
Physics Letters B 747 (2015) 76–82

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Azimuthal anisotropies in p + Pb collisions from classical Yang–Mills 

dynamics

Björn Schenke ∗, Sören Schlichting ∗, Raju Venugopalan ∗

Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 February 2015
Received in revised form 18 May 2015
Accepted 19 May 2015
Available online 22 May 2015
Editor: J.-P. Blaizot

We compute single and double inclusive gluon distributions in classical Yang–Mills simulations of proton–
lead collisions and extract the associated transverse momentum dependent Fourier harmonics v2(pT ) and 
v3(pT ). Gluons have a large v2 in the initial state, while odd harmonics such as v3 vanish identically 
at the initial time τ = 0+. By the time τ � 0.4 fm/c final state effects in the classical Yang–Mills 
evolution generate a non-zero v3 and only mildly modify the gluon v2. Unlike hydrodynamic flow, 
these momentum space anisotropies are uncorrelated with the global spatial anisotropy of the collision. 
A principal ingredient for the generation of v2 and v3 in this framework is the event-by-event breaking 
of rotational invariance in domains the size of the inverse of the saturation scale Q s . In contrast to our 
findings in p + Pb collisions Yang–Mills simulations of lead–lead collisions generate much smaller values 
of v2,3(pT ) and additional collective flow effects are needed to explain experimental data. This is because 
the locally generated anisotropy due to the breaking of rotational invariance is depleted with the increase 
in the number of uncorrelated domains.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

A striking result from high-multiplicity proton–proton (p + p) 
and proton–lead (p + Pb) collisions at the LHC was the discovery 
of a “double-ridge” structure in two-particle correlations that is 
long range in their rapidity difference �η and includes a dominant 
cos(2�φ) modulation in their relative azimuthal angle [1–8]. Key 
aspects of the structure of the observed correlations in proton–
nucleus collisions bear a striking similarity to those observed in 
heavy-ion collisions [9–11] and may point to a form of collective 
behavior where many particles are correlated with each other.

In heavy-ion collisions the azimuthal structure of multi-particle 
correlations is quantitatively well described by viscous fluid dy-
namic calculations with fluctuating initial state geometries [12]. 
This naturally leads to the assumption that the physics responsi-
ble for the ridge structure in high multiplicity p + p and p + Pb 
events may also be driven by the final state collective flow of the 
system. Indeed, calculations using hydrodynamics (or microscopic 
models of final state interactions) are able to reproduce features 
of the azimuthal structure in p + Pb collisions [13–17]. Specifically, 
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the Fourier coefficients v2(pT ) and v3(pT ) in the expansion of the 
particle distribution

dN

dφ pT dpT
∝ 1 + 2

∞∑
n=1

vn(pT ) cos [n (φ − ψn(pT ))] , (1)

can be described by several of these models, albeit with different 
parameterizations of the initial state and transport coefficients. In 
Eq. (1), ψn(pT ) = 1

n arctan 〈sin(nφ)〉φ
〈cos(nφ)〉φ is the (transverse momentum 

dependent) event plane angle associated with the n-th harmonic, 
and 〈·〉φ denotes the azimuthal average with respect to the single 
inclusive particle distribution at a given pT .

While some detailed features of the data – such as the depen-
dence of v2(pT ) on the particle mass – can be explained quite 
naturally by final state collective effects, a number of conceptual 
problems can be identified within this theoretical approach. One 
concerns the applicability of viscous hydrodynamics due to large 
pressure gradients [18,19] that are present for a significant frac-
tion of the space–time evolution. Another concerns the sensitivity 
to the initial state in small systems [20], which requires a bet-
ter theoretical understanding of the early time dynamics. Further, 
the observation of pronounced azimuthal anisotropies even at high 
transverse momenta pT � 3 GeV challenges the hydrodynamic 
paradigm which is best applied to a description of low momentum
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excitations. It is therefore important to explore if multi-particle 
correlations at different transverse momentum scales can be un-
derstood in part or whole in alternative approaches.

