
DISCRETE
MATHEMATICS

ELSEVIER Discrete Mathematics 138 (1995) 229-246

Nearly perfect sets in graphs

J e a n E. D u n b a r ~'*, F r e d e r i c k C. H a r r i s , J r b, S a n d r a M . H e d e t n i e m i b,

S t e p h e n T. H e d e t n i e m i b, A l i ce A. M c R a e b, R e n u C. L a s k a r c

a Department o f Mathematics, Converse College, Spartanburg. SC 29302, USA
b Department o f Computer Science, Clemson University, Clemson, SC 29634, USA

Department (?f Mathematics, Ch, mson University, Clemson, SC 29634, USA

Received 7 July 1993; revised 26 April 1994

Abstract

In a graph G = (V, E), a set of vertices S is nearly perfect if every vertex in V - S is adjacent to
at most one vertex in S. Nearly perfect sets are closely related to 2-packings of graphs, strongly
stable sets, dominating sets and efficient dominating sets. We say a nearly perfect set S is
1-minimal if for every vertex u in S, the set S - { u } is not nearly perfect. Similarly, a nearly
perfect set S is 1-maximal if for every vertex u in V - S, S w {u} is not a nearly perfect set. Lastly,
we define np(G) to be the minimum cardinality of a 1-maximal nearly perfect set, and Np(G) to
be the maximum cardinality of a 1-minimal nearly perfect set. In this paper we calculate these
parameters for some classes of graphs. We show that the decision problem for npIG) is
NP-complete; we give a linear algorithm for determining rip(T) for any tree T; and we show that
Np(G) can be calculated for any graph G in polynomial time.

1. Introduction

Let G=(V,E) be a graph. We say tha t a set S of vertices in V is a P-set if S has

p rope r ty P, for some p rope r ty under cons idera t ion . F requen t ly we say that a set S has

p r o p e r t y P if the subgraph of G induced by S, deno ted (S) , has some p rope r ty P, e.g.

(S) is acyclic, or p l ana r or has degree at most k for some non-negat ive integer k.

O the r proper t ies , however, are not defined in terms of induced subgraph structures.

F o r example , S is a dominatin9 set if every vertex in V - S is ad jacent to at least one

vertex in S or S in an irredundant set if for every vertex u in S, N [u] - N I S - {u I] is not

empty. M o s t op t imiza t ion p rob lems in g raph theory are concerned with f inding either

the m i n i m u m or m a x i m u m card ina l i ty of a P-set in a g raph G. However , recent

research has s tudied the spec t rum of cardinal i t ies of a wide variety of min imal and

* Corresponding author.

0012-365X/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved
SSDI 0 0 1 2 - 3 6 5 X (9 4) 0 0 2 0 5 - 3

230 J.E. Dunbar et al . / Discrete Mathematics 138 (1995) 229-246

maximal P-sets in a graph. But care should be taken in defining a minimal or
a maximal P-set. There are usually two definitions given for each term.

(1) A P-set S is maximal if no proper superset S' of S is a P-set.

(1') A P-set S is maximal if for every vertex u in V-S, S~{u} is not a P-set.
(2) A P-set S is minimal if no proper subset S' of S is a P-set.

(2') A P-set S is minimal if for every vertex u in S, the set S - { u } is not a P-set.

A property P of a graph is hereditary if whenever a set S has property P, every
proper subset S' of S also has property P. For example, the properties of being an
independent set of vertices (no two vertices in the set are adjacent) or an irredundant
set of vertices are hereditary. It is easy to see that definitions (1) and (1') of maximal
P-sets are equivalent if P is a hereditary property.

A property P is called super-hereditary (or expanding) if whenever a set S has property

P, every superset S' of S also has property P. For example the properties of being
a dominating set or a vertex cover are super-hereditary. It is also easy to see that the
definitions (2) and (2') of minimal P-sets are equivalent for super-hereditary properties P.

Bollobfis et al. [1] defined new notions of minimality and maximality as follows.
A set of vertices S in V i sa k-minimal P-set if the removal of any set X of k ~<] S[vertices
from S followed by the addition of any l < k vertices results in a set that does not have
property P.

Similarly a set of vertices S in V is a k-maximal P-set if the addition of any set X of
k vertices, followed by the removal of any l < k vertices does not result in a P-set. It is
easy to see that 1-minimal P-sets are minimal P-sets according to definition (1') and

l-maximal P-sets are maximal P-sets according to definition (2'). It is also easy to see
that there are 1-minimal P-sets which are not 2-minimal P-sets, e.g. in Fig. 1 each set
of solid vertices is 1-minimal but the set in Fig. 1 (a) is not a 2-minimal set, since if we
remove the two endvertices and then add the center vertex to S, we obtain another
dominating set.

The study of k-minimal and k-maximal sets is still very new; not much is known
about these sets. The reader is referred to [1, 4, 5]. The following property provides an
example for which the definition of minimal or maximal must be given carefully.

2. Definition of nearly perfect sets

Let G=(V,E) be a graph and let u be a vertex in V. The open neighborhood ofu is
defined as the set of vertices v adjacent to u; i.e., N(u)={v[uveE}. The closed

(~) (b)

Fig. 1.

J.E. Dunbar et al. / Discrete Mathematics 138 f1995) 229 246

Table 1

231

V u e V - S V u e V

[N(u)c~S[~<1 Near ly perfect Tota l nearly perfect
Max ima l sets np n,p~ Ntp

[N [u] c~ S] ~< 1 Near ly perfect Independent nearly perfect
Max im a l sets np (s t rong stable set or 2-packing)

p2 <~ P2

I N (u) c~ S [= 1 Perfect do m ina t i on Tota l perfect domina t ion
7p 7,p <~ ~p

I N [u] ~ S[= 1 Perfect d om in a t i o n Efficient domina t ion
yp ?,,~F,

[N(u) ~ S [>/1 D o m i n a t i o n Tota l domina t i on
Min ima l sets 7 ~< F y, ~< F,

IN[u] ~SI /> 1 D o m i n a t i o n Domina t i on
Min ima l sets ~ ~< F ~, ~< F

neighborhood of u is N[u]=N(u)w[u}. In a graph G, a set of vertices S is nearly
perfect if for every vertex ue V--S, Ig(u)c~SI <<. 1; i.e., every vertex ue V--S is adjacent
to at most one vertex in S.

