set of integers, non-negative
integers, rationals, reals, complex numbers, p-adic numbers. We consider the
dimension dim in the sense of the theory of algebraic varieties. The index of
a subgroup H of a group G will be denoted by |G/H|. If G is a group and
S <G, then by Ng(S), Cy(S) and by (S) we denote the normalizer, the
centralizer of S in G and the subgroup of G generated by S. The center of G
will be denoted by C(G). We denote as usual by GL, and SL, the groups of
invertible and unimodular n X n matrices. An algebraic subgroup of GL,
over a field & is called an algebraic k-group or a k-group [2]. The set of all
k-points of an algebraic variety W will be denoted by W(k). We denote the
maximal unipotent normal subgroup of a k-group G by M,(G). For an
algebraic group G, G° will denote the connected component of G containing
the identity. We do not assume semi-simple groups to be connected and we
say that G is simple as soon as G° has no infinite proper normal subgroup. If
f: G- H is a k-rational homomorphism of k-groups and the field [ is an
extension of k&, then the natural homomorphism f(I): G(/)— H() will be
denoted by f as well. Let V' be a finite-dimensional vector space over a field
k, GL(V) and GL(¥V) will denote the group of its automorphisms and the
corresponding k-group. A subgroup G of GL(V) is called irreducible if there
is no proper G-invariant subspace of V. A subgroup G of GL(V) is called
absolutely irreducible if it remains irreducible for every algebraic extension
of k. According to that we call a representation f: G— GL(V) irreducible
(absolutely irreducible) if the image f(G) is irreducible (absolutely
irreducible). A local field will mean in the sequel a non-discrete locally
compact field. By the Kovalski-Pontrjagin theorem every local field is
isomorphic to one of the following four valued field: R, C, a finite extension
of Q,, a field of formal power series in one variable with coefficients from
some finite field. If k is a local field and W is an algebraic k-variety, then
W(k) has two natural topologies induced by the topology of k& and by the
Zariski topology of W. To avoid confusion the second topology will be
distinguished by the prefix “k,” e.g., k-open, k-dense, etc. The closure and the
interior -of a subset X of a topological space will be denoted by ¢l X and
Int X and the closure in the Zariski topology of a subset S of an algebraic
variety will be denoted by /(S). The characteristic of a field k will be
denoted by char k and the cardinality of a set X by card X.
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1. TRANSFORMATIONS WITH POINTS OF ATTRACTION AND REPULSION

In this section we denote by & a local field with the absolute value | - |, by
V' a finite-dimensional vector space over £ and by P the projective space
based on ¥, both equipped with topologies induced in the usual way from
that of k. Let dim V' =n and x = (x,,..., X,,) be a system of linear coordinates
for V. We define the distance function on ¥ which is consistent with its
topology as follows: d,(p,q)=max; ¢, |x{(p)—x{g)l, (.9 € V). There
exists a distance function d: PXP— R, on P, which is said to be
admissible; that is, for every affine system of coordinates x in P [1G] and
every compact subset B in its domain there exist m and M in R, such that
m-dlpyg <dlg s <M-d,|z.y As was observed in [10], if a field &' is an
extension of k, if V' =V ®, k" and P* is the projective space based on V'
while d': P X P> R_ is an admissible distance function on P/, then the
restriction @ |, , is an admissible distance function on P. So when proving
assertions not dependent on the admissible distance function 4 on P we shall
assume that it can be extended to an admissible distance function 4’ on P,
Let g € GL(V) and let f(A)=T[}_, (4 — 4;) be the characteristic polynomial
of the transformation g. The set {4,:]|4,] = max, _;.,[4;|} will be denoted by
2(g). Let fil)=]T1eqw 4 —4) and fHiA)=Tli¢0m A —4) Let us
define by 4{g) and 4'(g) the subspaces of P corresponding to the kernels of
the endomorphisms f,(g) and f3(g), respectively. Let Cr(g)=
A'(gyUJA'(g™"). For every subset § of GL(V) we consider the following
three sets: 2,(S)={g € S: A(g) is a singleton}, 2_(S)=1{gE€ S: 4(g™ ") is
a singleton} and 24(S) = £2_,(S) M R2_(S). The projective transformation of
P corresponding to the linear transformation g € GL(¥) will be denoted by
§. The absolute value of a linear transformation is defined naturally. As for
the value of a projective transformation £ it is defined in the following way:
if d: PX P— R is an admissible distance function on P and X < P, then the
norm of g on X relatively to d is ||£ ]y, = sup{d(g{x), g(x’))/d(x, x'):
x#x',x x € X} and =0 if card X < 1. In the last part of Section 1 and in
Section 2 an admissible distance function 4 will be fixed and the norm || - || =
| - Il; will be considered. We require the following two propositions which are
proved in [10, Lemmas 3.7, 3.8].

LemMma 1. Let V be a vector space over k, let x be a system of linear
coordinates of ¥, r ER _ and g € GL(V).

(i) If every eigenvalue of the transformation g is less than 1 in
absolute value, then there exists an integer Ny such that || g°ll, < r for each
z>N,, z€ Z. For a compact set K <V and for every neighbourhood U of
zero there exists an integer N, such that gK < U for each z > N, z € L.

(i) If there exists a set X linearly generating V such that, for every
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v € X, lim,_ g°v=0, then each eigenvalue of g is less than 1 in absolute
value.

LEmMMA 2. Let g€ GL(V), K be a compact subset of P, r €R .

() IfA(g) is a singleton and K < P\A'(g), then there exists an integer
N, such that || §* ||| < r for each z > N, z € Z and for every neighbourhood
U of A(g) there exists an integer N, such that §°K < U for each z > N,,
z€ L.

(i) If for some mEN, g"KcIntK and | §" |kl <1, then A(g)
consists of a single point which belongs to Int K.

The join of two linear subspaces X and Y of P is denoted as usual by
XVY. IfXNY=@and XV Y =P, then by P(X, Y) we denote the map =:
P\X - Y, where n(p)= ({p} V X)N Y. The following simple assertion is a
generalization of item 1 from Lemma 3.9 in {10].

LemMma 3. If h; is a semi-simple element of GL(V;), where V' is a vector
space over k, i = 1,..., s, then there exists an infinite subset N = N such that
lim,, (A¢ ") =1 for z € N and for every A, u € Q(h), i=1,..,s.

Proof. Induction on the number of elements. The base of the induction is
item 1 of Lemma 3.9 in [10]. Suppose given a subset N' =N such that
card NV =N, and lim, (A~ 'Y =1 for zEN', L, u€ Q) i=1,.,5— L
Let A, u€ Q(h,). Since |Au~'|=1, we have that cl,.{(Ag”')": zEN'} is
compact and so there exists a sequence {z,},en, 2, € N’ such that z,, — o
when m— oo and the sequence {(Au™')"},n is convergent. We construct
the sequence {z,, },cn in such a way that with u,=z, —z,  we have
u,— 00 when n— co. It is obvious that the set N = {u,: n € N} satisfies all
the conditions of Lemma 3.

For a vector space V we consider the following set 4, = {(g,h): h is a
semi-simple, non-trivial automorphism of ¥, g € GL(V) is such that A(g) is
a singleton, 4(g) = P\A(h) and n4(g) = P\A'(g), where n = P(4'(h), A(h))}.

LeEmMMA 4. Let V, be a vector space over k, g;, h; € GL(V;) and
(gi» h;) € 4y, There exists an integer N, and an infinite subset N = N such
that A(gih?) is a singleton for each s > Ny, n€ N and i = 1,...,m.

