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Abstract 

In a graph G = (V, E), a set of vertices S is nearly perfect if every vertex in V -  S is adjacent to 
at most one vertex in S. Nearly perfect sets are closely related to 2-packings of graphs, strongly 
stable sets, dominating sets and efficient dominating sets. We say a nearly perfect set S is 
1-minimal if for every vertex u in S, the set S - { u }  is not nearly perfect. Similarly, a nearly 
perfect set S is 1-maximal if for every vertex u in V -  S, S w {u} is not a nearly perfect set. Lastly, 
we define np(G) to be the minimum cardinality of a 1-maximal nearly perfect set, and Np(G) to 
be the maximum cardinality of a 1-minimal nearly perfect set. In this paper we calculate these 
parameters for some classes of graphs. We show that the decision problem for npIG) is 
NP-complete; we give a linear algorithm for determining rip(T) for any tree T; and we show that 
Np(G) can be calculated for any graph G in polynomial time. 

1. Introduction 

Let G=(V,E) be a graph.  We say tha t  a set S of vertices in V is a P-set if S has 

p rope r ty  P, for some p rope r ty  under  cons idera t ion .  F requen t ly  we say that  a set S has 

p r o p e r t y  P if the subgraph  of G induced by S, deno ted  ( S ) ,  has some p rope r ty  P, e.g. 

( S )  is acyclic, or  p l ana r  or  has degree at most  k for some non-negat ive  integer k. 

O the r  proper t ies ,  however,  are  not  defined in terms of induced subgraph  structures.  

F o r  example ,  S is a dominatin9 set if every vertex in V -  S is ad jacent  to at least one 

vertex in S or  S in an irredundant set if for every vertex u in S, N [u] - N  I S -  {u I ] is not  

empty.  M o s t  op t imiza t ion  p rob lems  in g raph  theory  are  concerned with f inding either 

the m i n i m u m  or  m a x i m u m  card ina l i ty  of a P-set  in a g raph  G. However ,  recent 

research has s tudied the spec t rum of cardinal i t ies  of a wide variety of  min imal  and 
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maximal P-sets in a graph. But care should be taken in defining a minimal or 
a maximal P-set. There are usually two definitions given for each term. 

(1) A P-set S is maximal if no proper superset S' of S is a P-set. 

(1') A P-set S is maximal if for every vertex u in V-S, S~{u} is not a P-set. 
(2) A P-set S is minimal if no proper subset S'  of S is a P-set. 

(2') A P-set S is minimal if for every vertex u in S, the set S - { u }  is not a P-set. 

A property P of a graph is hereditary if whenever a set S has property P, every 
proper subset S' of S also has property P. For example, the properties of being an 
independent set of vertices (no two vertices in the set are adjacent) or an irredundant 
set of vertices are hereditary. It is easy to see that definitions (1) and (1') of maximal 
P-sets are equivalent if P is a hereditary property. 

A property P is called super-hereditary (or expanding) if whenever a set S has property 

P, every superset S' of S also has property P. For example the properties of being 
a dominating set or a vertex cover are super-hereditary. It is also easy to see that the 
definitions (2) and (2') of minimal P-sets are equivalent for super-hereditary properties P. 

Bollobfis et al. [1] defined new notions of minimality and maximality as follows. 
A set of vertices S in V i sa  k-minimal P-set if the removal of any set X of k ~< ] S[ vertices 
from S followed by the addition of any l < k vertices results in a set that does not have 
property P. 

Similarly a set of vertices S in V is a k-maximal P-set if the addition of any set X of 
k vertices, followed by the removal of any l < k vertices does not result in a P-set. It is 
easy to see that 1-minimal P-sets are minimal P-sets according to definition (1') and 

l-maximal  P-sets are maximal P-sets according to definition (2'). It is also easy to see 
that there are 1-minimal P-sets which are not 2-minimal P-sets, e.g. in Fig. 1 each set 
of solid vertices is 1-minimal but the set in Fig. 1 (a) is not a 2-minimal set, since if we 
remove the two endvertices and then add the center vertex to S, we obtain another 
dominating set. 

The study of k-minimal and k-maximal sets is still very new; not much is known 
about  these sets. The reader is referred to [1, 4, 5]. The following property provides an 
example for which the definition of minimal or maximal must be given carefully. 