Nearly perfect sets are closely related to 2-packings of graphs, strongly stable sets,
dominating sets and efficient dominating sets, as indicated in Table 1.

Table 1 first appeared in a paper by Cockayne et al. [2], which focused
on perfect dominating sets, and in particular on families of graphs whose only perfect
dominating set is the entire vertex set V. Nearly perfect sets, although first defined in
[2], were not studied there. In this paper we initiate the study of nearly perfect sets in
graphs.

Notice that for any graph G, the empty set q~ of vertices, any set S = {u} con-
sisting of a single vertex, and the set V are all nearly perfect sets. Thus,
using definition (1), the only minimal nearly perfect set in any graph is the empty
set. And using definition (2), the only maximal nearly perfect set in any graph
is the set V.

However, using definitions (1') and (2'), a graph can have nontrivial minimal and
maximal nearly perfect sets. For example, in the graph C4 in Fig. 2 the set { 1, 2} is
a 1-maximal nearly perfect set; and in Fig. 3 the set {1,2,5} is a 1-minimal nearly
perfect set in the graph G.

Define np(G) to equal the minimum cardinality of a l-maximal nearly perfect set,
and Np(G) to equal the maximum cardinality of a 1-minimal nearly perfect set in G.
Notice that rip(G) is well-defined since V is always a 1-maximal nearly perfect set; i.e.,
np(G)<<.] VI. In particular, np(K.)= 1, for n>~3 and np(l£.)=n.

Also Np(G) is well-defined since the empty set is always a 1-minimal nearly perfect
set; i.e., Np(G)>~O. In particular, Np(K.)=n for n>~3, and Np(/(.)=0.

232 J.E. Dunbar et al./Discrete Mathematics 138 (1995) 229-246

1 4 1 4

2 3 2 3

Fig. 2. Fig. 3

Fig. 4.

3. Characteristics of the parameter np(G)

The first result characterizes the property of 1-maximality in a nearly perfect set.

L e m m a 1. A nearly perfect set S in a graph G = (V , E) is 1-maximal i f and only i f every

vertex u in V - S is adjacent to a vertex v v ~ u in V - S which is adjacent to exact ly one

vertex in S.

Proof. The characterizing property given above is illustrated in Fig. 4. Suppose a set
S is 1-maximal nearly perfect. Let u be an element of V - S and assume that every
vertex w adjacent to u in V - S is not adjacent to any vertex in S. Then every element
outside of the set S ~ {u} is adjacent to at most one element in the set S u {u). Thus, the
set S u{u) is nearly perfect. This contradicts the assumption that S is 1-maximal
nearly perfect.

On the other hand, if S is nearly perfect and satisfies the property above, then for
any vertex u in V - S , there is a vertex u' in (V - S) w N (u) , with u' adjacent to some
vertex v in S. Thus, S w {u} is not a nearly perfect set, since u' is adjacent to the two
vertices u and v in S w {u). Since u was chosen arbitrarily, we know that the union of
S with any vertex in V - S will not be a nearly perfect set. Thus, S is a 1-maximal nearly
perfect set. []

Using Lemma 1, the values of np(G) for some classes of graphs are easily deter-
mined. For example, the complete bipartite graph K,,., (for m, n >~ 2) has a smallest
1-maximal nearly perfect set of size two. One such set can be found by selecting one
vertex from each of the partite sets of the vertex set. Since such a set is nearly perfect, it
follows from Lemma 1 that the set is also 1-maximal. The following lemma will be
used to calculate the parameter np(G) for paths and cycles.

J.E. Dunbar et al./ Discrete Mathematics 138 (1995) 229 246 233

L e m m a 2. Suppose G = (V , E) is a path or a cycle with order at leastJbur and that S is

a subset q f t he vertices o f G. Then S is a 1-maximal nearly perfect set !]'and only (1

(i) the subgraph spanned by V - S is a disjoint union of K 2 graphs, and

(ii) every vertex in V - S is adjacent to exactly one vertex o[S.

Proof, Suppose S is a 1-maximal nearly perfect set and let v be an element of V - S. By

Lemma 1, we know there is an element w Cv in V - S with w adjacent to v and

w adjacent to one vertex x of S. Since the maximum degree of G is two, N(w)= ~v, x I .

Further since w is in V-- S, Lemma 1 guarantees that a neighbor of w must lie outside

of S and be adjacent to an element of S. Since all neighbors of w are accounted for, this

element must be v. So v must be adjacent to a vertex, say y, in S. Note that y ¢ x. Since

the maximum degree in G is two, we must have that N(v)= [w,y I. Since v was an

arbi t rary element of V - S , we must have that (V - S) consists of disjoint copies of

K2 and that every element of V - S is adjacent to exactly one element in S.

Conversely, if S is a subset of V for which properties (i) and (ii) hold, then property

(ii) guarantees that S is a nearly perfect set. Moreover , any vertex of V - S will be

adjacent to another vertex of V - S which is adjacent to a vertex in S. Thus by

Lemma 1 we know that S is a 1-maximal nearly perfect set.

Proposition 3. f f P, is a path with n vertices, then

k + 2 ![n=3k ,

np(P,)= k + l / f n = 3 k + l ,

k + 2 i f n = 3 k + 2 .