Proof. Let m,=P(A'(h,), A(h)), i = 1,...,, m. It follows from the definition
of 4, that there exist compacta K,cP such that A(g)cIntkK,,
K,cP\A'(g,) and n(K,)cP\A'(g,). We can choose for the elements
fy 5.5 B, an infinite subset M < N satisfying the conditions of Lemma 3. The
set F={|| A} lg|l: z& M, i=1,..,m} is bounded by item 2 of Lemma 3.9 in
[10], so let r=sup F. Since for each i=1,..m, n,(K,) is compact and
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n{K;) <= P\A'(g;), we can take a neighbourhood U, of n/{K,) such that
clU; = PvA’(g;) and so by (i) of Lemma 2 there exists an integer N, such
that {| §7 [l < 1/r for each z > Ny, 1 <i<m. By Lemma3 and again by
item 2 of Lemma 3.9 [10] there exists an infinite subset N < M such that
ki K,c U, for each z€ N and 1 <i<m. So by the definition of r ER, it
follows that for eyery s >N,, n€N and i=1,.,m we have that
[ gh?{mil <1 and g h7K,; < Int K,. Hence, by (ii) of Lemma 2, 4(g{A}) is a
singleton for each s > Ny, n €N, i=1,.., m which completes the proof of
Lemma 4.
The following assertion is evident.

LEMMA 5. Let g, h€ GL(V), then A(ghg')=gd'(h), A'(ghg "=
gA'{(h) and, for all z € N, A(h*Y=A(h), A'(F*) = A" (k).

LeMMA 6. If, for a subgroup § of GL(V), Q.(8)# @ and G =¥(5),
then the set £2,(S)MN G® is k-dense in G°N S.

Proof. If g€ 02 ,(S), then, by Lemma 5, A(g™) is a singleton for each
m € N. So, since G* M S is a subgroup of finite index in S, 2, (G° M 8) # B.
Hence, without loss of generality, we can assume that S is k-connected, Let
us choose g and consider the set U= {x € §: £4(g) £ 4'(g)}. Obviously U
is k-open in § and U # @, since g € U. Therefore the k-connectedness of §
implies that U is k-dense in S. Since A(g) is 2 singleton, for A € U we have
hA(g)c P\A’(g) and hence there exists a compact set K < P such that
A(g)c Int K and AK < P\A’(g). From [10, Lemma 3.5] it follows that there
exists a number r € R, such that || £ |¢]| < r. Let us consider the compact set
L =#hK. Since L < P\A’(g), by virtue of (i) of Lemma 2, there exists an
integer N, such that | £, || < 1/r and L cInt K for z > N,. Let N <N be
given so that the set {g":zE& N} is k-connected and let N ={meN:
m > Ny}. By the definition of r € R, we have || gk x|l < 1 and g'hK c It K
for each z € V', therefore (ii) of Lemma 2 implies that 4{g*/) is a singleton
for each z € N'. Since N\N' is finite and the set {g°: z € N} is k-connected,
ghe s |2, (5)) for each z& N, That is true for every 4 € U and, since
& (Uy= G, we have & (2, (S)) = G. This completes the proof.

2. FREE SYSTEMS OF A LiNEAR GROUP

In this section we shall use the same notation as before and we shall
suppose that the subgroup S of GL(V) satisfies the following three con-
ditions:

) 2,68)+o
(2) The Zariski closure G of S is a semi-simple group,
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(3) G S is an absolutely irreducible subgroup of GL(¥). We recall
for convenience the following simple observation {10, Lemma 3.10].

LemMa 7. If G is an irreducible subgroup of GL(V), if P, is a non-
trivial subspace and P, is a proper subspace of P, then M= {g€&€ G:
&P, & P,} is a k-open non-empty subset of G.

LemmA 8. Let H be a subgroup of S such that 0, (H)+ @ and HNG

+\i1}

is a k-dense subgroup of SN G° Ifg €S, then Hg M 0(S) # @.

Proof. Let us consider the subgroup H, = HN G°® of H. Since H, is a k-
dense subgroup of S M G° condition (3) on S implies that its k-connected
subgroup H, does not leave invariant any proper non-trivial subspace of V.
Besides, since |H/H,| < oo and Q,(H)# @, by virtue of Lemma 5 we have

R, (H,)+ @ and therefore by virtue of [10, Lemma 3.11}] the set 0,(H,) is
not empty. Let us con51der for h € Q4(H,) the following set U= {x € H:
XQA(h\C PA'(h) & (rcﬂ YA~ e P\A'(h™")). Applying Lemma 7 to H,

il |

we see that U;& @. Let xeUand h,=xg. It is 0bv1ous that 4, € Hg. From
the choice of x and 4, it follows that / A(h)cP\A (#) and ﬁ A Y

D\ A'{L~1 Hanpre thars sviet comnacta K and Af D qupoh that A(bY — Tnt X
LN J» ALIICC LCIC CXist Compacia A anda M in P such ulal Aty & it i,

A(h"YcM and AK <P\A'(h), A 'McP\A'(h™'). Let K,=h,K and
M, =k 'M. By [10, Lemma 3.5] there exists a number r € R, such that
max{}| A, |gll, 147" Lll} <r. Since K, = P\d’(h) and M, < P\d’(h~"), from
(i) of Lemma 2 it follows that there exists an integer N, such that ||4° I I <
1/r and HE * |y, Il < 1/r for each z > N,. Moreover, there exists an integer N,
such that 27K, c Int K and A M, < Int M for each x > N,. By the choice of

P
r€R, we have that hzh Kclntk, Hhh Ikl <1, 1A A7 < 1 and

L.—zL—1aq T AL f PN ~F i tan

oty i < Int M for each z > um,;.\lvl 1\!2} So from \11) of Lemma 2 it
follows that, for each z>max(N,,N,), A(k*h,) and A(h *h;") are
singletons. Since the elements 2™ *h; ! and kA, 'A~ are conjugate, it foliows
from Lemma 5 that A(/; ‘A %) is a singleton. Thus A*h, € £2,(S) for each
z > max(N;, N,) and since h € H,, we have h*h, € Hg. This completes the
proof of Lemma 8.

LemMA 9. If H is a subgroup of finite index in S and g€ S, then
HgMQ(S)+@.

Progf. Let ye 2 .(S). Since |S/H|< o0, we have y" € H for some
integer m and therefore by Lemma 5, 2 , (H) # @. On the other hand H is k-
open and hence HM G° is a k-dense subgroup of § M G°. Thus H satisfies
all the conditions of Lemma 8 and the proof is complete.

DerFINITION 1. Let G be a subgroup of GL(V) and g € 2,(G). We say
that the set F = {g; € G: i € A} is a free system for G relative to g (or simply
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a free system, if it is clear which group and element are considered) if
8, € L24(8) for each i € A and there exist open sets O, = O,(F) < P, i € 4 and
a compact set K = K(F) < P such that:

(1) A(g)VA(gr")< O, foreach i€ 4,

(@) ¢l Uses 0, P\Cr(e),

(3) £0,cO,foreveryi,jEAd,i+jand zEZ, z+0,
4) gGKcO;foreveryi€Adandz€Z, z+0,

() K<PelU,e, 0,

(6) A{g)cIntK.

Lemma 10. Let G be a subgroup of GL(V), g € £24,(G) and let F=
{g:1 1€ A} be a free system for G relative to g. If H = (F), then H is freely
generated by F.

Proof.  See (10, Proposition 1.1].

Let us denote the set 2,(GL(V)) by £2,. We also use the notation X, =
(g1, 8281, 82€ 20, A(g) I A(g; ') = P\Cr(gy), i # j, 1 <4, j< 2} Tt can
easily be proved, making use of Lemma 7, that:

Lemma 1. If G is a k-comnected irreducible subgroup of GL(V) and
g €2, i=1,2, then the set U= {x € G: (xg,x" ', g,) EX,} is k-open and
k-dense in G.