For instance, computations of intrinsic two particle correla-
tions in the Color Glass Condensate (CGC) framework have been 
shown to produce azimuthal anisotropies compatible with ridge 
data for even harmonics for pT > 1 GeV in p + p and p + Pb 
collision systems without the need for additional final state col-
lective effects [21–25]. However, no odd harmonics were gener-
ated because rescattering contributions to the intrinsic correlations 
were not included [26]. In addition to these intrinsic two-particle 
correlations, the presence of domains of directed chromo-electric 
fields inside the proton and the nucleus breaks rotational invari-
ance on an event-by-event basis and thereby generates azimuthal 
anisotropies [27]. For quarks scattering off a colored target, these 
colored domains generate both v2 and v3 [28–30]. However, glu-
ons scattering off this target only generate even harmonics. We 
note that the possibility that azimuthal anisotropies could arise 
from the event-by-event breaking of rotational invariance by color 
fields has also been considered in a related approach [31].

Thus far the studies of initial state correlations generated by 
color-electric domains in [28,29], and recent extensions thereof in 
[32], have been based on a description of the proton as a dilute 
projectile of valence quarks scattering off the nucleus. However, 
experimentally significant anisotropies are only measured in events 
with very high multiplicities, where it is more appropriate to de-
scribe both the proton and the lead nucleus as dense colored ob-
jects. Because of the high gluon occupancies in both the proton 
and the lead nucleus, they can be approximated as classical gluon 
fields, and their leading order space–time evolution is described by 
solving classical Yang–Mills equations.

Such classical Yang–Mills (CYM) simulations were performed 
previously for nucleus–nucleus collisions [33,34] (including an 
early study of elliptic flow in [35]) and proton–nucleus collisions 
[36,37]. More recently, these studies were extended to include 
more realistic initial conditions in the IP-Glasma model [38,39], 
which provides a satisfactory description of multiplicities in high 
energy hadron collisions [37]. When combined with a hydrody-
namic evolution (MUSIC), the IP-Glasma + MUSIC model has also 
been successfully applied to the description of azimuthal harmon-
ics in nucleus–nucleus collisions [12]; azimuthal anisotropies in 
p + Pb collisions were however largely underestimated [20].

While the azimuthal anisotropy in the aforementioned stud-
ies [12,20] was generated via the hydrodynamic evolution of the 
system, the IP-Glasma model also includes fluctuations of color 
charges inside the projectile and target. Such fluctuations break 
rotational invariance on an event-by-event basis and lead to a mo-
mentum space anisotropy already present in the initial state. In 
this letter, we will study these azimuthal anisotropies of gluons 
in the initial state and during the early time dynamics of proton–
nucleus and nucleus–nucleus collisions. While the effect in Pb + Pb 
collisions is small, we find that initial state and early time effects 
are sizable in p + Pb collisions and should be taken into account in 
the theoretical description of small collision systems.

This letter is organized as follows. In Section 2 we briefly out-
line the theoretical framework underlying the classical Yang–Mills 
simulations. Our discussion follows the literature in the context of 
the IP-Glasma model [39] with the significant modification that we 
will also consider ‘eccentric’ proton configurations following [40]. 
We then discuss the measurement of azimuthal anisotropies in 
this framework in Section 3 and present numerical results for az-
imuthal Fourier harmonics of gluons in proton–nucleus collisions 
in Section 4. We investigate the sensitivity of our results with 
respect to variations in the spatial color structure of the proton 
and perform a comparison of the effects in proton–nucleus and 
nucleus–nucleus collisions in Section 4. The final section summa-
rizes our conclusions and their implications for collective dynamics 
in proton–nucleus and nucleus–nucleus collisions.

2. Theoretical framework

Within the CGC framework [41–43], the dynamics of a high-
energy collision is – to leading order in αs – described by solutions 
of the classical Yang–Mills equations,

[Dμ, F μν ] = Jν, (2)

in the presence of an eikonal color current Jν . Here, Dμ is the 
covariant derivative in the presence of the field Aμ and F μν is the 
gluon field strength tensor. For a right moving (projectile) proton 
and left moving (target) nucleus one has

Jν = δν+ρp(x−,x⊥) + δν−ρPb(x+,x⊥), (3)

and each event is characterized by a different color neutral distri-
bution of random color charges ρp/Pb(x∓, x) inside the proton and 
nucleus.