2. Definition of nearly perfect sets 

Let G=(V,E) be a graph and let u be a vertex in V. The open neighborhood ofu is 
defined as the set of vertices v adjacent to u; i.e., N(u)={v[uveE}. The closed 

(~) (b) 

Fig. 1. 
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Table 1 

231 

V u e V - S  V u e V  

[N(u)c~S[ ~<1 Near ly  perfect Tota l  nearly perfect 
Max ima l  sets np n,p~ Ntp 

[ N [u] c~ S] ~< 1 Near ly  perfect Independent  nearly perfect 
Max im a l  sets np (s t rong stable set or  2-packing) 

p2 <~ P2 

I N (u) c~ S [ = 1 Perfect do m ina t i on  Tota l  perfect domina t ion  
7p 7,p <~ ~p 

I N [u] ~ S[ = 1 Perfect d om in a t i o n  Efficient domina t ion  
yp ?,,~F, 

[ N(u) ~ S [ >/1 D o m i n a t i o n  Tota l  domina t i on  
Min ima l  sets 7 ~< F y, ~< F, 

IN[u ]  ~SI />  1 D o m i n a t i o n  Domina t i on  
Min ima l  sets ~ ~< F ~, ~< F 

neighborhood of u is N[u]=N(u)w[u}. In a graph G, a set of vertices S is nearly 
perfect if for every vertex ue V--S, Ig(u)c~SI <<. 1; i.e., every vertex ue V--S is adjacent 
to at most one vertex in S. 

Nearly perfect sets are closely related to 2-packings of graphs, strongly stable sets, 
dominating sets and efficient dominating sets, as indicated in Table 1. 

Table 1 first appeared in a paper by Cockayne et al. [2], which focused 
on perfect dominating sets, and in particular on families of graphs whose only perfect 
dominating set is the entire vertex set V. Nearly perfect sets, although first defined in 
[2], were not studied there. In this paper we initiate the study of nearly perfect sets in 
graphs. 

Notice that for any graph G, the empty set q~ of vertices, any set S =  {u} con- 
sisting of a single vertex, and the set V are all nearly perfect sets. Thus, 
using definition (1), the only minimal nearly perfect set in any graph is the empty 
set. And using definition (2), the only maximal nearly perfect set in any graph 
is the set V. 

However, using definitions (1') and (2'), a graph can have nontrivial minimal and 
maximal nearly perfect sets. For example, in the graph C4 in Fig. 2 the set { 1, 2} is 
a 1-maximal nearly perfect set; and in Fig. 3 the set {1,2,5} is a 1-minimal nearly 
perfect set in the graph G. 

Define np(G) to equal the minimum cardinality of a l-maximal nearly perfect set, 
and Np(G) to equal the maximum cardinality of a 1-minimal nearly perfect set in G. 
Notice that rip(G) is well-defined since V is always a 1-maximal nearly perfect set; i.e., 
np(G)<<.] VI. In particular, np(K.)= 1, for n>~3 and np(l£.)=n. 

Also Np(G) is well-defined since the empty set is always a 1-minimal nearly perfect 
set; i.e., Np(G)>~O. In particular, Np(K.)=n for n>~3, and Np(/( .)=0. 
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Fig. 2. Fig. 3 

Fig. 4. 

3. Characteristics of  the parameter np(G) 

The first result characterizes the property of 1-maximality in a nearly perfect set. 

L e m m a  1. A nearly perfect set S in a graph G = ( V , E )  is 1-maximal i f  and only i f  every 

vertex  u in V - S  is adjacent to a vertex v v ~ u in V - S  which is adjacent to exact ly  one 

vertex in S. 

Proof. The characterizing property given above is illustrated in Fig. 4. Suppose a set 
S is 1-maximal nearly perfect. Let u be an element of V - S  and assume that every 
vertex w adjacent to u in V - S  is not adjacent to any vertex in S. Then every element 
outside of the set S ~ {u} is adjacent to at most one element in the set S u {u). Thus, the 
set S u{u)  is nearly perfect. This contradicts the assumption that S is 1-maximal 
nearly perfect. 

On the other hand, if S is nearly perfect and satisfies the property above, then for 
any vertex u in V - S ,  there is a vertex u' in ( V - S ) w N ( u ) ,  with u' adjacent to some 
vertex v in S. Thus, S w {u} is not a nearly perfect set, since u' is adjacent to the two 
vertices u and v in S w {u). Since u was chosen arbitrarily, we know that the union of 
S with any vertex in V -  S will not be a nearly perfect set. Thus, S is a 1-maximal nearly 
perfect set. [] 

Using Lemma 1, the values of np(G) for some classes of graphs are easily deter- 
mined. For  example, the complete bipartite graph K,,., (for m, n >~ 2) has a smallest 
1-maximal nearly perfect set of size two. One such set can be found by selecting one 
vertex from each of the partite sets of the vertex set. Since such a set is nearly perfect, it 
follows from Lemma 1 that the set is also 1-maximal. The following lemma will be 
used to calculate the parameter  np(G) for paths and cycles. 
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L e m m a  2. Suppose G = ( V , E )  is a path or a cycle with order at leastJbur and that S is 

a subset q f t he  vertices o f  G. Then S is a 1-maximal nearly perfect set !]'and only (1 

(i) the subgraph spanned by V - S  is a disjoint union of  K 2 graphs, and 

(ii) every vertex in V - S  is adjacent to exactly one vertex o[S.  