Proof. Let P be the path PaP2...Pn. The proof is by induction on n. Clearly the result

holds for paths with n-= 1, 2 or 3 vertices. Suppose n > 3 and assume the result holds

for all paths with less than n vertices.

Case 1: n=3k . Let S = { p l , p 4 , p ~ P, 2,P, 1,P,]. Note first that n - 2 =
3 (k - 1)+ 1. Since V - S is a disjoint collection of K 2 graphs and every vertex of V - S
is adjacent to exactly one vertex of S, we know by Lemma 2 that S is a 1-maximal

nearly perfect set. Fur ther note that IS] = (k - 1) ÷ 3 = k + 2. Suppose there exists a 1 -

maximal nearly perfect set T with cardinality less than the cardinality of S. Let

.j = max { i lpie V - T } . Since every element of V - T must have degree two, we know

j < n. Further, j > 3, for if not then with j ~ 3 we would know that all vertices to the

right of pj were in T and at least one vertex to the left of Pi must be in T. Thus under
this assumption we would have] T] ~> 3k-- 2 ~> k + 2 = IS]. The last inequality holds

because k >~ 2. So we must have 3 < j < n. Since T is l -maximal nearly perfect, we must

have p~_ 1 in V-- T, and pj_ 2 in T. Let U = {pj_ 2, P j - 1, Pj }, and consider the graph G'
obtained by adding an edge pj_ 3Pj+x to the graph G - - U . See Fig. 5. Since p j_ z is in
T and pj+ 1 is in T, the new edge allows the same adjacencies for pj 3 in G' as in G.
Then T-- U is a nearly perfect set in G' (which is P,_ 3) and the cardinality of T-- U is

I T I - 1 < (k + 2) - 1 = (k - 1) + 2 , contradict ing the inductive hypothesis on P, 3-

234 J.E. Dunbar et al. / Discrete Mathematics 138 (1995) 229-246

j 5 3 j~2 Js1 ~ j i-~l
. i

Fig. 5.

Case 2: n = 3 k + 1. Let S={pa ,P4 ,P7 p,}. Note that I S l = k + 1, and, as before,

S is a 1-maximal nearly perfect set. In exactly the same way as in Case 1, we may

assume T has cardinality less than that of S and is a 1-maximal nearly perfect set in the

path. It is immediate to see that a subset of the path P._3 can be found which is

1-maximal nearly perfect and which contradicts the inductive hypothesis on P._ 3-

Case 3: n = 3 k + 2 . Let S = { p l , P g , P 7 P3k+l,P3k+2}" Note that I S l = k + 2 , and
that S is a 1-maximal nearly perfect subset of the path. The proof that S is of smallest

size uses the same argument as that for the first two cases. []

Proposition 4. I f C. is a cycle with n vertices, then

k if n = 3 k ,

np(C,)=, k + l if n = 3k + l,

k + 2 /f n = 3 k + 2 .

The proof is similar to that of Proposi t ion 3 and is omitted.

For some graphs the smallest 1-maximal nearly perfect set must include all vertices

in the graph. One such example already mentioned is / (. . Another easily verified

example is K L , (a star). In fact as the next two results show, stars are the only

connected graphs for which n g G) = n.

Theorem 5. For any tree T with n vertices, np(T) = n if and only if T has diameter at most

2; i.e., T is a star.

Proof. Let T be a tree with n vertices and diameter at most 2 and let S be an np-set,
that is, S is a min imum cardinality 1-maximal nearly perfect set. Assume IS] < n and let

x be a vertex in V - S. Then there is a vertex y E (V - S) c~ N(x) such that y is adjacent to
a vertex y ' in S. Since yeS, y must be adjacent to some vertex z in V - S and z must be

adjacent to a vertex z ' in S. N o w y ' is not adjacent to z and z ' is not adjacent to y, for if

so a cycle would be formed. Thus z', z, y, y ' constitutes a shortest path of length 3 from
z' to y' , contradict ing the diameter of T.

Conversely let T be a tree with diameter at least 3. For this class of trees we will

prove by induction on n that rip(T)< n. The only tree with diameter at least 3 and n = 4
is P4 and by Propos i t ion 3, np(P4)= 2.

So let T be a tree with n > 4 vertices and diameter d at least 3. Let u be an endvertex

such that T - {u} has diameter at least 3. Such a u must exist as follows. Let w - v be
any path of length d (w and v are necessarily endvertices). If d > 3 , then

d i a m e t e r (T - { u }) >~ 3. If d = 3 (and n > 4), then there is at least one endvertex u, not on
this w - v path. Therefore, T--{u} has diameter at least 3.

J.E. Dunbar et al. / Discrete Mathematics 138 (1995) 229-246 235

Let T - { u } have diameter at least 3 and T ' = T - - { u } . Then by the inductive

hypothesis n p (T ') < n - 1 . Let S be an np-set of T' .
Case 1: u is adjacent to a vertex in S. In this case, by Lemma 1, S w [u I is

a 1-maximal nearly perfect set of T and therefore np(T)<n.
Case 2: u is adjacent to a vertex in V (T ') - S . Let u be adjacent to v.

Case 2a: v is adjacent to a vertex in S. In this case S is an np-set in T. Hence

n p (T) < n - l <n.
Case 2b: v is not adjacent to any vertex in S. By Lemma 1, v must be adjacent to

a vertex w in V (T ') - - S , which in turn is adjacent to exactly one vertex in S. In this case

S w {u} is a nearly perfect set in Tand . by Lemma 1, is a 1-maximal nearly perfect set.

Hence np(T)<n. []

Theorem 6. For any connected graph G with n vertices, np(G)= n !f and only !/ G is

a star.