PrROPOSITION 1. Let g€ 2,(S) and let F,,={y;€8: 1Li<m} be a
Jree system for S relative to g. If H is a subgroup of finite index in S and
YE S, then there exists y,,., € Hy such that the set F,, ., ={y, JUF, is
a free system for S relative to g.

Proof. Since every subgroup of finite index contains a normal subgroup
of finite index, we may assume without loss of generality that H is normal.
By virtue of Lemma 9, Hy M Q2y(S) # @. If h € HyM 2,(S), then, by virtue
of Lemmall and condition (3) on S, the set U={xe SNG"
(xhx~', k) € X} is k-open and k-dense in S M G°. On the other hand, since
the index |S/H]| is finite, we have that HMNG® is a k-dense subgroup of
SM G® and therefore UNH # @. Let x € HN U and k, = xhx "', Since H is
normal, #, € Hy. Since F,,={y,,.., ¥} is a free system, there exist open
sets O{F,), i=1..,m and a compact set K =K(F,) in P satisfying the
conditions of Definition 1. It follows from (4, g) € X, that there exists an
open subset £ < P such that 4(g~" )< E and ¢l £ < P\Cr{h,). From (2) of
Definition 1 it follows by Lemma 2 that there exists an integer N, such that
7N (UF ¢l O) < E for each z > N, and z € Z. Since (4, g) € X, we have
by the definition of X, that A(h,)UA(h]") =P\4'(g) and therefore, by
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virtue of (i) of Lemma 2, there exists an integer N, such that g°(4(h,)U
A(h7)) < Int K for each z > N,, z € Z. Since |S/H| < o0, there exists an
integer k > max(N,, N,) such that g*€ H. Let h,= g*h, g™ *. Since H is a
normal subgroup of S, %, € Hy. On the other hand, from the choice of N,
and N, and Lemma5, it follows that (a) cl O, P\Cr(h,) and (b)
Ah) VAR <IntK. Since (h,, g)€ X, and h,= g'h,g7*, we have
(hy,g) € X,. Tt follows that A(h,) UA(h;') = P\Cr(g), A(g)UA(g <
P\Cr(g) and k, € 2,(8). From the second inclusion it follows, since A(g) <
Int K, that A(g) < W and ¢l W < (Int K)\Cr(h,) for some open subset W of
P. Hence, the first inclusion and (b) imply the existence of an open set
0,,,,<IntK such that O, , < (Int K)\cI W and A(h,))VA(h;)<O,,,,.
From (a) and the definition of W it follows by (i) of Lemma 2 that there
exists an integer N, such that for every z € Z, z2 > N3 we have A3 cl W
0,,.; and (c) A(UM , ¢l 0;)c O,,, . On the other hand the set N= {z € Z:
h5 € Hy} is infinite, since |S/H| < oo, and therefore there exists an integer
z, € N such that z} > N3. Let y,., = h3. Since h, € 2,(S), we have that
VYm+1 € Hy. From (c) and the choice of 0, , it follows by Lemma 5 that the
open sets Oy(F 1) = O\(F )iy OplF i) =O0plFr)s O (Frii) =0y,
and the compact set K(F,, . )=cl W, where F,,, ,=F,,\J {y,,.,}, satisfy all
the conditions of definition 1. This completes the proof.

Let G be a subgroup of GL(V), g€ 2,(G) and F={g,€G:i€A} be a
free system for G relative to g. We consider for this system the set X(F) =
{yEG:yE R2(G), (1, ©)EX,, A(y) YAy~ ) cInt K(F), cl U, O:(F)
P\Cr(y)}. The following assertion is evident.

LEMMA 12. The set F" ={gl": g, €F, i€ A} is also a free system for G
relative to g. Furthermore we can choose the sets O,(F™), i€ A and K(F™) in
such a way that X(F™) < X(F).

Suppose G is in addition k-connected and does not leave invariant any
proper non-trivial subspace of V. Then the following two propositions hold.

Lemma 13. The set X(F) is non-empty.

Progf. Let U={x€G: (xgx~', g €X,}. By Lemmall, U#@. Let
x € U and h=xgx~", then we have that (h, g) € X,,. This means that there
exists an open set E < P such that 4(g~')< E and cl E = P\Cr(k). Since
cl Ujes 0, P\A’(g_,) (Definition 1, (3)), by (i) of Lemma 2, it follows that
there exists an integer N, such that §~%(cl{),., O;) < E for each z> N,.
Since (h, g) € X,,, we have A(h) UA(h~") = P\d'(g) and therefore by (i) of
Lemma 2 there exists an integer N, such that g(4(h) U A2~ ")) = Int K for
each z> N,. Pick an integer z, > max(N,, N,) and put h,= gihg % If
(h, g) € X, then (h,, g) € X,,. By Lemma 5 and the choice of z, it follows
that h, € X(F) and hence X(F) + @.
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LemMa 14. If H is a k-dense proper subgroup of G, then X(F\H # .

Progf. f X(F)NH=g@, then X(F)cX(F)\H and by virtue of
Lemma 13, X(F)\H+# Q. So we may assume that X(F)NH=# . Let
hy € X(F) H, then hy € 24(G) and hence, by Lemma 8, Hy N\ Q,(G)# &
for every y €G. Let y € G\H and » € Hy M 24(G). Then by Lemma 11 the
set U= {x € G: (xhx~', hy) € X} is k-open and k-dense in G and therefore
HNU#@. Let x€ HN U and h, = xAx~ . Then {h,, b)) € X, and 4, € H,
for x, h € H. Since hy € X(F), we have that A(h)U A(h; ') < Int K, where
K =K(F), and A(g)UA(g™") = P\Cr(k,). Hence there exists an open set
W< P such that Ag)c W, A(g™ ") ccl W and A(h,)\JA(hy ") < P\Cr(g).
Therefore there exists an open subset E, < P such that cl E; < P\Cr{g),
A(hg) JA(hy )< E, and ¢l E, < Int K\cl W. Since (h,, h,) € X, we may
assume that E, < P\Cr(h,). Since #h,€ X(F), we have cilJ,., 0,
P\A'(hy '), where O,= O(F), i€ A and from the definition of N, in the
proof of Proposition 1, it follows by (i) of Lemma 2 that there exists an
integer N, such that

A ((cl WYUA(g™ ) < E, foreveryz > N;,zEN; (1)
and

by (cl U O,.)CEl foreachz > N,,z € N. (2)
ied
Since (4, hy) E Xy, A(h) U AR )= P\4’(h;") and hence, by (i) of
Lemma 2 there exists an integer N, such that for every z > N,, z€ N, we
have

Fyd(h) VAR )< E,. )

If an integer z,> max(N,,N,) and h;=hj'h,hy™, then A, & H, but
h; € X(F). Indeed, from (3) and the definition of E, it follows by Lemma §
that A(h;) U A(hy )< E, < P\Cr(g) and therefore from (1) we have that
A(g)UA(g " YchyE, = P\Cr(h;). It follows similarly from (2) that
¢l U;es Oy < P\Cr(h;) and therefore 4, € X(F). Since /i, & H, we have that
hy € X(F)\H and this completes the proof.

PROPOSITION 2. Let H be a subgroup of S such that HM G° is a proper
k-dense subgroup of SN G . If g€ QW(S) and F,, = {y,€8: 1 i<m}isa
Jree system for S relative to g, then there exists an element y,,,, & H such
that ¥, .\ =F, J{y,..} is a free system for S relative to g.