Proof, Suppose S is a 1-maximal nearly perfect set and let v be an element of V -  S. By 

Lemma 1, we know there is an element w Cv  in V - S  with w adjacent to v and 

w adjacent to one vertex x of S. Since the maximum degree of G is two, N(w)=  ~v, x I . 

Further  since w is in V-- S, Lemma 1 guarantees that a neighbor of w must  lie outside 

of S and be adjacent to an element of S. Since all neighbors of w are accounted for, this 

element must  be v. So v must  be adjacent to a vertex, say y, in S. Note  that y ¢ x. Since 

the maximum degree in G is two, we must  have that N(v)=  [w,y I. Since v was an 

arbi t rary element of V - S ,  we must  have that ( V - S )  consists of disjoint copies of 

K2 and that every element of V - S  is adjacent to exactly one element in S. 

Conversely, if S is a subset of  V for which properties (i) and (ii) hold, then property 

(ii) guarantees that S is a nearly perfect set. Moreover ,  any vertex of V - S  will be 

adjacent to another  vertex of V - S  which is adjacent to a vertex in S. Thus by 

Lemma 1 we know that S is a 1-maximal nearly perfect set. 

Proposition 3. f f  P, is a path with n vertices, then 

k + 2  ![ n=3k ,  

np(P,)= k + l  / f n = 3 k + l ,  

k + 2  i f n = 3 k + 2 .  

Proof.  Let P be the path PaP2...Pn. The proof  is by induction on n. Clearly the result 

holds for paths with n-= 1, 2 or 3 vertices. Suppose n > 3 and assume the result holds 

for all paths with less than n vertices. 

Case 1: n=3k .  Let S = { p l , p 4 , p ~  . . . . .  P, 2,P, 1,P,]. Note first that n - 2 =  
3 ( k -  1)+ 1. Since V - S  is a disjoint collection of K 2 graphs and every vertex of V - S  
is adjacent to exactly one vertex of S, we know by Lemma 2 that S is a 1-maximal 

nearly perfect set. Fur ther  note that IS] = ( k -  1) ÷ 3 = k + 2. Suppose there exists a 1 - 

maximal  nearly perfect set T with cardinality less than the cardinality of S. Let 

.j = max { i lpie  V - T } .  Since every element of V - T  must  have degree two, we know 

j < n. Further,  j > 3, for if not  then with j ~ 3 we would know that all vertices to the 

right of pj were in T and at least one vertex to the left of Pi must be in T. Thus under 
this assumption we would have ] T] ~> 3k--  2 ~> k + 2 = IS]. The last inequality holds 

because k >~ 2. So we must  have 3 < j  < n. Since T is l -maximal  nearly perfect, we must 

have p~_ 1 in V-- T, and pj_ 2 in T. Let U = {pj_ 2, P j -  1, Pj }, and consider the graph G' 
obtained by adding an edge pj_ 3Pj+x to the graph G - - U .  See Fig. 5. Since p j_ z is in 
T and pj+ 1 is in T, the new edge allows the same adjacencies for pj 3 in G' as in G. 
Then T--  U is a nearly perfect set in G' (which is P,_ 3 ) and the cardinality of T--  U is 

I T I - 1  < ( k + 2 ) - 1  = ( k - 1 ) + 2 ,  contradict ing the inductive hypothesis on P, 3- 
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Fig. 5. 

Case 2: n = 3 k +  1. Let S={pa ,P4 ,P7  . . . . .  p,}. Note  that I S l = k +  1, and, as before, 

S is a 1-maximal nearly perfect set. In exactly the same way as in Case 1, we may 

assume T has cardinality less than that  of S and is a 1-maximal nearly perfect set in the 

path. It is immediate to see that a subset of  the path P._3 can be found which is 

1-maximal nearly perfect and which contradicts  the inductive hypothesis on P._ 3- 

Case 3: n = 3 k + 2 .  Let S = { p l , P g , P 7  . . . . .  P3k+l,P3k+2}" Note  that I S l = k + 2 ,  and 
that  S is a 1-maximal nearly perfect subset of  the path. The proof  that S is of smallest 

size uses the same argument  as that for the first two cases. [] 

Proposition 4. I f  C. is a cycle with n vertices, then 

k if n = 3 k ,  

np(C,)=, k + l if n =  3k + l, 

k + 2  /f n = 3 k + 2 .  

The proof  is similar to that of  Proposi t ion 3 and is omitted. 

For  some graphs the smallest 1-maximal nearly perfect set must  include all vertices 

in the graph. One such example already mentioned is / ( . .  Another  easily verified 

example is K L ,  (a star). In fact as the next two results show, stars are the only 

connected graphs for which n g G ) =  n. 

Theorem 5. For any tree T with n vertices, np( T) = n if and only if T has diameter at most 

2; i.e., T is a star. 