Before the collision, the small-x gluon fields inside the target 
and projectile nucleus are determined by the solution of (2) and 
can be compactly expressed1 as [44–46]

Ai
p/Pb(x⊥) = i

g
V p/Pb(x⊥)∂ i V †

p/Pb(x⊥), (4)

in terms of the fundamental Wilson lines V p/Pb(x⊥) of the projec-
tile and target nucleus. By dividing the longitudinal direction into 
NY discrete rapidity intervals, these can be computed as [47]

V p/Pb(x⊥) =
NY∏
i=1

exp

(
−ig

ρp/Pb(Yi,x)

∇2⊥ + m2

)
, (5)

for a given configuration of color charges.2 Here, ∇2⊥ = ∂i∂
i . We 

employ a McLerran–Venugopalan type model [44] for the color 
charge densities, which follow local Gaussian distributions with 
variance

g2〈ρa(Yi,x)ρb(Y j,y)〉 = Sp/Pb(b) δab δYi Y j

NY
δ(2)(x − y), (6)

where b = (x + y)/2. The spatial distributions of color charge in-
side the proton and the nucleus are described by Sp/Pb(b) and the 
respective models are outlined below.

2.1. The proton

We will consider two different models for the distribution of 
color charge Sp(b) inside the proton to study the effect of the spa-
tial sub-structure of the proton on the observed correlations.

The spherical proton model is a variant of the IP-Sat model [48]
where the color charge distribution inside the proton is spherically 
symmetric in impact parameter space. In this case, the color charge 
density is proportional to the saturation scale, i.e.,

Sp(b) = c × Q 2
s (

√
s, t(b)). (7)

Q s itself depends on the transverse position b via the nucleon 
thickness function

t(b) = 1

2π BG
exp

(
− b2

2BG

)
. (8)

1 These expression are valid in light-cone gauge.
2 We have introduced an effective mass m to regulate the non-perturbative large 

distance behavior. If not stated otherwise we will use a fixed value of m = 0.4 GeV
in the following.



78 B. Schenke et al. / Physics Letters B 747 (2015) 76–82
The Gaussian width is related to the (two-dimensional) proton ra-
dius relevant to strong interactions as Rp = √

2 · BG [49]. Its value 
BG = 4 ± 0.4 GeV−2 as well as the dependence of Q 2

s on the nu-
cleon thickness t(b) and the center of mass energy 

√
s have been 

extracted from fits to deep-inelastic scattering (DIS) data [50].3

We set BG = 4 GeV−2 and the only free parameter in this model 
is the proportionality factor c in Eq. (7), defined as g4μ2/Q 2

s , 
where g2μ2 is the color charge square per unit transverse area. 
We choose to use a fixed value of c = 2 and shall comment later 
on the sensitivity of our results under variation of c.

The constituent quark proton model was previously outlined in 
[40], where the distribution of the color charge density is concen-
trated around the (transverse) positions xCQ of three constituent 
quarks

S p(b) = c × 3 Q 2

2π

NCQ∑
n=1

exp

⎛
⎜⎝−3

2

(
b − x(n)

CQ

)2

R2
CQ

⎞
⎟⎠ , (9)

which fluctuate from event to event according to a Gaussian dis-
tribution with expectation value 〈x2

CQ〉 = BG . The gluon distribution 
around each constituent quark is spherically symmetric with a ra-
dius denoted by RCQ. We will use RCQ = √

BG/2 and adjust the 
overall strength Q = 3 GeV, which yields similar results for the 
dipole scattering amplitude (relevant to DIS) as the spherical pro-
ton model.