Proof. Let O;= O(F,,), i=1,..,m, be open in F,, and let K =X (F,) be
a compact set in F,,. Since S$ M G® is a subgroup of finite index in S, there
exists an integer » such that the set F= {yl:y,€F,} is contained in
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SN G By Lemma 11, F is a free system and we may assume that X(F) <
X(F,,). Since the group S NG is k-connected, by Lemma 14, we have that
X(F)\H # @ and hence X(F,,)\H # @. Let y € X(F,)\H. From the definition
of X(F,,) there exist open subsets U and O,, ., of Int K such that A(g) < U,
AdUc(IntK)\Cr(y) and (a) AOW)YVA(Y H<0,.,,, ¢c0,,,c
(Int K\((cl U)\Cr(y)). Since y€X(F,), we have A(y)VA(y ")c
(It KNCr(g), A(g)UA(g~)cP\Cr(g), yE€Q,(S) and UL, cl0,c
P\Cr(g). By (ii) of Lemma 2 there exists a natural number N, such that
FUr,el0)<cO0,,,, and F((cl YU A(g~ ") < 0,,,, for every integer z
with |z| > N,. On the other hand, since y & H, the set N={z E Z: y* & H} is
infinite. Let zy €N, zy > Ny. If y,,,., = y*, then ¥, (U7, (cl0)LUcl U) =
0, for each z€Z, z#0. From (a) and Lemma5 it follows that
AV DV AL )< 0,,.,. Since 0,,,<IntK it follows from (4) of
Definition 1 that y70,,, < O, for every integer z % 0 and /= 1,..., m. Since
Ymi1 € 824(S) and the sets O(F,,.,)=0;, 1 <i<m, K(F,,, )=clU satisfy
all the conditions of Definition 1 for the set F,,,,=F,\Y{y,.,}, we have
that F,, ., is a free system for S relative to g and y,,., = y** & H.

In the next proposition, k is an arbitrary field.

ProPOSITION 3. Let G be a finitely generated subgroup of GL, (k). If H
is a subgroup of G such that for every subgroup L of G of finite index
HL = G, then H is k-dense in G.

Proof. We may assume that the field k contains the algebraic closure k,
of some simple field k,. Now suppose the proposition false. Let k, be a
simple subfield of k. Since G is finitely generated, there exists a subring & of
k, finitely generated over kg, such that G < GL,(Z). Since the Zariski
closures of G and H are different, there exists a polynomial f° with coef-
ficients from ¢Z vanishing on H and not equal to zero on some element
gE€G. It is well known [6, p.283, Corollary 2] that there exists a
homomorphism ¢: 2 - k, which is the identity on k, such that ¢(f(g)) # 0.
Extending ¢ to the natural homomorphism ¢*: G- GL,(k,) we see that
9p*(g) does not belong to the Zariski closure of p*(H). Thus we can suppose
G < GL ,(k,). If the field k, is finite, then the finitely generated group G is
also finite and therefore H = G, a contradiction. Let us now consider the
case k,=Q. Since G is finitely generated, by |6, Theorem 3, p. 79] there
exists for some p a finite algebraic extension E of the field Q, such that
G < GL,(J), where J is the ring of integers of E. Since the Zariski closures of
G and H do not coincide, there exist a polynomial f with coefficients from J
and an element g € G such that f|, =0 and f(g) # 0. Let | - |, be the p-adic
absolute value on E. Then the ideal /= {x € E: |x|, <|f(g)|,} defines the
homomorphism y of the ring J onto the finite ring J/I such that
w(f(g)-)# 0. Extending v to the homomorphism y*: G- GL,(J/I) we see
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that y*(G)=y*(H), but y*(g)€y*(H), for w(f(g)+#0. This
contradiction completes the proof.
The following proposition is obvious.

PROPOSITION 4. If g € 02,(S), then there exists a free system for §
relative to g.

3. TRANSFORMATIONS WITH POINTS OF ATTRACTION IN GROUPS
OF AUTOMORPHISMS OF DIRECT SUMS OF VECTOR SPACES

Let V be a vector space over a local field &. We assume that V is a direct
sum of isomorphic subspaces V,,..., ¥, and that S is a subgroup of GL{¥)}
satisfying the following four conditions:

(1) the Zariski closure G of S is semi-simple,

(2) for any two subspaces V; and V;, 1<, j<# there exists an
element y € § such that yV, =V,

(3) ifyeSNGE then yV, =V, for each i = 1,., n,

(4) the subgroup S G° does not leave invariant any proper norn-
trivial subspace of V;, i=1,...,n.

It follows from (3) that for every i= l,.., n there exists a natural &-
rational homomorphism ¢;: G°— GL(V,). Let §;=¢,(G° N S) and let mbe a
natural number not exceeding n. Let us consider the set &7(S)=
1 YESNG e(y)ENR.(S,) for each i, 1 i< m} It is easily seen that
Sy OTAS), if my > m,.

LEMMA 15, Every set @™(S) is empty or k-dense in SN G".

Proof. Let V be the tensor product of the spaces V,,..., ¥, and let ¢ be
the tensor product of the representations ¢,,..., ¢,,. It can easily be verified
that y €S belongs to @™(S) if and only if &(y)€ £,(e(SMNG"). By
Lemma 6 the set 2,(e(SMG°) is empty or k-dense in &(S M G°) and
therefore, since ¢ is k-rational, the set #™(8) is empty or is k-dense in
SNG° -

LemMma 16. If @NS)+# @, then all O™(8)Y+ @, 1 <m< n.

Proof. We shall show that for m > 1 if Z™ (S} &, then #™(S) # 2.
Indeed, if @™~ *(S) # @, then by Lemma 15 it is k-dense in § M G°. Since the
set of all semi-simple elements of G° is open in the Zariski topology of G°
[1, p. 193], there exists a semi-simple element g &€ Z" (S) such that
e{g)s+ 1 for each i=1,.,n On the other hand the first condition cn §
above implies that there exists an element y € § such that yV, =V . Let



12 MARGULIS AND SOIFER

h= ygy~'. The image ¢;,(x) of x € S N G° will be denoted below by x;. Let
m; be the projection pr(d’(h,),A(k,)), i=1,..m—1 and 7, =pr(4'(g,)
A(g,)). Let us consider the following sets U, = {x € SN G" £ '4(g) &
PA'(h) for i=1,2,...,m—1} and U,={xe€SNG": n(F'4(g)) ¢
P\A'(g;) for every i=1l,..m—1}. Since A(g) is a singleton for
i=1,.,m—1, by Lemma 7 and condition (4) on S the sets U, and U, are
k-open and k-dense in SN G’ Let Uy, = {x€ SNG" £,4(h,) = P\L'(g,,)
and 7,(%,4(h,))c P\A'(h,)}. Again as above, since A= ygy~' and
2. €2, (e,(SNGY%), by Lemma 7 it follows that U; is k-open and k-dense
in S M G° and therefore (}_, U;#@. Let x€ ()}_, U, and f = xhx™"'; then
by Lemma 5 it follows that for every i=1,..,m we have (g;, ;) € 4,, and
that, in turn, implies by Lemma 4 the existence of an infinite set N <N and
an integer N, such that A(g7f}) and A(f%, g;,) are singletons for all r €N,
z€Z, z> N,y and i=1,.,m— 1. Since [, g, and g fr are conjugate,
A(gif7) is a singleton for each i=1,..,m, hence g"f" € #™(S) for rEN,
r > N, and this completes the proof.