Proof. If G is a star with n vertices then % (G) = n by Theorem 5. It remains to show

that if np(G)=n then G is a star.
Case 1: G is acyclic. Since G is connected, G is a tree, and again by Theorem 5, G is

a star.
Case 2: G contains a triangle. Let the vertices of G =(V, E) be ordered such that vl,

v2, and v3 form a triangle. In this case we can construct a l -minimal nearly perfect set

S in G for which I SI < n, which implies that rip(G) < n. We do this as follows. Initially let

S = [vl }. Clearly, S is a nearly perfect set. Furthermore, neither S u {vz } nor S ~ ~L3~ ' ~ is

a nearly perfect set. We construct a l -maximal nearly perfect set which contains

neither vz nor v3 by executing the following:

P r o c e d u r e M a k e 1 - m a x i m a l

I n p u t : A n e a r l y p e r f e c t s e t S
O u t p u t : A 1 - m a x i m a l n e a r l y p e r f e c t s e t S

B e g i n
w h i l e 3 w ~ V - S - { v 2, v 3 } fo r w h i c h S u { w } is n e a r l y p e r f e c t do

s~s~{w}
od

E n d M a k e 1 - m a x i m a l .

Clearly when this procedure has finished, the resulting set S is nearly perfect,

contains neither v2 nor v3, and for every vertex u in V - S , S w { u } is not a nearly

perfect set. Thus, S is a 1-maximal nearly perfect set, and LSI <n ; i.e., np(G)<n.
Case 3: G contains no triangles but contains a cycle o f length Jour. Let

C = {vl, v2, v3,v4} be the vertices in cyclic order of such a cycle. As in the previous
case, we show that we can construct a 1-maximal nearly perfect set S with IS I< n,

which implies that np(G)<n. We do this as follows. Initially let S = { v l , v 4 } . Since
G has no triangles, S is a nearly perfect set. We can now execute P r o c e d u r e M a k e

236 J.E. Dunbar et al, / Discrete Mathematics 138 (1995) 22~246

l-maximal (as defined in Case 2) and construct a 1-maximal nearly perfect set S with

[SI < n (the final set will contain neither v2 nor v3).
Case 4: G contains no triangles and no cycles of length four. Let

C = {Vl, v2, v3, v4 vm} be the vertices, in cyclic order, of a cycle in G, where m>~5.
Once again we construct a 1-maximal nearly perfect set S with ISI <n. Initially let
S = {Vl, v4}. If S is a nearly perfect set, then we can again apply P r o c e d u r e Ma&e
1 - m a x i m a l and construct a 1-maximal nearly perfect set S with I SI < n.

If S is not a nearly perfect set then there must be a vertex, say w, adjacent to both
v~ and v4. Note that there can only be one such vertex, w, else G contains a cycle of
length four. Let S = {Vl, v4, w}. It follows that S must be a nearly perfect set since no

vertex can be adjacent to two of these three vertices (note that i fa vertex is adjacent to
vl and w, or v4 and w then G must have a triangle). Thus we can apply Procedure
Make 1-maximal to S and construct a 1-maximal nearly perfect set S with

ISl<n. []

Proposition 7. For any graph G=(V,E) np(G)= 1 if and only if there is a vertex u in
V such that for every vertex v ~ u there is a path of length two from u to v.

Proof. Clearly if such a vertex u exists then the set S = {u} is a 1-maximal nearly
perfect set, and hence %(G)= 1.

Conversely, let np(G)= 1 and let S={u} be a 1-maximal nearly perfect set. By
definition, for every vertex v # u the set S '={u} w{v} is not a nearly perfect set. This
means that there is a third vertex w which is adjacent to both u and v; i.e., that there is
a path of length two from u to v. []

Corollary 8. For complete graphs Kn and wheels, W,~-K1 +C, , n>~3, % (K ,) = 1 and
n,(VV,) = 1.

4. Complexity issues for np

In this section several complexity results are given. A linear time algorithm is given
which computes the value %(T) for any tree T. In the general case, however, the
decision problem for np(G) is NP-complete, even when restricted to bipartite or
chordal graphs.

For the first result, a dynamic programming style algorithm is constructed using
a blend of methodologies developed by Wimer in 1988 [10], as illustrated in [11, 7],
and by Mitchell in 1977 [9], as illustrated in [3].

The class of (rooted) trees can be constructed recursively from copies of a single
vertex, K1, using only one rule of composition. This rule combines two rooted trees
(T~,rl) and (Ta,rz) by adding an edge between rl and r2 and calling rl the root of the
resulting tree. This is denoted by (T,r~)=(T~,rl)°(T2,r2). In particular, if S is
a 1-maximal nearly perfect set in T, then S splits into two subsets S~ and $2 according

J.E. Dunbar et al. / Discrete Mathematics 138 (1995) 229-246 237

Table 2

[I] [2] [3] [4] [5] [6] [7]

Property

(2) S is 1-maximal × × × ×
nearly perfect in T

(3) All vertices in x/ x/ ~/ v" × ,,/ ×
T--r have property P(S)

(4) IN[r]c~S]=O x ,[/ x~ × x//, x/ , /
(5) r has property P(S) x/ × V" × ×

to this composi t ion/decomposi t ion. In order to construct an algori thm for np(T) it is

necessary to characterize the classes, TS, of possible tree-subset pairs (T, S) which can

occur in the process of decomposing a tree T and a 1-maximal nearly perfect set S.
For a given set of vertices S, we say that a vertex v has Property P(S) if either yeS or

there is a vertex u in the intersection of N(v) and V - S such that]N(u)c~Sl= 1.
Next we define the collection of possible tree subset pairs TS as the set of all

ordered pairs (T, S) which satisfy these properties:

• T is a rooted tree with root r,

• S is a nearly perfect set in T, and

• if r is not in S, then all vertices of T, except possibly those in N l-r], have property

P(S), otherwise all vertices of T have proper ty P(S).
Consider next the seven subclasses of TS defined by Table 2. Each subclass is

defined by the presence (indicated with , /) or absence (indicated with x) of the five

properties listed in the table. The symbol r denotes the root of T. We will denote these

subclasses with [i], i = 1 ... 7. Thus for example, subclass [2] is the set of all tree-set
pairs (T, S) in which the root is not a member of S, S is a 1-maximal nearly perfect set

in T, all vertices in T - r have proper ty P(S), r is adjacent to some element of S, and

r has proper ty P(S). Finally, note that the subclasses [4 7] are exactly those in which
S is not a l -maximal nearly perfect set in T.