2.2. The nucleus

Since we expect a smaller sensitivity of our results to the im-
pact parameter dependent structure of the nucleus, we limit our-
selves to a single model for the color charge distribution inside 
the nucleus. We first sample the positions xi of A = 208 (for Pb) 
individual nucleons according to a Wood–Saxon distribution with 
radius and surface parameters appropriate for a Pb nucleus. We 
follow the IP-Sat model and set

SPb(b) = c × Q 2
s (

√
s, T (b)), (10)

where the thickness function T (b) of the nucleus

T (b) =
A∑

i=1

t(b − xi) (11)

is the sum of thickness functions t(b − xi) of individual nucleons. 
We note that for the case of a single nucleon (A = 1), this reduces 
to the spherical proton model and we employ precisely the same 
parametrization in both cases.

2.3. Early-time dynamics and gluon distribution

Solving the classical Yang–Mills equations outside the forward 
light-cone leads to the initial state immediately after the colli-
sion (τ = 0+). The initial gauge fields in Fock–Schwinger gauge 
Aτ = (x+ A− + x− A+)/τ = 0 are given in terms of the projectile 
and target fields as [51,52]

Ai
∣∣∣
τ=0+ = Ai

p + Ai
Pb, ∂τ Ai

∣∣∣
τ=0+ = 0, (12)

Aη
∣∣
τ=0+ = ig

2

[
Ai

p, Ai
Pb

]
, ∂τ Aη

∣∣
τ=0+ = 0, (13)

3 In practice one extracts the saturation scale Q s(
√

s, t(b)) from the IP-Sat 
parametrization of the dipole scattering amplitude. More details on this procedure 
and the general features of this model can be found in [37].
and correspond to longitudinal chromo-electric and chromo mag-
netic fields [53]

Eη
∣∣
τ=0+ = −2Aη, E⊥|τ=0+ = 0, B⊥|τ=0+ = 0,

Bη
∣∣
τ=0+ = ∂x A y − ∂y Ax − ig[Ax, A y]. (14)

Starting from these field configurations, the early time dynamics in 
each event can be determined by numerically solving the classical 
Yang Mills equations in the forward light cone. Our numerical im-
plementation is based on standard lattice gauge theory techniques 
and we refer the reader to [33,34,39] for more details of this pro-
cedure.

We can then extract the gluon distribution at different times of 
the evolution by measuring equal-time correlation functions of the 
gauge fields. We impose the Coulomb gauge condition ∂i Ai

∣∣
τ

at 
the time of each measurement and follow previous works [54,55]
to compute the single particle spectrum by a projection on to 
transversely polarized gluon modes. The single particle distribu-
tion is then given by

dN

d2k⊥dy

∣∣∣∣
τ

= 1

(2π)2

∑
λ,a

∣∣∣τ gμν
(
ξλ,k⊥∗
μ (τ )

←→
∂τ Aa

ν(τ ,k⊥)
)∣∣∣2

(15)

where gμν = (1, −1, −1, −τ−2) denotes the Bjorken metric, λ =
1, 2 labels the two transverse polarizations and a = 1, · · · , N2

c − 1
is the color index. In Coulomb gauge the mode functions take the 
form

ξ
(1),k⊥
μ (τ ) =

√
π

2|k⊥|

(−ky

kx

0

)
H (2)

0 (|k⊥|τ ), (16)

ξ
(2),k⊥
μ (τ ) =

√
π

2|k⊥|

( 0
0

kT τ

)
H (2)

1 (|k⊥|τ ), (17)

where k⊥ = (kx, ky) and H (2)
α denote the Hankel functions of the 

second type and order α (see [54] for details).
We note that the above definition of the gluon distribution is 

such that dN/d2k⊥ is exactly conserved for a non-interacting sys-
tem. This property is important, as it will enable us to clearly 
distinguish between the properties of the initial state at τ = 0+
and the effect of final state interactions at later times.

3. Azimuthal anisotropies

We will now discuss the measurement of azimuthal anisotro-
pies, in particular the extraction of v2(pT ) and v3(pT ) for gluons, 
using two different methods. One is based on a measurement of 
the single particle anisotropy in each event while the other follows 
more closely experimental measurements based on two-particle 
correlations.