Proof. Let T be a tree with n vertices and diameter at most  2 and let S be an np-set, 
that  is, S is a min imum cardinality 1-maximal nearly perfect set. Assume IS] < n and let 

x be a vertex in V -  S. Then there is a vertex y E ( V -  S) c~ N(x)  such that  y is adjacent to 
a vertex y '  in S. Since yeS, y must  be adjacent to some vertex z in V - S  and z must  be 

adjacent to a vertex z '  in S. N o w  y '  is not  adjacent to z and z '  is not  adjacent to y, for if 

so a cycle would be formed. Thus z', z, y, y '  constitutes a shortest path of length 3 from 
z'  to y' ,  contradict ing the diameter of  T. 

Conversely let T be a tree with diameter at least 3. For  this class of  trees we will 

prove by induction on n that rip(T)< n. The only tree with diameter at least 3 and n = 4 
is P4 and by Propos i t ion  3, np(P4)= 2. 

So let T be a tree with n > 4 vertices and diameter d at least 3. Let u be an endvertex 

such that T -  {u} has diameter at least 3. Such a u must  exist as follows. Let w -  v be 
any path of length d (w and v are necessarily endvertices). If d > 3 ,  then 

d i a m e t e r ( T - { u } )  >~ 3. If d = 3 (and n > 4), then there is at least one endvertex u, not  on 
this w - v  path. Therefore, T--{u}  has diameter at least 3. 
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Let T - { u }  have diameter at least 3 and T ' = T - - { u } .  Then by the inductive 

hypothesis n p ( T ' ) < n - 1 .  Let S be an np-set of T' .  
Case 1: u is adjacent to a vertex in S. In this case, by Lemma 1, S w  [u I is 

a 1-maximal nearly perfect set of T and therefore np(T)<n.  
Case 2: u is adjacent to a vertex in V ( T ' ) - S .  Let u be adjacent to v. 

Case 2a: v is adjacent to a vertex in S. In this case S is an np-set in T. Hence 

n p ( T ) < n -  l <n. 
Case 2b: v is not adjacent to any vertex in S. By Lemma 1, v must be adjacent to 

a vertex w in V ( T ' ) - - S ,  which in turn is adjacent to exactly one vertex in S. In this case 

S w  {u} is a nearly perfect set in Tand .  by Lemma 1, is a 1-maximal nearly perfect set. 

Hence np(T)<n.  [] 

Theorem 6. For any connected graph G with n vertices, np(G)= n !f and only !/ G is 

a star.  

Proof. If G is a star with n vertices then % ( G ) =  n by Theorem 5. It remains to show 

that if np(G)=n then G is a star. 
Case 1: G is acyclic. Since G is connected, G is a tree, and again by Theorem 5, G is 

a star. 
Case 2: G contains a triangle. Let the vertices of G =(V,  E) be ordered such that vl, 

v2, and v3 form a triangle. In this case we can construct  a l -minimal  nearly perfect set 

S in G for which I SI < n, which implies that rip(G) < n. We do this as follows. Initially let 

S = [ vl }. Clearly, S is a nearly perfect set. Furthermore,  neither S u {vz } nor  S ~ ~L3~ ' ~ is 

a nearly perfect set. We construct  a l -maximal  nearly perfect set which contains 

neither vz nor v3 by executing the following: 

P r o c e d u r e  M a k e  1 - m a x i m a l  

I n p u t :  A n e a r l y  p e r f e c t  s e t  S 
O u t p u t :  A 1 - m a x i m a l  n e a r l y  p e r f e c t  s e t  S 

B e g i n  
w h i l e  3 w ~ V -  S - { v 2, v 3 } fo r  w h i c h  S u { w } is n e a r l y  p e r f e c t  do 

s~s~{w} 
od  

E n d  M a k e  1 - m a x i m a l .  

Clearly when this procedure has finished, the resulting set S is nearly perfect, 

contains neither v2 nor  v3, and for every vertex u in V - S ,  S w { u }  is not  a nearly 

perfect set. Thus, S is a 1-maximal nearly perfect set, and LSI <n ;  i.e., np(G)<n. 
Case 3: G contains no triangles but contains a cycle o f  length Jour. Let 

C =  {vl,  v2, v3,v4} be the vertices in cyclic order  of such a cycle. As in the previous 
case, we show that we can construct  a 1-maximal nearly perfect set S with IS I< n, 

which implies that np(G)<n. We do this as follows. Initially let S = { v l , v 4 } .  Since 
G has no triangles, S is a nearly perfect set. We can now execute P r o c e d u r e  M a k e  
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l-maximal (as defined in Case 2) and construct a 1-maximal nearly perfect set S with 

[SI < n (the final set will contain neither v2 nor v3). 
Case 4: G contains no triangles and no cycles of length four. Let 

C =  {Vl, v2, v3, v4 . . . . .  vm} be the vertices, in cyclic order, of a cycle in G, where m>~5. 
Once again we construct a 1-maximal nearly perfect set S with ISI <n. Initially let 
S =  {Vl, v4}. If S is a nearly perfect set, then we can again apply P r o c e d u r e  Ma&e 
1 - m a x i m a l  and construct a 1-maximal nearly perfect set S with I SI < n. 