Lemma 9. TS is the disjoint union of the seven classes defined in Table 2.

Proof. Since each class is defined by a unique set of boolean values, they must be

disjoint. It remains to show that every member of TS is a member of some subclass,

There are five properties in Table 2. However property 2: 'S is 1-maximal nearly
perfect in T ' is merely the intersection of proper ty 3 and proper ty 5. Thus this

proper ty is determined by the other two. There are exactly 16 boolean assignments to
the remaining four properties. Note, however, if proper ty 1 holds (r is an element of S),
then properties 3 and 5 must hold while proper ty 4 cannot hold. Thus the seven

remaining combinat ions which have property 1 cannot occur. Fur ther we note that if

proper ty 1 does not hold and proper ty 4 does not hold, then proper ty 3 must hold. So

238 J.E. Dunbar et al./Discrete Mathematics 138 {1995) 229-246

Table 3

[1] [2] [3] [4] [5]

[1] [1] x [1] x [1]

[2] x [2] , [2] [2] x

[3] [2] [3] [3] [5] x

[4] x [2] [4] [2] x

[5] [2] [5] [5] [5] ×

[6] [4] [3] [6] [5] ×

[7] [43 [5] [7] [53 x

[6] [7]

x x

[2] x

[5] ×

[4] x

[5] x

[73 ×

[7] x

two more combina t ions are eliminated. Hence, there can be at most seven nonempty
subclasses of TS. []

These subclasses and the following compos i t ion opera t ion will be used in the design

of the algori thm. Let TI=(V~,E1) and Tz=(V2,E2) be trees with roots rl and r2,
respectively, and let V = V~ w//2 and E = E I u EE w(rl, r2). Then the composi t ion of
T1 and /'2, denoted T1 ° T2, is the tree T=(V, E) with root r l . Fo r two t ree-set pairs

(T t , S x) and(T2,S2) , we will denote the pair (T1 ° T2,$1 LYS2) with (T 1 , S 1) ° (T 2 , S 2) .

Given members (T1, $1)~ [n] and (T2,/12) e [m] we can determine the class, if any, to
which the pair (7"1, S 1) ° (T2, $2) must belong. Table 3 summarizes these composi t ions.
The symbol x indicates that the resulting t ree-set pair, though defined, is not
a m e m b e r of TS.

We can now derive a set o f recurrence equat ions in terms of these subclasses. By
Table 3 we know that

[1] = [1] ° E 1] u [1] o [3 2 u

[2] = [22 ° [2] u [2]0 [3] w
u [4] o [4] u [5]o E11

[32 = [33o [22 u [32 ° [32
[4] = [4]0 [3] w [4] o [6] w
[52 = [3] o [4] u [3] o [6] u

[6]o [4] u [7]o [2]

[6] = [6]° [3]

[1] o [5]
[2]o [4] w [2] o [6] w [3]o [l] u [4]o [2]

[6] ° E2]
[6] o [1] u [7] o [1]
[5] o [2] w [5]o [3] u [5]0 [4] u [5] o [6]
w [7] o [4]

[7] = [6] o [6] w [7]o [32 u [7] o [6]

Fo r 1 ~< i ~< 7, let as(T) be defined as follows: affT) = rain { IS I[S _~ V, (T, S) ~ [i] }.
Then, for example, al(T)=min{al(Tl)+al(T2),al(T1)+aa(T2),al(Tl)+as(T2)}
To prove the correctness of this dynamic p r o g r a m m i n g a lgor i thm for comput ing

nv(T) for any tree T, we would have to prove a theorem asserting that each of these

J.E. Dunbar et al./Discrete Mathematics 138 (1995) 229-246 239

recurrences is correct. These details are straightforward and are omitted here. The
final step in specifying an algorithm for an %-set is to define the 'initial vector'. In this
case, for trees, the only basis graph is the tree with a single vertex, K1. We need to
know the minimum cardinality of a set S in a class of type [1]... [7] in the graph K1, if
any exists. It is easy to see that the initial vector is (1, ,~, ~ , ~ , ~ ,0 , ,zc) which means
that for the graph KI:

one tree-set pair of class [1] exists and its cardinality is 1;
one tree-set pair of class [6] exists and its cardinality is 0:
no tree-set pairs of class [2-5] or class [7] exist.
We now have all of the ingredients for an np-set algorithm, where the input is the

parent array Parent [1.. . N] for the input tree T, and where the output is %(T), which
is computed by repeatedly applying the recurrence system to each vertex in the parent
array, with the initial vector (1, ~ , ~ , ~c, ~ , 0, m) bing associated with every vertex in
the parent array as the computation begins.

The basic structure for the algorithm is a simple iteration:

A l g o r i t h m np t r e e
Input : t he p a r e n t a r r a y P a r e n t [1 . . .N] for a n a r b i t r a r y t r e e T
Output : np(T)

Begin
for i~-1 to N do

in i t ia l ize Vec to r [i, 1 ...7]~-(1, oo, oo, oo, oc,0, ~)

od
for j , - N to 2 do

k ~ Parent[j]
Combine (Vector , k, j)

od
np(T)~-min(Vector[l, 1], Vector[l,2], Vector[l, 3])

End n p - tree.