4. REPRESENTATIONS OF A FINITELY GENERATED GROUP
OVER A LocAL FIELD

We first introduce some notation that will be used in this section and
recall certain well-known results about the group of automorphisms of a
semi-simple algebraic group. Let G be a semi-simple connected algebraic
group, T be the maximal torus of G and B be a Borel subgroup of G
containing 7. By @ we denote the system of roots of G. We introduce the
order on @ such that for the set @* of all positive roots B=Gg. |2,
Theorem 4.5]. By 4(B, T) we denote the subgroup of Aut G, that stabilizes T’
and B. By Dyn(®,B) we denote the Dynkin diagram of G and by
Aut(Dyn(®, B)) the group of its automorphisms. To every element
a € A(B, T) there corresponds a unique element a’ € Aut(Dyn(®, B)).

ExampLE I. Let G be a simple, connected group of type D,. Then its
Dynkin diagram is

&y

/

ay Oy

AN

a3

where a;, i=1,.,4 are simple roots of G [3, p.305]. Thus, the group
Aut(Dyn(®, B)) is in this case the symmetric group of degree 3 and is
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generated by the two automorphisms ¢ and r such that ¢° = 1, o(a,) = a;,
olay)=a,, ' =1, 1(a;) = a,, 1(a,) = a,, (a;) = a,. It should be noted that
the subgroup generated by ¢ is normal in Aut(Dyn(®, B)) and therefore
every element of this group has a form ¢'t/, where 0 < i< 2, 0< /< 1.

ExaMpPLE 2. Let now G be a simple, connected group which is not of
type D,. Then it follows from the well-known classification |3, pp. 301-319]
that Aut{Dyn(@, B)) is a finite cyclic group.

ProposiTioN 5. [1, 14.9] Let G be a semi-simple, connected group.
Then:

(1) AutG=InnG-A(B,T),
(2) InnGNA(B,T) is the kernel of a\— o',

(3) The natural homomorphism Aut G/Inn G— Aut{Dyn(®, B)} is
injective; in particular (Aut G)° = Inn G.

Lemma 17. Let V be a vector space over a field k, let 8 be a finitely
generated subgroup of GL(V) such that G =27 (S} is a simple algebraic
group. If X is the set of all torsion elements of S, then the set gG*\o/(X) is
open and dense in the Zariski topology of the variety gG° for every g € G.

Progf. Since the variety gG° is irreducible, it is sufficient to show that
gG°\&7 (X) # &. Suppose on the contrary that gG® < &/ (X). Making use of
the conjugacy of Borel subgroups of G° and of tori in Borel subgroups, we
may assume that the representative g of the coset gG° normalizes a torus 7
and a Borel subgroup B of G° containing 7. Let a = ad. g. It is clear that
a € A(B, T). Let us consider &' € Aut(®) induced by a. If 9 € $* denotes
the dominant root for the order on @ associated with B, we have o/(p) = ¢.
To the root ¢ there corresponds a connected one-parameter subgroup x, of
T.If Y= {y € G" a(y)= p}, then by the choice of ¢ we have that x, < Y.
On the other hand all exponents of torsion elements of a finitely generated
group § are bounded by a natural number ¥ |10, Lemma 2.3]. Thus, for a
large enough n, for instance n=N!, f"=1 for every /€ % (X). Since
g€ ¥ (X), gx,c 7 (X) and x, < Y, we have that x, = & (x). So x" =1 for
each x € x,. Let k be the algebraic closure of k and &* be the multiplicative
group of k., Since over k there exists an injective homomorphism &* — x .
the exponents of all elements of &* are bounded in totality and hence, by
(10, Lemma 2.3] the field £ is finite, a contradiction.

THEOREM 1. Let G be a simple algebraic group and S a finitely
generated subgroup of G dense in the Zariski topology. Then there exist a
local field k, a vector space V over k and an absolutely irreducible k-rational
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representation p: G — GL(V) such that 2 (p(S)) + @& and the representation
P |go is absolutely irreducible.

To begin with we shall prove the following:

Lemma 18. If G/G" is cyclic, then Theorem 1 is valid.

We shall divide the proof of Lemma 18 into three steps.

Step 1. Pick an element g € G such that the residue class gG° generates
G/G’. Let Y be the set of all semi-simple elements of G and X be the set of
all torsion elements of S. Since (gG°)M Y is open and dense in the Zariski
topology of the irreducible variety gG°, we have by Lemma 17 that
(gG\ (X)) N Y # @. Since § is dense in the Zariski topology of G, there
exists an element y € SN (gG'\& (X)) N Y. It should be noted that G is
generated by the set {y} U G°

Step 2. Since S is finitely generated and dense in the Zariski topology of
G, we may assume that a finitely generated field k,, a vector space V" over k,
and a kjrational representation §: G — GL(V) have been chosen in such a
way that p(S) < f(G))k,), i.e., f(S) = GL(V), and all eigenvalues of g(y)
belong to k,. We identify without loss of generality G and §(G), S and 5(S),
y and f(p). Since the chosen element y is of infinite exponent (p & & (X)),
there exists an eigenvalue A of y such that A is not a root of unity. By [10,
Lemma 4.1 we extend &, to a local field with absolute value |- | such that
|1]% 1. Let Vo=V ®, k and V, be the subspace of ¥, consisting of all
eigenvectors of y, corresponding to an eigenvalue A4, maximal in absolute
value. Let d=dim V,. Since det y =1, d # dim V. Extending, if necessary,
the field & and replacing V| by an appropriate quotient of its dth exterior
power we get a vector space W over a local field and an absolutely
irreducible k-rational representation p: G - GL(W) such that the transfor-
mation p(y) has a unique eigenvalue that is maximal in absolute value, i.e.,

P(¥) € 2.(p(S))-

Step 3. It follows from the construction and from the absolute
irreducibility of p that p |4 is also absolutely irreducible. Indeed, since S is
dense in the Zariski topology of G and S < G(k), it is sufficient to show that
the subgroup S,=S5MNG® leaves invariant no proper subspace of
W = W ®, k. Suppose the contrary. Then there exists a minimal S,-invariant
proper subspace W, of W. Let m =|G/G°|. 1t is clear that any S -invariant
subspace W* of W either contains W or else W* N W = {0} and therefore
there exist integers i,..i; such that 1<i; <.~ <i;<m and W=
W,® @i, yV"W,. Let W,= y""W,, r = 1,..,5, and v be an eigenvector of y
corresponding to the eigenvalue of y which is maximal in absolute value. It is
easily seen that v belongs to some W, or to W,. Indeed,



Loy

MAXIMAL SUBGROUPS OF LINEAR GROUPS i

v=0vy+0,+ - +v,, where v,€ W,, i=0, 1,..,5, and v is an eigenvector
of y™ corresponding to the maximal (in absolute value) eigenvalue. Since
y"E S,, for m=|G/G®), and all subspaces W, are S,-invariant, so are all
the non-zero vectors among v,..., v,. On the other hand, by Lemma 5, 4{»™)}
is a singleton and therefore only one vector from among v,,..., U, is non-zerc,
Suppose, for instance, v € W, then y'v € W, and hence y"v & W, but this
is impossible because v is an eigenvector of p, a contradiction.