If S is not a nearly perfect set then there must be a vertex, say w, adjacent to both 
v~ and v4. Note that there can only be one such vertex, w, else G contains a cycle of 
length four. Let S = {Vl, v4, w}. It follows that S must be a nearly perfect set since no 

vertex can be adjacent to two of these three vertices (note that i fa  vertex is adjacent to 
vl and w, or v4 and w then G must have a triangle). Thus we can apply Procedure 
Make 1-maximal to S and construct a 1-maximal nearly perfect set S with 

ISl<n.  [] 

Proposition 7. For any graph G=(V,E)  np(G)= 1 if and only if there is a vertex u in 
V such that for every vertex v ~ u there is a path of length two from u to v. 

Proof. Clearly if such a vertex u exists then the set S =  {u} is a 1-maximal nearly 
perfect set, and hence %(G)= 1. 

Conversely, let np(G)= 1 and let S={u} be a 1-maximal nearly perfect set. By 
definition, for every vertex v # u  the set S '={u}  w{v} is not a nearly perfect set. This 
means that there is a third vertex w which is adjacent to both u and v; i.e., that there is 
a path of length two from u to v. [] 

Corollary 8. For complete graphs Kn and wheels, W,~-K1 +C, ,  n>~3, % ( K , ) =  1 and 
n,(VV,) = 1. 

4. Complexity issues for np 

In this section several complexity results are given. A linear time algorithm is given 
which computes the value %(T) for any tree T. In the general case, however, the 
decision problem for np(G) is NP-complete,  even when restricted to bipartite or 
chordal graphs. 

For the first result, a dynamic programming style algorithm is constructed using 
a blend of methodologies developed by Wimer in 1988 [10], as illustrated in [11, 7], 
and by Mitchell in 1977 [9], as illustrated in [3]. 

The class of (rooted) trees can be constructed recursively from copies of a single 
vertex, K1, using only one rule of composition. This rule combines two rooted trees 
(T~,rl) and (Ta,rz) by adding an edge between rl and r2 and calling rl the root of the 
resulting tree. This is denoted by (T,r~)=(T~,rl)°(T2,r2). In particular, if S is 
a 1-maximal nearly perfect set in T, then S splits into two subsets S~ and $2 according 
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Table 2 

[ I ]  [2] [3] [4] [5] [6] [7] 

Property 

(2) S is 1-maximal × × × × 
nearly perfect in T 

(3) All vertices in x/ x/ ~/ v" × ,,/ × 
T--r have property P(S) 

(4) IN[r]c~S]=O x ,[/ x~ × x//, x/ , /  
(5) r has property P(S) x/ × V" × × 

to this composi t ion/decomposi t ion.  In order  to construct  an algori thm for np(T) it is 

necessary to characterize the classes, TS, of possible tree-subset pairs (T, S) which can 

occur in the process of decomposing a tree T and a 1-maximal nearly perfect set S. 
For  a given set of vertices S, we say that  a vertex v has Property P(S) if either yeS  or 

there is a vertex u in the intersection of N(v) and V - S  such that ]N(u)c~Sl= 1. 
Next we define the collection of possible tree subset pairs TS as the set of all 

ordered pairs (T, S) which satisfy these properties: 

• T is a rooted tree with root  r, 

• S is a nearly perfect set in T, and 

• if r is not  in S, then all vertices of T, except possibly those in N l-r], have property 

P(S), otherwise all vertices of T have proper ty  P(S). 
Consider  next the seven subclasses of TS defined by Table 2. Each subclass is 

defined by the presence (indicated with , / )  or  absence (indicated with x ) of the five 

properties listed in the table. The symbol r denotes the root  of T. We will denote these 

subclasses with [i],  i =  1 ... 7. Thus for example, subclass [2] is the set of all tree-set 
pairs (T, S) in which the root  is not  a member  of S, S is a 1-maximal nearly perfect set 

in T, all vertices in T - r  have proper ty  P(S), r is adjacent to some element of S, and 

r has proper ty  P(S). Finally, note that the subclasses [4 7] are exactly those in which 
S is not  a l -maximal  nearly perfect set in T. 

Lemma 9. TS is the disjoint union of  the seven classes defined in Table 2. 