3.1. Single particle anisotropy

Within the single particle method we determine the Fourier 
coefficients v2(pT ) and v3(pT ) from the azimuthal anisotropy of 
the single particle spectra. Since the lattice simulation yields the 
single particle spectrum at discrete values of the transverse mo-
menta kx and ky , we first perform a bi-linear interpolation and 
divide the data into transverse momentum |k⊥| and azimuthal an-
gle φ bins. While in general both the Fourier coefficients vn(pT )

and event plane angles ψn(pT ) in Eq. (1) depend on the trans-
verse momentum pT and fluctuate event by event, we will for 
the moment disregard the pT dependence of the event plane (EP) 
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Fig. 1. (Color online.) Gluon v2(pT ) (left) and v3(pT ) (right) at different times τ = 0.0–0.4 fm/c in p + Pb collisions at impact parameter b = 0 fm in the constituent 
quark proton model. Open symbols correspond to the single particle anisotropy measurement while filled symbols show the results obtained from two particle correlations. 
Error bands correspond to statistical errors only. Experimental results by the ATLAS [6] and CMS Collaboration [3] for inclusive hadrons are also shown as a guideline for 
comparison.
and instead compute the second and third order event plane an-
gles ψ2(pref

T ) and ψ3(pref
T ) for gluons in each event as an aver-

age over a reference momentum region, which is chosen to be 
1 GeV < pref

T < 6 GeV as discussed below. We then extract the 
Fourier coefficients v2(EP)(pT ) and v3(EP)(pT ) with respect to the 
reference event plane according to

vn(EP)(pT ) =
∫

dφ dN
d2 pT

cos(n(φ − ψn(pref
T ))∫

dφ dN
d2 pT

. (18)

Since vn(EP)(pT ) fluctuates from event to event our final result 
is obtained by performing an average of these quantities over all 
events.

3.2. Two particle correlations

The measurement of two-particle correlations in experiments is 
based on the per trigger yield defined to be [3,6]

1

Ntrig

dNpair

d�ηd�φ
= B(0,0)

S(�η,�φ)

B(�η,�φ)
. (19)

Here Ntrig is the number of trigger particles in the momentum bin 
under consideration,

S(�η,�φ) = 1

Ntrig

dNsame

d�ηd�φ
(20)

is the signal and

B(�η,�φ) = 1

Ntrig

dNmix

d�ηd�φ
(21)

is the background contribution estimated from mixed events.
Since there are no acceptance and efficiency corrections in the 

theory calculation, we can directly compute the quantity [56,57]

2π

NtrigNassoc

dNpair

d�φ
(k1,k2)

=
〈∫ 2π

0 dφ dN
d2kT

(k1, φ) dN
d2kT

(k2, φ + �φ)
〉

1
2π

∫ 2π
0 d�φ

〈∫ 2π
0 dφ dN

d2kT
(k1, φ) dN

d2kT
(k2, φ + �φ)

〉 , (22)

where Nassoc is the number of associated particles in the momen-
tum bin considered and the event average over the product of 
single particle distributions 〈 dN
d2k1

T

dN
d2k2

T
〉 contains the event-by-event 

single particle anisotropy as well as non-factorizable (connected) 
two-particle correlations. Note that while in experiments a rapidity 
gap is introduced to suppress jet-like correlations around �η = 0, 
jet-like correlations are not present in our calculation at this or-
der [23] and �η gaps are therefore unnecessary.

The Fourier expansion of Eq. (22),

2π

NtrigNassoc

dNpair

d�φ
(k1,k2) = 1 +

∑
n

2Vn�(k1,k2) cos(n�φ) (23)

yields the coefficients Vn� , from which we define the two particle 
gluon v2(pT ) and v3(pT ) to be

vn(2PC)(pT ) = Vn�(pT , pref
T )√

Vn�(pref
T , pref

T )

, (24)

as is done by the experimental collaborations to measure vn(pT )

for inclusive hadrons. We choose the reference momentum range 
for gluons to be 1 GeV < pref

T < 6 GeV. The upper limit in pT of 
this range extends to somewhat larger pT than that of experi-
mental measurements for inclusive hadrons [3,6]. This is to ac-
count very roughly for the fragmentation of higher momentum 
gluons into hadrons in the pT bin of interest. We will compute 
Vn�(pT , pref

T ) in pT bins of width 0.25 GeV defined symmetrically 
around the quoted pT values. We will comment in Section 5 on 
the sensitivity of our results to the reference momentum range.