Proof of Theorem 1. It is evident that without loss of generality we may
assume that G is a subgroup of the group of automorphisms of a simple,
connected group H. Making use of Examples | and 2, we see that either # is
a simple group of type D, and G = Aut H or G/G" is cyclic. In the second
case the theorem is valid by Lemma 18, so let G= Aut H, where H is 2
simple group of type D*. It follows from Proposition 5 that G° is a simple
group of type D, and the natural homomorphism G- AutG’ is an
isomorphism. So we can apply to the group G the results about groups of
automorphisms of algebraic groups, mentioned above. Let 7 and B be a
torus and a Borel subgroup of G° containing 7. Now we shall take
advantage of Examplel. Pick an element g& G such that
EENLHT)NNLB) and g’ =0 € Aut(Dyn(®, B)). Let us consider the set
L={x"'gtx: xEG° t€T} and let M= /(L) We define the rational
morphism a: TX G*— gG* by the formula a(f, x)=x"'grx. Let us show
that dim M = dim G°. Indeed, let ¢, be a regular element of G° and ¢, € T’
Let us consider the fibre a™'(gt,) of the morphism «. It is easily seen that if
(t, x)Ea~(gt,), then xE T and therefore o~ *(gz,) = {{t,[x, g] ™\, x): x € T}
Thus, dim a~'(gt,) = dim 7. By [1, Theorem 10.1] it follows that dim M =
dim G* X T—dim T and hence dim M = dim G° Since dim gG°=dim G°
and a(T X G") = L, we have that M = gG° and so M contains an open and
Zariski dense subset of the variety gG° Let us consider the set X of all
torsion elements of S and the set Y of all semi-simple elements of G. Since ¥
is open and dense in the Zariski topology of G |1, p. 193], we have by
Lemma 17 that the set (gG°\& (X)) Y is open and dense in the Zariski
topology of gG° Since L contains an open set of gG°, we have
SNLN(gCN\F(X)NY=D#@. Let y€D° Since yE L, we have
y=x"'gix for some x € G° and ¢ € T. Identifying S with xSx~', we may
assume that y € (§ N gT N Y)\X. Thus, y is a semi-simple element of § of
infinite exponent and y € g7. Then y = gt for some ¢ € 7. Let us observe
that y° € T and gy’g~ ' = »°. Indeed, since g’ = o, the element g° induces the
identical automorphism of the Dynkin diagram Dyn{®, B) of G° and, since
g ENGT)M Ny (B), we have g’ € T Besides, since gt = y, we have y° € T,
so gyig ' =% Let h be an element of finite exponent of the group
Ng(T)N N4(B) such that 4’ = € Aut(Dyn(®, B)). Since gy'g~" =y’ and
g =0, by virtue of Theorem 6 and Lemma 2.8 from [9] we have that

481/69/1-2
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hy’h=1=y% Let u=~hy’, then 1 is a semi-simple element of infinite
exponent. If /=|k|, then u'= ' The group G is generated by the set
{y, 4} U G°. Repeating the arguments of step 2 in the proof of Lemma 18, we
choose a finitely generated field k, and a vector space V over k, such that
G GL(V) S < G(ky), y, 1 € G(k,) and all eigenvalues of y and g belong to
ko. Now we turn to the construction of the desired representation. Since y is
a semi-simple element of infinite exponent, at least one of its eigenvalues, call
it 4, is not a root of unity. Making use of {10, Lemma 4.1] we extend &, to a
local field k with absolute value |-| such that |1]# 1. Repeating the
arguments of Step 2, we obtain a vector space W over k and a k-rational,
absolutely  irreducible .= representation p: G- GL(W) such  that
p(¥) € 2,(p(S)). We shall show that p IGo is absolutely irreducible. Let k be
the algebraic closure of k and W= W ®, k. We can assume for convenience
that p(G)=G, p(S)= S, p(¥) =y, p(u)=u and p(G®) = G°. Let us verify
that the subgroup G°(k) of G(k) has no proper invariant subspace in W.
Since G°(k) is dense in the Zariski topology of G°, this will be sufficient to
complete the proof. Suppose on the contrary, that G°(k) has a non-trivial,
proper, invariant subspace in W. We choose among those subspaces a
minimal one W,. Let W’ be any G°(k)-invariant subspace of W; then it is
clear that either Wy W' or W, MW ={0} and therefore, from the
properties of y and u, it follows that there exist s pairs of integers
(11,11), o J) 00,2, 0€j, <3, 2+ j2#0 if 1<r<s, such that
W = Wo®@:-aW where W, ,u"yJ’W All W,, r=0,..,s are invariant
by G°(k) Let v be an eigenvector of p, corresponding to the maximal (in
absolute value) eigenvalue of y. Since y*' =u' for some integer [, it follows
from Lemma 5 that A(u) is a singleton and 4(u) =A(y). Hence v is an
eigenvector of y, corresponding to an eigenvalue maximal in absolute value.
Thus, v belongs to some W,. Indeed, v=vy+ --- +v,, where v, € W,,
i=0,.., 5, and since y* € G°(k), each nonvanishing v, is an eigenvector of y*,
corresponding to the same eigenvalue as v. Since A(y’)=A4(y) is a
singleton, by Lemma 5, we have that only one vector among v,,..., U, is not
zero. Suppose, for instance, v € W,. Then, since W, =u''y/'W,, we have
that u’'y’v € W, and on the other hand, since v is an eigenvector of & and y,
we have that 4"'y/'v € W,,. The contradiction completes the proof.

The following theorem allows us to reduce the construction of maximal
subgroups in groups over arbitrary fields to the construction of such
subgroups in groups over local fields where we can apply the results of
Sections 2 and 3.

THEOREM 2. If G is an algebraic group over a field k, such that G° is
not solvable and S is a finitely generated k-dense subgroup of G(k,), then
there exist a vector space V over a local field k and a k-rational, absolutely
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irreducible representation p: G — GL(V) such that @, (p(S)# @, p(G) is e
semi-simple group and the restriction p | is absolutely irreducible.

Since § is a finitely generated subgroup of G, dense in the Zariski
topology, we may assume that the field &, is finitely generated

Progf.  Without loss of generality we can assume that G is semi-simple
and C,;{G") is the identity element. Moreover, since the kg -group G° is split
over & finite algebraic extension of &, [1, p. 258], we may assume that G° is
split over k* and therefore that G° is a product of simple algebraic groups
over kg, say G’=H, X --» X H,,. We may also assume that G° does not
contain connected subgroups which are normal in G, so the groups
H,..., H, are isomorphic and moreover, for every i = 1,..., m, there exists an
element g, € G such that H,=g,H,g; " and every g in G induces a
permutation g, of the set {H,,.., H,,}. Let us consider the subgroup V(¥ }
of G. Let H be the image of Ng(H,) under the naturai homomorphism
N(H,)—» Aut H, and let A be the product of m copies of AutH,. Let

={{a,sna,) €4 a;€ H, 1 i< m} and let D be the image of & under
the homomorphism gr+o,. Let us consider the semi-direct product
A,=A X D (the elements of D act by permuting the components of the
elements of 4} and its subgroup B,=B X D. We define the kg rational
homomorphisms ¢;: G— H by setting, for i=1,..,m and g€ G, gig)=
ady (&, 1 &8) if i>2 and &(g)=ady \ga(llg) Let &= (&, py &p). We
define the ko-rational morphism ¢: G— A4 as well by the formula ¢{ g;w
e(g)o, for g € G. It is easy to verify that ¢ is a homomorphism and o(G) =
A= B Making use of the inclusions g, , g8 € No(H,} for i>2 and
gc,gngNG(H} we see that ¢{G)c B,. Let S, =6(G*MNSE) and 5,=