Proof. Since each class is defined by a unique set of boolean values, they must  be 

disjoint. It remains to show that every member  of TS is a member  of some subclass, 

There are five properties in Table 2. However  property 2: 'S is 1-maximal nearly 
perfect in T '  is merely the intersection of proper ty  3 and proper ty  5. Thus this 

proper ty  is determined by the other  two. There are exactly 16 boolean assignments to 
the remaining four properties. Note,  however, if proper ty  1 holds (r is an element of S), 
then properties 3 and 5 must  hold while proper ty  4 cannot  hold. Thus the seven 

remaining combinat ions  which have property 1 cannot  occur. Fur ther  we note that if 

proper ty  1 does not hold and proper ty  4 does not  hold, then proper ty  3 must  hold. So 
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Table 3 

[1] [2] [3] [4] [5] 

[1] [1] x [1] x [1] 

[2] x [2] , [2] [2] x 

[3] [2] [3] [ 3] [5] x 

[4] x [2] [4] [2] x 

[5] [2] [5] [5] [5] × 

[6] [4] [3] [6] [5] × 

[7] [43 [5] [7] [53 x 

[6] [7] 

x x 

[2] x 

[5] × 

[ 4 ]  x 

[5] x 

[73 × 

[7] x 

two more  combina t ions  are eliminated. Hence, there can be at most  seven nonempty  
subclasses of  TS. [] 

These subclasses and the following compos i t ion  opera t ion  will be used in the design 

of the algori thm. Let TI=(V~,E1)  and Tz=(V2,E2) be trees with roots  rl and r2, 
respectively, and let V =  V~ w//2 and E = E I u EE w(rl,  r2). Then the composi t ion  of 
T1 and /'2, denoted T1 ° T2, is the tree T=(V, E) with root  r l .  Fo r  two t ree-set  pairs 

( T t , S x )  and(T2,S2) ,  we will denote  the pair  (T1 ° T2,$1 LYS2) with ( T 1 , S 1 ) ° ( T 2 , S 2 ) .  

Given members  (T1, $1)~ [n] and (T2,/12) e [m] we can determine the class, if any, to 
which the pair  (7"1, S 1) ° (T2, $2) must  belong. Table  3 summarizes  these composi t ions.  
The symbol  x indicates that  the resulting t ree-set  pair, though defined, is not  
a m e m b e r  of  TS. 

We can now derive a set o f  recurrence equat ions in terms of these subclasses. By 
Table  3 we know that  

[ 1 ] = [ 1 ] ° E 1 ] u [ 1 ]  o [ 3 2 u  

[2] = [22 ° [2] u [2]0 [3] w 
u [4] o [4] u [5]o E11 

[32 = [33o [22 u [32 ° [32 
[4] = [4]0 [3] w [4] o [6] w 
[ 52  = [ 3 ]  o [ 4 ]  u [ 3 ] o  [ 6 ]  u 

[6]o [4] u [7]o [2] 

[6] = [6 ]°  [3] 

[1] o [5] 
[2]o [4] w [2] o [6] w [3]o [ l]  u [4]o [2] 

[6] ° E2] 
[6] o [1] u [ 7 ]  o [1] 
[5] o [2] w [5]o [3] u [5]0 [4] u [5] o [6] 
w [7] o [4] 

[7] = [6] o [6] w [7]o [32 u [7] o [6] 

Fo r  1 ~< i ~< 7, let as(T) be defined as follows: affT) = rain { IS I[ S _~ V, (T, S) ~ [i]  }. 
Then,  for example,  al(T)=min{al(Tl)+al(T2),al(T1)+aa(T2),al(Tl)+as(T2)} 
To prove  the correctness of this dynamic  p r o g r a m m i n g  a lgor i thm for comput ing  

nv(T ) for any tree T, we would have to prove  a theorem asserting that  each of these 
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recurrences is correct. These details are straightforward and are omitted here. The 
final step in specifying an algorithm for an %-set is to define the 'initial vector'. In this 
case, for trees, the only basis graph is the tree with a single vertex, K1. We need to 
know the minimum cardinality of a set S in a class of type [ 1]... [7] in the graph K1, if 
any exists. It is easy to see that the initial vector is (1, ,~, ~ ,  ~ ,  ~ ,0 ,  ,zc) which means 
that for the graph KI:  

one tree-set pair of class [1] exists and its cardinality is 1; 
one tree-set pair of class [6] exists and its cardinality is 0: 
no tree-set pairs of class [2-5]  or class [7] exist. 
We now have all of the ingredients for an np-set algorithm, where the input is the 

parent array Parent [1.. .  N]  for the input tree T, and where the output is %(T), which 
is computed by repeatedly applying the recurrence system to each vertex in the parent 
array, with the initial vector (1, ~ ,  ~ ,  ~c, ~ ,  0, m) bing associated with every vertex in 
the parent array as the computation begins. 