The Combine procedure is derived directly from the recurrence system:

P r o c e d u r e Combine (Vector , k, j)
Begin

Vector[k, 13 ~ -min (Vec to r [k, 1] + V e c t o r [j , 1], Vec tor [k , 1] + V e c t o r [j , 3],
Vec tor [k , 1] + V e c t o r [j , 5])

e tc . . .
End Combine

Theorem 10. np(T) can be computed for any tree T with N vertices in O(N) time.

Proof. The result is immediate by noting that for Algorithm np tree, the steps in each
for-loop can be performed in constant time. It follows that if the tree has N vertices
then the algorithm operates in O(N) time, []

240 J.E. Dunbar et al . / Discrete Mathematics 138 (1995) 229-246

To show that the decision problem for arbitrary graphs is NP-complete, we need to
use a known NP-completeness result, called Exact Three Cover (X3C) which is
defined as follows.

X3C
Instance: A finite set X with IX I= 3q and a collection C of 3-element subsets of X.
Question: Does C contain an exact cover for X, that is, a subcollection C' _~ C such

that every element of X occurs in exactly one member of C'?

FACT: X3C is NP-complete [6].

np SET
Instance: A graph G=(V,E) and a positive integer k.

Question: Is there a 1-maximal nearly perfect set S contained in V with ISI ~<k?

Theorem 11. n~ SET is NP-complete, even when restricted to bipartite graphs.

Proof. A nondeterministic algorithm could guess a subset S _~ V of k vertices and, in
deterministic polynomial time, verify whether or not S is 1-maximal nearly perfect.
Hence the problem is in NP. In order to show NP-completeness, we reduce an
equivalent version of X3C (in which every element of X lies in at least two subsets in
C) to the n~ SET problem as follows.

Let X={x l , x2 X3q } and C={CI,C2 C,,) be an instance of X3C,
where q and m are positive integers and each Ci is a 3-element subset of X.
We will show how to construct an undirected graph G=(V, E) and a positive integer
k such that C contains an exact cover for X if and only if np(G)<<.k. First construct
a collection of subgraphs, Gi, 1 <~i<~m, by adding a P2 to a non-center vertex of
a KI, 3 graph and label the vertices as shown in Fig. 6. Next construct a set of 3q paths
with 2 vertices and label the vertices of each path as xl, yl. Add a set of edges
E = {(xi, cj) lxi~Cj} (cf. Fig. 7). Finally, let k = 3m. Clearly the above reduction can be
performed in time that is polynomial in m and q, and it is easy to verify that this graph
G is bipartite. We now show that the set C contains an exact 3-cover for X if and only
if np(G) <~ k.

(Only if) Suppose that C contains an exact 3-cover C ' ~ C. Construct a set S = ~ Vii,
i= 1... 3, where

Va = {all l<~i<~m},

V2={f(Gi)[1 <~i<~m},

V3 = {g(G,) I 1 ~i~m} ,

J.E. Dunbar et al./ Discrete Mathematics 138 (1995) 229-246 241

ai

ba
el e2

)dl

)x29 x5
] Y 2 0 Y 3) Y 4 0 Y 5

%
~ 3q

3q

Fig. 6. Fig. 7.

where f(Gi) and g(Gi) are defined as follows:

ci if Ci~C',
f(Gi)= di otherwise,

bi if CIeC',
g(Gi)= el otherwise.

In Fig. 7 the solid vertices are in S. It is easy to verify that S is a 1-maximal nearly

perfect set in G and since the cardinality of S is 3m, clearly np(G)~3m.

(/f) Now suppose n~(G)<~ k and let S be a 1-maximal nearly perfect set of vertices with

cardinality ~< k.

Observation 1. aleS. For if not, by Lemma 1, bi~S and f isS. But then bi does not

satisfy Lemma 1 and S is not a 1-maximal nearly perfect set.

Observation 2. b~eS or dieS. This observat ion is true for the same reasons as in
Observat ion 1, for if not, we either violate Lemma 1 or the fact that S is 1-maximal

nearly perfect.

Observation 3. eieS o r f i s S or cieS. Otherwise ei does not satisfy Lemma 1 and S is

not a l -maximal nearly perfect set.
Notice that each subgraph Gi must have three vertices in S, thus account ing for all

3m vertices in S.
N o w define C ' ~ C as C ' = {C~[cieS}. It follows from the above observations that

C ' is an exact 3-cover for X. If not, then some xi is not covered by any set in C' or some

xieX is covered by more than one set in C'.
l fxl is covered by more than one set in C', then xl is outside S and is adjacent to two

elements of S. Thus S is not a nearly perfect set. If for some x , x~ is not adjacent to any
ci in S, then Yi could be added to S without altering its nearly perfect status. In this case

S would not be a 1-maximal nearly perfect set.

242 J.E. Dunbar et al. / D&crete Mathematics 138 (1995) 229-246

Corollary 12. np S ET is NP-complete when restricted to chordal graphs.

Proof. Forming a clique among the x~ vertices in the construction in Theorem 11,
yields a graph G which is chordal. The same argument holds for this graph. []

The problem of finding a smallest 1-maximal nearly perfect set will be NP-hard for
general graphs. For some NP-hard problems there are polynomial approximation
algorithms that can find a solution within a constant fac tor fof an optimal solution. For
others, there can be no polynomial approximation algorithms that are guaranteed to
come within a given constant factor f of an optimal solution, unless P = NP. With
a slight modification to the construction in Theorem 11, we can show the problem of
finding a smallest 1-maximal nearly perfect set falls into this second category.