e, (Ng(H, )N S). Since § is dense in the Zariski topology of G and
G® < Ny(H,), we have that S, and S, are dense in the Zariski topology o
the groups £,(G°) and &,(Ny(H))), respectively, |S,/S,| < co and §,; is 2
normal subgroup of S,. Let n, be the projection of 4 onto the #th
component. It is easily seen that 7,{(@(S) N B)= 5, and n,(¢(S) N B%)=§,.
Since §, is a finitely generated, dense subgroup of a simple algebraic group
H = 7,(B), by Theorem 1 there exist a local field £ > k,, a vector W over &
and an absolutely irreducible k-rational representation p,: H - GL{ W‘
satisfying all the conditions of Theorem 1. So, since {S,/8,] < co, we have
that £2, (p,(S,)) # @. Now we shall extend p, to the desired representation p,
of G. Since G is kgisomorphic to B, it is sufficient to extend p, to a
representation g, of B, satisfying the same conditions. The role of a finitely
generated subgroup of B, will be played by the group § = ¢(5). Let ¥ be the
mth tensor power of W. Since B is the product of m copies of H, taking the
mth tensor power of p, as a new representation, we get an absolutely
irreducible representation p, |9, Lemma 68]. Since D acts on B by
transpositions of components, this representation is naturally extended to a
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representation of B,, which will be denoted by p, as well. Thus, we have
constructed a k-rational, absolutely irreducible representation p,:
B,- GL(V) such that its restriction to (B,)’=B’ is also absolutely
irreducible by [9, Lemma 68], for B®= H® X --- X H®. It remains to show
that 2 (p,(S)) # @. Let V* be the product of m copies of W and p* be the
product of m copies of p,. It is clear that p*: B - GL(V*). Making use of
the action of D on B, we may extend p* to a representation p*:
B,-»GL(V*). We recall that &p*(S))={p*(y)€p*B°NS):
pX(n») € Q. (p*(n,(S M B®))) for every r = 1,..., i}. Since the group p*(B,)
and its finitely generated subgroup p*(S) satisfy all the conditions of
Lemma 16, we have that @™(p*(S))# @. It is evident that the image of
g€ O™ (p*(S)) under the natural isomorphism p,(p*)~' belongs to
£2_(p,(S)) and this completes the proof of Theorem2.

5. CRITERION FOR FINITENESS OF THE INDICES OF
ALL MAXIMAL SUBGROUPS

Let G be a group, by U(G) we denote the set of all maximal subgroups of
G of infinite index in G, If G is a linear group and G is its closure in the
Zariski topology, then we define the set U, (G)={H € U(G): &« (H)=G}.
The following simple assertions will be used in the sequel.

Lemma 19. If M is a maximal subgroup of G and H is a nilpotent,
normal subgroup, then (1) M H is a normal subgroup of G and (ii)
H/M N H is an Abelian subgroup of G/M M H containing no normal, non-
trivial, proper subgroup of G/M N H.

Proaf. It is sufficient to prove the lemma in the case when H <M N H;
then MM H is a proper subgroup of No(M N H) [5, Theorem 16.2.2]. On
the other hand, since H is normal in G, M c Ny(M N H). Since HNM #
N(MNG), therefore M#N(MNH) and so No(MNH)=G. Since
G/M M H is a semi-direct product of a normal, nilpotent subgroup H/M NH
with a maximal subgroup M/M M H, we obtain (ii).

LEmMA 20. Let A and B be arbitrary groups and ¢: A—> B be an
epimorphism, then ¢~ (U(B)) = A(A).

This follows from the fact that the preimage of a maximal subgroup of B
is a maximal subgroup of 4 of the same index.

THEOREM 3. A finitely generated linear group G over a field has
maximal subgroups of only finite index if and only if G is solvable-by-finite.

Proof. We first assume that G' has a solvable subgroup of finite index.
Then we shall prove that the index of any maximal subgroup of G is finite. It
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is well known that G has a normal, trigonalizable subgroup 4 such that
|G/A| < o [1, Corollary 1 in 10.5]. Let B={4,4]: then B is a normal,
nilpotent subgroup of G. By Lemma 19, HN B, where H is a maximal
subgroup of G, is a normal subgroup of G and B/HM B is an Abelian
subgroup of G/H M B containing no proper, non-trivial, normal subgroup of
G/HNB. If B#HNB, then B*=B/HMNB is a vector space, not
necessarily finite-dimensional a priori, over a simple field k. Indeed, since B*
contains no normal, non-trivial, proper subgroup of G* =G/HM B, B* is
either a complete, Abelian torsion free group, i.e., a vector space over @, or
an Abelian group of prime period p, i.e., a vector space over a field of
characteristic p. On the other hand B* is a G*-module over & and morgover
is a G/B-module, for B* is Abelian. This module is finitely generated, since
A is finitely generated and B = [4,4] Since B* does not contain any
proper, non-trivial, normal subgroup of G/B, the module B* does not
contain any proper, non-trivial G/B-module and, since G/B is a finite
extension of an Abelian group A/B, we have that dim, B* < w0, see, e.g., [8].
It is easily seen that k # Q and therefore k is finite. But B* 3 {1} and, since
H* = H/HM B is a maximal subgroup of G*, we have that H*B* = G* and
H* M B* is trivial. Hence |G*/H*|=|B*| < co. In the case when B < H the
proof is clear.

We prove now the necessity of the condition. Let us suppose on the
contrary that G has no solvable subgroups of finite index. By Lemma 20 and
Theorem 2 we can reduce the proof to the case of a local field and assume
that G satisfies all the conditions of section 2. More precisely, we assume
that & is a finitely generated subgroup of GL(¥V), where V is a vector space
over a local field, such that

(i) 2.(G)#a;
(it} If G is the Zariski closure of G, then G is semi-simple;

(iii) The subgroup G M G® does not leave invariant any proper, non-
trivial subspace of V.

Since ¢ is finitely generated, the set of its subgroups of finite index is
countable and so is the set of residue classes modulo these subgroups. Let
M., M, .. enumerate all these classes. By Lemma8, 2,(G)+#@. Let
gE $,(G) and Fy= {y, € G: i=1,..,m} be a free system for G relative to g.
The existence of F, follows from Proposition 4. Let us suppose that for some
natural number 7 a free system F, has already been constructed such that
M;NF,#@ for each ji and F,cF;. Applying Proposition 1 to the
residue class M; , and F;, we can find y;,, €M, , such that F, , =
F;U{y;..} is a free system for G relative to g Let F={UQ2, F, and
§ = (F); then by the construction of F, we have that § MM, # @ for each
i€ N and, by Lemma 10, § is freely generated by F. Therefore, since & is
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finitely generated, S # G and for every subgroup K of G of finite index
SK=G. Since G is finitely generated, there exists a maximal proper
subgroup H of G such that S H. It is evident that H is a maximal
subgroup of G. On the other hand, if |G/H| < o0, then SH = G, therefore
H>SH=G, but H is a proper subgroup of G. Contradiction. Thus, we
have found a maximal subgroup H of G of infinite index and this completes
the proof.

CoRrOLLARY 1. The group SL,(Z), where nx2, has a maximal
subgroup of infinite index.

THEOREM 4. Let G be a finitely generated linear group over a field. If G
has no solvable subgroup of finite index, then the set W(G) is uncountable.