The basic structure for the algorithm is a simple iteration: 

A l g o r i t h m  np t r e e  
Input :  t he  p a r e n t  a r r a y  P a r e n t [ 1  . . .N]  for  a n  a r b i t r a r y  t r e e  T 
Output :  np(T) 

Begin  
for  i~-1 to  N do 

in i t ia l ize  Vec to r  [i, 1 ...7]~-(1, oo, oo, oo, oc,0, ~ )  

od 
for  j , - N  to  2 do 

k ~ Parent[j]  
Combine  (Vector ,  k, j)  

od 
np(T)~-min( Vector[l, 1], Vector[l,2], Vector[l, 3]) 

End  n p -  tree. 

The Combine procedure is derived directly from the recurrence system: 

P r o c e d u r e  Combine  (Vector ,  k, j)  
Begin  

Vector[k, 13 ~ -min (Vec to r  [k, 1] + V e c t o r [ j ,  1], Vec tor [k ,  1] + V e c t o r [ j ,  3], 
Vec tor [k ,  1] + V e c t o r [ j ,  5]) 

e tc . . .  
End  Combine  

Theorem 10. np(T) can be computed for any tree T with N vertices in O(N) time. 

Proof. The result is immediate by noting that for Algorithm np tree, the steps in each 
for-loop can be performed in constant time. It follows that if the tree has N vertices 
then the algorithm operates in O(N) time, [] 
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To show that the decision problem for arbitrary graphs is NP-complete, we need to 
use a known NP-completeness result, called Exact Three Cover (X3C) which is 
defined as follows. 

X3C 
Instance: A finite set X with IX I= 3q and a collection C of 3-element subsets of X. 
Question: Does C contain an exact cover for X, that is, a subcollection C'  _~ C such 

that every element of X occurs in exactly one member  of C'?  

FACT: X3C is NP-complete  [6]. 

np SET 
Instance: A graph G=(V,E) and a positive integer k. 

Question: Is there a 1-maximal nearly perfect set S contained in V with ISI ~<k? 

Theorem 11. n~ SET is NP-complete, even when restricted to bipartite graphs. 

Proof. A nondeterministic algorithm could guess a subset S _~ V of k vertices and, in 
deterministic polynomial time, verify whether or not S is 1-maximal nearly perfect. 
Hence the problem is in NP. In order to show NP-completeness, we reduce an 
equivalent version of X3C (in which every element of X lies in at least two subsets in 
C) to the n~ SET problem as follows. 

Let X={x l , x2  . . . . .  X3q } and C={CI,C2 ... . .  C,,) be an instance of X3C, 
where q and m are positive integers and each Ci is a 3-element subset of X. 
We will show how to construct an undirected graph G=(V, E) and a positive integer 
k such that C contains an exact cover for X if and only if np(G)<<.k. First construct 
a collection of subgraphs, Gi, 1 <~i<~m, by adding a P2 to a non-center vertex of 
a KI,  3 graph and label the vertices as shown in Fig. 6. Next construct a set of 3q paths 
with 2 vertices and label the vertices of each path as xl, yl. Add a set of edges 
E = {(xi, cj) lxi~Cj} (cf. Fig. 7). Finally, let k = 3m. Clearly the above reduction can be 
performed in time that is polynomial in m and q, and it is easy to verify that this graph 
G is bipartite. We now show that the set C contains an exact 3-cover for X if and only 
if np(G) <~ k. 

(Only if) Suppose that C contains an exact 3-cover C '  ~ C. Construct a set S = ~ Vii, 
i=  1... 3, where 

Va = {all l<~i<~m}, 

V2={f(Gi)[1 <~i<~m}, 

V3 = {g(G,) I 1 ~i~m} ,  
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Fig. 6. Fig. 7. 

where f(Gi) and g(Gi) are defined as follows: 

ci if Ci~C', 
f(Gi)= di otherwise, 

bi if CIeC', 
g(Gi)= el otherwise. 

In Fig. 7 the solid vertices are in S. It is easy to verify that S is a 1-maximal nearly 

perfect set in G and since the cardinality of S is 3m, clearly np(G)~3m. 

( /f)  Now suppose n~(G)<~ k and let S be a 1-maximal nearly perfect set of vertices with 

cardinality ~< k. 

Observation 1. aleS. For  if not,  by Lemma 1, bi~S and f isS.  But then bi does not 

satisfy Lemma 1 and S is not a 1-maximal nearly perfect set. 

Observation 2. b~eS or dieS. This observat ion is true for the same reasons as in 
Observat ion 1, for if not, we either violate Lemma 1 or the fact that  S is 1-maximal 

nearly perfect. 