4. Numerical results for p + Pb collisions

We will now present numerical results for the azimuthal corre-
lations of gluons in p + Pb collisions. We first study the behavior 
for collisions of a constituent quark proton with a lead nucleus and 
focus on collisions with zero impact parameter b = 0 fm without 
any further multiplicity selections applied. Our results for v2(pT )

and v3(pT ) of gluons – obtained from an average over Nevt = 128
events – are shown in the left and right panels of Fig. 1. We 
also show experimental results for inclusive hadron v2(pT ) and 
v3(pT ) from the ATLAS [6] and CMS [3] Collaborations to provide 
an estimate of the relative magnitude and momentum dependence 
of the observed correlations. We emphasize that since the gluon 
to hadron conversion is by no means straightforward, we do not 
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expect a quantitative description of the data within the present 
framework.

We find that already at the initial time τ = 0+ the v2(pT ) of 
gluons is quite large and extends up to relatively high transverse 
momenta, which can be seen in both the two particle correlation 
and single particle anisotropy measurements. The fact that both 
methods give rise to very similar results points to the fact that 
the origin of the observed v2(pT ) is due to a breaking of rota-
tional symmetry of the single particle spectrum. In other words, 
we conclude that gluons are produced with a preferred azimuthal 
direction in each event.

While the emergence of a preferred azimuthal direction is 
well understood in the context of a collective expansion of the 
system, we emphasize that the non-zero gluon v2(pT ) at the 
initial time cannot be attributed to collective flow effects. As 
a consequence of the initial color fields in Eq. (14) the en-
ergy momentum tensor at τ = 0+ is strictly diagonal Tμν(x⊥) =
diag(ε(x⊥), ε(x⊥), ε(x⊥), −ε(x⊥)) and the Poynting vector �E × �B
characterizing the energy momentum flow vanishes identically. In-
stead, the observed v2(pT ) should be attributed to anisotropic 
gluon production from the fluctuating color fields inside the pro-
jectile and target.

Our result for v2 and v3 from two-particle correlations can be 
separated into three contributions. First, the Glasma graph contri-
bution, which corresponds to the connected graphs analyzed in 
[21–25,56–58]. Second, a contribution from disconnected graphs, 
which takes into account event-by-event breaking of rotational 
symmetry similar to the effect discussed in [27–29,32,59], and fi-
nally, a contribution from final state interactions represented by 
the Yang–Mills dynamics of the produced gluon fields.

The contribution from disconnected graphs can be understood 
in the following simplified picture: One can imagine the gluon pro-
duction process as the partons inside the projectile scattering off 
a high-energy nucleus. Each parton experiences the color electric 
field inside the nucleus whereby it receives a momentum kick in 
a certain direction. In each event the color electric field of the 
nucleus is characterized by several domains with different ori-
entations in azimuthal direction and color space. While partons 
scattering off different domains receive a different kick, partons 
(with the same color charge) scattering off the same domain will 
receive a kick in the same azimuthal direction. Hence, depending 
on the number of uncorrelated domains probed by the projectile, 
the initial state particle production can be significantly anisotropic.

The Glasma graph contribution directly probes the color struc-
ture within each domain and corresponds to genuine non-factor-
izable two-particle correlations. Depending on the degree of po-
larization of a single domain, the two contributions can be of 
comparable size [59].

With regard to the effect of final state interactions on the ob-
served gluon v2(pT ), we find that the classical Yang–Mills evo-
lution leads to slight decrease of the observed v2(pT ) with time. 
This decrease may be attributed to gluon rescattering after the col-
lision. The overall effect of the classical Yang–Mills evolution on v2
is very small and the initial state value provides a very good es-
timate for the correlation at later times. We note again that this 
is conceptually quite different from a hydrodynamic mechanism, 
where v2(pT ) is gradually build up as a function of time.