The proof is based upon a construction derived by Irving [8] which shows that
independent domination cannot be approximated within a factor o f f

A graph constructed from an instance of X3C will be described so that the instance
of X3C will have an exact cover if and only if the graph has a 1-maximal nearly perfect
set of cardinality 3m, where m is the number of subsets in the X3C instance. It will also
be shown that if the graph has a 1-maximal nearly perfect set of cardinality ~<f, 3m,
then the X3C instance has an exact cover.

Theorem 13. Unless P = NP, there is no polynomial approximation algorithm A that
can take as input a bipartite graph G and find a 1-maximal nearly perfect set for G of
cardinality within a factor f of a smallest 1-maximal nearly perfect set.

Proof. For a given constant f, consider the following graph constructed from an
instance of X3C, which is similar to the graph co~astructed in Theorem 11. Construct

a collection of subgraphs, Gi, 1 <~i<~m, by adding a P2 to a noncenter vertex of
a KI,a graph and label these as shown in Fig. 6, where m refers to the number of subsets
in C. Next construct a set o f (3 m f - 3 m + 1) × 3q paths with 2 vertices each and label the
vertices of each path as xl, j and yi, j, 1 <~i<~3q, 1 <<.j<~3mf-3m+ 1. Add a set of edges
E= {(xl,j, Ck) IXIECk}. Sincefis a constant, this construction is polynomial in m and q.

Using the same argument as in Theorem 11, we can show that G has a 1-maximal
nearly perfect set of cardinality ~< 3m if and only if C has an exact cover. But we can
also show that C has an exact cover if G has a 1-maximal nearly perfect set of
cardinality ~< 3 mf

Let S be a 1-maximal nearly perfect set for G with]S]<~3mf As before, let
C ' = { C i I c ~ S } . It follows that C' is an exact 3-cover for X. If some xi had not been
covered, then all Yl, j vertices would have to be included in any 1-maximal nearly
perfect set S. In this case, IS]/> 3m f + 1, a contradiction. If xl is included in more than
one set in C', then all x~,j vertices in G are adjacent to more than one element of S.
Thus for S to be nearly perfect, all xl, j vertices must be included in S. Again this
implies IS] >~3fm+ 1, which is a contradiction. Therefore, if ISI <~3fm, then C has an
exact cover.

J.E. Dunbar et al. / DL~crete Mathematics 138 (1995) 229-246 243

Suppose A is an algorithm that can find a 1-maximal nearly perfect set within
a f a c t o r f o f an optimal solution. Then algorithm A can be used to solve the decision
problem for X3C. In polynomial time, a graph G is constructed as described above.
This graph is given to algorithm A as input. Algorithm A finds a 1-maximal nearly
perfect set with cardinality ~< 3fm if and only if C has an exact cover. If algorithm A is

polynomial, then the decision problem for X3C is polynomial as well.

5. Characteristics of the parameter Np(G)

The parameter Np(G), given by the size of a largest 1-minimal nearly perfect set, is
surprisingly different from its counterpart np(G). For example, the value of Np(G) can
be calculated in linear time for any graph G. Before proving this, a useful characteriz-
ing lemma is necessary.

Lemma 14. Every nonempty nearly perfect set S is 1-minimal !(and only if the suhgraph
induced by S, (S) , has minimum degree two.

Proof. Let S be a nonempty, nearly perfect set in a graph G. Assume S is l-minimal
and let x be a vertex in S. Since S is 1-minimal, we know that S - { x } is not a nearly
perfect set. Thus x must be adjacent to at least two vertices in S. Since x was chosen
arbitrarily, the minimum degree of (S) must be at least 2. The converse follows in
exactly the same way. []

The following three corollaries are immediate and are given without proof.

Corollary 15. Np(G)=n if and only/J'6(G)~>2.

Corollary 16. For any tree T, Np(T)=0.

Corollary 17. For any graph G, Np(G)=O if and only !(G is a fi)rest.

A l g o r i t h m Np
I npu t : a n a r b i t r a r y g r a p h G
Output : Np(G) a n d a m a x i m u m c a r d i n a l i t y 1 - m i n i m a l n e a r l y p e r f e c t s e t S

Begin
G'=G
While G' h a s a v e r t e x u of d e g r e e a t m o s t 1 do

V(C') = V(G') - {u}
od

N.(G) = I V(G')l
s= V(O')

End Np

244 J.E. Dunbar et al. / Discrete Mathematics 138 (1995) 229-246

Theorem 18. For any graph G, Algorithm Np computes Np(G) and finds a maximum
cardinality 1-minimal nearly perfect set S.

Proof. The Np-set S which results at the end of Algorithm Np is nearly perfect. Clearly
if S is empty, then S is nearly perfect, and in this case the graph G has no cycles, and is
therefore a forest. Corollary 17 then shows that in this case Np(G) has been correctly
calculated.

Let us assume without loss of generality, that G is connected. Assume next that the
graph G has no cycle; i.e., G is a tree. One can easily prove by induction, that
Algorithm Np removes every vertex of G. Hence Algorithm Np correctly asserts that
Np(G)=0. Assume therefore that G has a cycle C. Algorithm Np cannot remove any
vertex of C, regardless of the order in which the vertices of G are removed. For in order
to remove a vertex of a cycle, its degree must become at most 1, which means that
another vertex on the cycle must have been removed previously.

Assume therefore that S is not empty and further assume that S is not a nearly
perfect set. Then there exists a vertex v in V--S which is adjacent to at least two
vertices, x and y, in S. Since v is in V - S , Algorithm Np removed v from V(G'),
implying that when it was removed its degree was at most 1. This implies that either
x or y must have been removed from S before v, which contradicts the assumption that
x and y are in S. Thus, S is nearly perfect. By Lemma 14 it follows that S is 1-minimal
nearly perfect. It remains to show that S has maximum cardinality.