Proof. By Lemma 20 we may again assume, making use of Theorem 2,
that G satisfies all the conditions of Section 2. By Proposition 3 and
Theorem 3, %,(G)=U(G) and A, (G) # B. Let us assume that A, (G) is coun-
table. Let M,,..., M,,... and H,....,, H,,... enumerate, respectively, the residue
classes modulo the subgroups of G of finite index and all the subgroups of
UA(G). By Lemma8 Q,(G)#=@. Let g€ Q,(G) and Fy={y,€G:
i=1,.., m} be a free system for G relative to g, which exists by Proposition
4. Let us suppose that we have constructed a free system F; for every natural
i such that FocF;,, F;,NM,#@ for every r<[({—1)/2], i>1 and
F;NH,+ & for every t  [i/2], i > 2. If now i is even, then by Proposition 2
we can choose y € G such that y € H,, and F,;,, = F;U {y} is a free system.
If i is odd, then by Proposition 1 we can choose y € G such that y€ M;_,,,
and F; ,=F;U{y} is a free system. Let F={J> | F, and § = (F). Note
that for a subgroup K of G of finite index SK =G and, for H,€ U,(G),
SN (G\H,;)+# @. Just as in the proof of Theorem 3 we choose a maximal
subgroup H of G among those containing S. Repeating the arguments of the
quoted proof, we conclude that H is a maximal subgroup of G and
|G/H| < oo. Then, by proposition 3, H € %,(G) and on the other hand, since
S c H, SN (G\H,) # @ for every H, € A, (G); thus the set S M (G\H) is not
empty, but G\H < G\S. Contradiction.

CoRrROLLARY 2. If L is a lattice in a semi-simple Lie grbup Gy, where G
is of rank >1, then the set of maximal subgroups of G of infinite index is
uncountable.

Proof. By Borel’s density theorem, the Zariski closures of Ad L and
Ad Gy coincide. So L has no solvable subgroup of finite index, but L is
finitely generated {7, Proposition 13.21]. By Theorem 4 we obtain the
conclusion of Corollary 2.
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6. THE EXISTENCE OF MAXIMAL SUBGROUPS OF INFINITE INDEX
WITHOUT FREE SUBGROUP OF FINITE INDEX

Our proof of the existence of maximal subgroups in SL,(Z) of infinite
index stimulated V.P. Platonov and, independently of him, G. Prasad to
pose the following question: does there exist in SL (Z) a maximal subgroup
of infinite index containing no free subgroup of finite index? We answer this
question affirmatively.

THEOREM 5. The group SL,(Z), where n > 4, has a maximal subgroup
of infinite index containing a free Abelian subgroup of rank 2.

Several lemmas will precede the proof of the theorem. Let o be a semi-
simple element of infinite exponent in SL,(Z} and let us consider the
following two elements of SL ,(Z):

e 0 E,a 0\
a1=<0 E )’ cz2=( 0 a)’

w—2

where n >4 and E,_, is the unity (n —2) X (n — 2} matrix. It is obvious
that these elements commute. Let V'=R" and P be the projective space
based on V. The natural action of SL,(Z) on V allows us to consider g, and
a, as elements of GL(V). Let ;= pr(4'(a} a}), A(aja)), i=+1,j=£1.

LEMMA 21. If g=alal, |n|=|m|#0, and x € P\A'(a'a}) for every
i==1, j=+1, then for every neighbourhood W of x such that cl W
P\A'(aia)), i==1, j=+1 and for every neighbourhood U of the set
Uzl i=+1, j=+ 1} there exists a number N = N(U, W) € N such that
g WU, if|rl>N.

This follows immediately from item 3 of Lemma 3.9 in [10].

LEMMA 22. If g=a"a? and |n|+#|m|, x € P\A'(al) for each s=1,2
i=+1, then for every neighbourhood W of x such that cl W< P\d'(a}},
s=1,2, i=+1 and for every neighbourhood U of |J {A(al): s=1,2,
i= 41} there exists N=N(U, W)EN such that §Wc U, if min{lm|
jn)) > N.

Proof. It is clear that only four cases are possible for m and n (a) n > 0,
In] <|ml|, (b) n>0, |n|>|m|, (c) m>0, |m|>|n|, () m<O, |m|>]|n|
According to them we get: (a) A(g)=A4(a,), (b) 4(g)=Ae;"), (©)
A(g)=A(a,), (d) A(g) =A(a;"). Thus, all the conditions of (i) in Lemma 2
are satisfied and this completes the proof.
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DEFINITION 2. Let G GL(V), UcP, Wc P, g€ 2,(G) and let F=
{y;€G: i€ I} be a free system for G relative to g. We call F compatible
with U and W if

(1) KF)c W and O(F)c W for each i € I,
(2) PiclUc O(F)foreach n&€Z,n#0 and i € I,
(3) dUcP\U' (g™).

ProPOSITION 6. Let S be a subgroup of GL(V) satisfying all the
conditions of Section2, UcP, Wc P, g€ Q,S) and let F,={y,€S:
i=l,.,t} be a free system for S relative to g, which is compatible with U
and W. If X is a residue class in § modulo a subgroup of finite index, then
there exists an element y,,, € X such that F, ,=F,J{y,.,} is a free
system for S relative to g compatible with U and W.

Proof. We may assume (without loss of generality) that X is a residue
class modulo a normal subgroup of finite index. Making use of the same
argument as in the proof of Proposition I, we see that there exists
XEXNQ(S) such that Ax)UAx™ ") < P\Cr(g) and 4(g)UAd(g™ )<
P\Cr(x). By Lemma 1 we can choose N, € N such that §"(4(x) UA(x")) =
IntK for every r> N,, where K=K(F,). Since clUcP\4'(g™") and
A(g7") < P\Cr(x), by the same lemma we can find N, EN such that
§7"cl U< P\Cr(x) for every r > N,. Besides, by virtue of (2) in Definition 2
we may assume that the natural number N, was chosen in such a way that
§7"clUcP\Cr(x) for every r>N,, i=1,.,t. Let y= g'xg~", where
r, €N and r®> max(N,,N,); then it is clear that A(y)UA(y Hc
(Int KN\A(g), A(r)VA(y;H)<P\Cr(y) for each i=1,.,t and clUc
P\Cr(p). Therefore there exist an open set O,,, and a compact set
K,cIntK such that A(g)cIntK,, ¢10,,,=K\Cr(g), K,cP\(clO,, )V
Cr(»)). So there exists a natural number N, such that j"cl 0,=O,,,,
P"K,<O0,,,, "clU<=O0,,, for every i=1l,.,t, nEZ, n* > N}. Since the
set X, ={z€&€ Z: y* € X} is infinite, we can choose an integer z, € X, such
that z3 > N}. Putting now y,, ; = »*° we complete the proof.

Proof of Theorem 5. Let G=SL,(Z), n>4, V=R", P—the projective
space based on V and let a,, a, be the elements of G mentioned above. By
Lemma 7 there exists g € 2,(G) such that 4(g) < P\(4'(aaj) U A(aad))
for each i=0,£1 and j=0, +1. Let T=U {7;(4(g)): i==%1, j=+1}U
A(a)JA(a,)VA(a;7)UA(a;"). Since A(g)e P\T, there exist
neighbourhoods W and U of A(g) and T, respectively, such that
cl WM cl U=@. Making use of Proposition 6, we construct a free system
F={y,€ G: i€ N} for G relative to g, compatible with U and W such that
for every residue class X in G modulo a subgroup of finite index we have
that XM F+@. Let us assume that a natural number N, =N,(U, W)
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(N, =N,(U, W)) satisfies the conditions of Lemma 21 (Lemma 22). Let us
consider the group G,={(dY,a}), where NEN, N > max(N,,N,). By the
choice of N, §cl W U for every g € G,. From (1) and (2} of Definition 2

it

follows that p7 ¢l U< W for each n + 0, n € Z. Therefore if G, = (F), then

the group S = (G, G,) is a free product of G, and G,. Thus, S is a proper
subgroup of G. On the other hand, since § © ,, the index of § in G is
infinite. Let M be a maximal proper subgroup of G containing S. Just as in

th

e proof of Theorem 3 we have that M is a maximal subgroup of G and

{G/M| = o0; moreover an Abelian free group of rank 2 is contained in M.
This completes the proof of Theorem 5.
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