We now turn to a discussion of the gluon v3(pT ) shown in 
the right panel of Fig. 1 for which the interpretation is drastically 
different. We find that the initial state v3(pT ) vanishes identi-
cally at τ = 0+ . This is a consequence of the vanishing transverse 
color electric (E⊥) and color magnetic fields (B⊥) at the initial 
time. With only the longitudinal color electric (Eη) and color mag-
netic (Bη) fields being non-zero at τ = 0+ , the gluon spectrum in 
Eq. (15) takes the form
dN

d2k⊥dy

∣∣∣∣
τ=0+

= 1

(2π)2

N2
c −1∑

a=1

[
Bη

a (k⊥)Bη
a (−k⊥)

π |k⊥|2

+ Eη
a (k⊥)Eη

a (−k⊥)

π |k⊥|2
]
. (25)

The above spectrum is manifestly symmetric under kT ↔ −kT – 
hence odd Fourier harmonics vanish at the initial time. As a re-
sult, we can attribute the observation of a non-zero v3(pT ) in our 
framework at later times exclusively to coherent final state effects 
included via the classical Yang–Mills evolution.

Quantitatively, we find that already at very early times τ ∼
0.2 fm/c the classical Yang–Mills evolution leads to the build up 
of a sizable gluon v3(pT ) extending to relatively large transverse 
momenta. Beyond τ = 0.2 fm/c, the v3 of hard gluons remains 
approximately constant while the low momentum v3 continues 
to show an increase with time. When we follow the classical 
Yang–Mills dynamics to even later times the system becomes more 
and more dilute and approaches a free streaming behavior around 
τ = 0.4 fm/c as previously reported in [39].

We note the agreement between the two particle correlation 
and single particle anisotropy measurement of v3(pT ) again points 
to a correlation between many particles in each event. While it 
may appear suggestive that the build up of energy–momentum 
flow may cause a non-zero v3(pT ) at later times, to our surprise, 
we did not observe a significant correlation between the global initial 
state eccentricity ε3 and the pT integrated momentum space anisotropy 
v3 on an event-by-event basis. However, it is possible that there is 
a correlation between the final v3 and triangular anisotropies on 
shorter length scales than the ones probed by the global ε3 – 
such geometrical features are however difficult to extract. Gener-
ally, a simple description of the non-linear dynamics underlying 
the emergence of a non-zero v3(pT ) remains elusive – a deeper 
understanding of this effect is clearly desirable.

5. Sensitivity to proton structure and collision geometry

We will now study the effect of the collision geometry and sys-
tem size on the azimuthal correlations. Our results are compactly 
summarized in Fig. 2 which shows a comparison of the gluon 
v2(pT ) and v3(pT ) at time τ = 0.4 fm/c after the collision.

We first analyze the effect of a more detailed substructure of 
the proton projectile on the correlations in p + Pb collisions by 
comparing a spherical proton with one composed of three valence 
quarks. Generally, a finer substructure leads to larger v2 and v3 at 
transverse momenta pT � 2 GeV – corresponding to wave lengths 
on size scales much smaller than the nucleon size. However the 
overall effect of the proton’s geometry for the observed azimuthal 
anisotropy of gluons is far less significant than one would expect in 
a mechanism that generates azimuthal anisotropies via final state 
collective effects [20]. Since the origin of the observed correlations 
is due to the microscopic structure of color fields, one instead 
expects the correlations to be approximately independent of the 
global event geometry. Our result in Fig. 2 confirms this picture.

We have also considered variations of the non-perturbative 
mass scale m and the coefficient c in Eq. (7) by a factor of two. 
While in both cases we did not observe a significant effect on the 
overall magnitude of the observed correlations, we found that for 
smaller (larger) values of m the correlations extend over a slightly 
larger (smaller) transverse momentum range. We note further that 
changing the reference momentum range pref

T can also have a sig-
nificant effect on the transverse momentum dependence of the 
signal which is somewhat more pronounced for v2(pT ) as com-
pared to v3(pT ). While the gluon spectrum is generally anisotropic 
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Fig. 2. (Color online.) Dependence of gluon v2(pT ) (left) and v3(pT ) (right) at time τ = 0.4 fm/c on the collision geometry and system size. Shown are results for p + Pb 
collisions with two different models for the proton structure and Pb + Pb collisions at two different impact parameters.
up to high momenta, the event plane angles at different trans-
verse momenta ψn(pT ) are not strongly correlated across the en-
tire range of momenta. Considering a larger (smaller) reference 
momentum range can therefore lead to a slower (faster) decrease 
at high momenta. Similar observations have recently been reported 
in a related study [32] in which the proton was treated as a dilute 
object.