Assume that S is not of maximum cardinality and let M be a 1-minimal nearly

perfect set with I M I > I S I. Let the vertices of V(G)-S be ordered as {ul, u2 Uk } in
the order in which they are removed by Algorithm Np and let w = ul be the first vertex
of M - S which is removed by Algorithm Np. It follows from Lemma 14 that w is
adjacent to at least two vertices in M, say r and s. But w is removed by Algorithm
Np only if its degree becomes at most 1; i.e., either r or s must have been removed from
V(G') before w. But this contradicts the assumption that w is the first vertex of M - S
which is removed by Algorithm Np. Thus S is a maximum cardinality 1-minimal
nearly perfect set. []

Theorem 19. Every graph G has a unique maximum cardinality 1-minimal nearly perfect
set.

Proof. We can assume without loss of generality that Np(G) ~ O. Let S be produced by
Algorithm N~. By Theorem 18, we know that S is a maximum cardinality 1-minimal
nearly perfect set. Let N be any other maximum cardinality 1-minimal nearly perfect
set of G and let w be the first vertex of N - - S which is removed by Algorithm Np. Since
w is in N, it must have degree at least 2 in (N) , by Lemma 14. Let vertices x and y be
vertices adjacent to w in (N) . Consider the point in Algorithm Np when w is removed.
Vertex w can only be removed when its degree has become at most 1; i.e., either x or y has
been previously removed. But this contradicts the assumption that w is the first vertex of
N - S that is removed by Algorithm Np. Thus N - S is empty and S is unique. []

J.E. Dunbar et al. / Discrete Mathematies 138 (1995) 229-246 245

xl z
i . ,

Fig. 8.

3 6

1 2 4 5 7

[] .

I Vertex 11213
Degree 1 3 2

q ~ [1 6 7

4 5 6 7
3 3 1 1

i

Fig. 9.

T h e o r e m 20. For any graph G, its unique maximum cardinality 1-minimal nearly perlect
set consists of the set of all vertices which are contained in either a cycle or a path
connecting two disjoint cycles.

Proof. Let us assume without loss of generality that G is connected and that

Np(G)#O. Using an argument similar to that used in proving Theorem 18, one can
easily show that Algorithm Np cannot remove any vertex in a cycle or on a path

connecting two disjoint cycles. Let x be any vertex in S which is not on a cycle or

a path connecting two disjoint cycles. Since G is connected and we have assumed that

Np(G) ¢0, then by Corollary 17, G must contain a cycle C. Let P be a path from x to C.
Let z be the vertex adjacent to x on P (cf. Fig. 8). Note that the edge xz is a bridge.

Consider the connected component G~ containing x in G - x z . It follows that Gx is

a tree (else x is on a path connecting two disjoint cycles) and therefore Algorithm
Np removes every vertex of Gx, which contradicts the assumption that x is in S.

In order to illustrate the data structures which may be used to implement this
algorithm, examples are shown in Fig. 9. For the given graph G, an array Degree,
triply connected adjacency lists and a removal queue Q are shown.

246 J.E. Dunbar et al./ Discrete Mathematics 138 (1995) 229-246

Theorem 21. Algorithm Np can be implemented to run in O(IEI +l VI) time.

Proof. We can assume that the input to Algorithm Np consists of a list of vertices and
a list of edges (ordered pairs of vertices). The data structures in Fig. 9, consisting of
a triply linked list of adjacencies and an array (1...n) of vertex degrees, can be
constructed in O([E[) time. In O(I VI) time the vertices of degree at most 1 can be
inserted into a simple queue Q. In O(1) time Algorithm Np can then remove a vertex of
degree at most 1 from Q and update the linked lists, the array Degree, and the queue
Q. Thus, the loop in Algorithm Np can be executed in O(I VI) time. []

References

[1] B. Bollobfis, E.J. Cockayne and C.M. Mynhardt, On generalized minimal domination parameters for
paths, Discrete Math. 86 (1990) 89-97.

[2] E.J. Cockayne, B.L. Hartnell, S.T. Hedetniemi and R. Laskar, Perfect domination in graphs, to appear
in: J. Combin. Inform. Systems Sci.

[3] E.J. Cockayne, S.T. Hedetniemi and S. Mitchell, Linear algorithms on recursive representations of
trees, J. Comput. Systems Sci. 18 (1979) 76-85.

[4] E.J. Cockayne and C.M. Mynhardt, On the product of k-minimal domination numbers of a graph and
its complement, J. Comb. Math. Comb. Computing 8 (1990) 118-122.

[-5] E.J. Cockayne, G. MacGillivray and C.M. Mynhardt, Generalized maximal independence parameters
for paths and cycles, Quaestiones Math. 13 (1990) 123-139.

[6] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness. (Freeman, New York, 1979).

[7] E.O. Hare, S.T. Hedetniemi, R. Laskar, K. Peters and T.V. Wimer, Linear time computability of
combinatorial problems on generalized-series-parallel graphs, Discrete Algorithms and Complexity,
in: D.S. Johnson, ed., Proc. of the Japan-U.S. Joint Seminar, Perspectives in Computing, Vol. 15,
(Academic Press, New York, 1987) 437-457.

[8] R.W. Irving, On approximating the minimum independent dominating set. Inform. Process. Lett.
37(4) (1991) 197-200.

[9] S.L. Mitchell, Algorithms on trees and maximal outerplanar graphs: design, complexity analysis and
data structures study, Ph.D. Thesis, Dept. of Applied Mathematics and Computer Science, University
of Virginia, 1977.

[10] T.V. Wimer, Linear algorithms on k-terminal graphs, Ph.D. Thesis, Dept. of Computer Science,
Clemson University, 1987.

[11] T.V. Wimer, S.T. Hedetniemi and R. Laskar, A methodology for constructing linear graph algorithms.
Congr. Numer. 50 (1985) 43-60.