We conclude our study with a comparison between proton–
nucleus (p + Pb) and nucleus–nucleus (Pb + Pb) collisions. In the 
latter case, we have analyzed collisions at two different impact 
parameters corresponding to central (b = 0 fm) and peripheral 
(b = 11 fm) collision.4

We find that in both central and peripheral nucleus–nucleus 
collisions the correlations between gluons are much smaller com-
pared to p + Pb collisions. Qualitatively this difference can be 
understood when considering the different number of localized do-
mains of fluctuating color fields responsible for the production of 
gluons in the different collision systems. While in proton–lead col-
lisions, particles are produced from a small number of different do-
mains inside the nucleus, the larger overlap area in lead–lead colli-
sions gives rise to particle production from a much larger number 
of different domains. Since different domains are uncorrelated with 
each other the azimuthal anisotropy of the gluon spectrum de-
creases with the number of domains (see also [28]). Consequently, 
the initial state momentum space anisotropy is much smaller in 
Pb + Pb collisions as compared to p + Pb collisions.

6. Conclusions

We have presented results for the azimuthal anisotropy of the 
single and double inclusive gluon distributions in p + Pb and 
Pb + Pb collisions obtained from classical Yang–Mills simulations. 
Both the proton and the nucleus have been treated as dense QCD 
objects with high gluon occupancy. This description is appropriate 
for the early time space–time evolution of high multiplicity p + Pb 
as well as heavy ion collisions at high energies.

Gluons produced in p + Pb collisions show a significant v2(pT )

already at the initial time immediately after the collision. Fur-
ther evolution governed by the Yang–Mills equations modifies this 
v2(pT ) only slightly. In contrast, odd harmonics of gluons are 
initially exactly zero, but significant values of v3(pT ) are built 

4 When classified in terms of centrality percentile these correspond approxi-
mately to the 0–5% and respectively 50–60% centrality classes.
up within times τ � 0.4 fm of the classical Yang–Mills evolution. 
These momentum space anisotropies at early times are uncorre-
lated with the global spatial anisotropy, in contrast to anisotropies 
generated by collective flow.

Our results indicate that in p + Pb collisions there are signif-
icant contributions to v2 and v3 from the initial production (in 
the case of v2 alone) and the early time non-equilibrium dynam-
ics within the first half fermi of evolution. These effects cannot be 
neglected and any calculation based merely on final state effects is 
thus incomplete.

A similar analysis of Pb + Pb collisions reveals a different pic-
ture. Initial and early-time contributions to v2 and v3 are small, 
indicating that for larger systems final state collective effects 
are indeed the dominant mechanism for generating the observed 
anisotropies – at least at momenta pT ≤ 2 GeV, where the pres-
ence of such effects is very plausible. The difference between 
p + Pb and Pb + Pb collisions can be understood as a consequence, 
in this framework, of anisotropies being generated due to localized 
domains of color fields. A large number of mutually uncorrelated 
domains probed in Pb + Pb collisions leads to a nearly isotropic 
gluon spectrum. Hence initial state contributions to v2 and v3 are 
small for large collision systems.

While our study provides a first attempt to quantify the im-
portance of initial state effects in high-multiplicity proton–nucleus 
collisions, we expect systematic comparisons of p + A collisions 
with deuteron–nucleus (d+A) [60–63] and 3He+Au [64] collisions 
at RHIC to provide further insight into the relative significance of 
initial state and final state effects in small systems. Forthcoming 
p + A collisions at RHIC will also help to clarify the role of nucleon 
fluctuations relative to sub-nucleon scale effects in small systems 
besides providing a comparison of results for identical systems at 
vastly different center of mass energies.
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