Observation 3. eieS o r f i s S  or cieS. Otherwise ei does not satisfy Lemma 1 and S is 

not  a l -maximal  nearly perfect set. 
Notice that each subgraph Gi must  have three vertices in S, thus account ing for all 

3m vertices in S. 
N o w  define C ' ~  C as C ' =  {C~[cieS}. It follows from the above observations that 

C '  is an exact 3-cover for X. If not, then some xi is not  covered by any set in C'  or  some 

xieX is covered by more  than one set in C'. 
l fxl  is covered by more  than one set in C', then xl is outside S and is adjacent to two 

elements of S. Thus S is not  a nearly perfect set. If for some x ,  x~ is not  adjacent to any 
ci in S, then Yi could be added to S without  altering its nearly perfect status. In this case 

S would not be a 1-maximal nearly perfect set. 
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Corollary 12. np S ET  is NP-complete when restricted to chordal graphs. 

Proof. Forming a clique among the x~ vertices in the construction in Theorem 11, 
yields a graph G which is chordal. The same argument holds for this graph. [] 

The problem of finding a smallest 1-maximal nearly perfect set will be NP-hard for 
general graphs. For some NP-hard problems there are polynomial approximation 
algorithms that can find a solution within a constant fac tor fof  an optimal solution. For 
others, there can be no polynomial approximation algorithms that are guaranteed to 
come within a given constant factor f of an optimal solution, unless P = NP. With 
a slight modification to the construction in Theorem 11, we can show the problem of 
finding a smallest 1-maximal nearly perfect set falls into this second category. 

The proof is based upon a construction derived by Irving [8] which shows that 
independent domination cannot be approximated within a factor o f f  

A graph constructed from an instance of X3C will be described so that the instance 
of X3C will have an exact cover if and only if the graph has a 1-maximal nearly perfect 
set of cardinality 3m, where m is the number of subsets in the X3C instance. It will also 
be shown that if the graph has a 1-maximal nearly perfect set of cardinality ~<f,  3m, 
then the X3C instance has an exact cover. 

Theorem 13. Unless P = NP, there is no polynomial approximation algorithm A that 
can take as input a bipartite graph G and find a 1-maximal nearly perfect set for G of 
cardinality within a factor f of a smallest 1-maximal nearly perfect set. 

Proof. For a given constant f, consider the following graph constructed from an 
instance of X3C, which is similar to the graph co~astructed in Theorem 11. Construct 

a collection of subgraphs, Gi, 1 <~i<~m, by adding a P2 to a noncenter vertex of 
a KI,a graph and label these as shown in Fig. 6, where m refers to the number of subsets 
in C. Next construct a set o f ( 3 m f - 3 m +  1) × 3q paths with 2 vertices each and label the 
vertices of each path as xl, j and yi, j, 1 <~i<~3q, 1 <<.j<~3mf-3m+ 1. Add a set of edges 
E= {(xl,j, Ck) IXIECk}. Sincefis  a constant, this construction is polynomial in m and q. 

Using the same argument as in Theorem 11, we can show that G has a 1-maximal 
nearly perfect set of cardinality ~< 3m if and only if C has an exact cover. But we can 
also show that C has an exact cover if G has a 1-maximal nearly perfect set of 
cardinality ~< 3 mf  

Let S be a 1-maximal nearly perfect set for G with ]S]<~3mf As before, let 
C ' = { C i I c ~ S } .  It follows that C'  is an exact 3-cover for X. If some xi had not been 
covered, then all Yl, j vertices would have to be included in any 1-maximal nearly 
perfect set S. In this case, IS]/> 3m f +  1, a contradiction. If xl is included in more than 
one set in C', then all x~,j vertices in G are adjacent to more than one element of S. 
Thus for S to be nearly perfect, all xl, j vertices must be included in S. Again this 
implies IS] >~3fm+ 1, which is a contradiction. Therefore, if ISI <~3fm, then C has an 
exact cover. 
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Suppose A is an algorithm that can find a 1-maximal nearly perfect set within 
a f a c t o r f o f  an optimal solution. Then algorithm A can be used to solve the decision 
problem for X3C. In polynomial time, a graph G is constructed as described above. 
This graph is given to algorithm A as input. Algorithm A finds a 1-maximal nearly 
perfect set with cardinality ~< 3fm if and only if C has an exact cover. If algorithm A is 

polynomial, then the decision problem for X3C is polynomial as well. 

5. Characteristics of the parameter Np(G) 

The parameter  Np(G), given by the size of a largest 1-minimal nearly perfect set, is 
surprisingly different from its counterpart  np(G). For example, the value of Np(G) can 
be calculated in linear time for any graph G. Before proving this, a useful characteriz- 
ing lemma is necessary. 

Lemma 14. Every nonempty nearly perfect set S is 1-minimal !(and only if the suhgraph 
induced by S, (S) ,  has minimum degree two. 

Proof. Let S be a nonempty, nearly perfect set in a graph G. Assume S is l-minimal 
and let x be a vertex in S. Since S is 1-minimal, we know that S - { x }  is not a nearly 
perfect set. Thus x must be adjacent to at least two vertices in S. Since x was chosen 
arbitrarily, the minimum degree of ( S )  must be at least 2. The converse follows in 
exactly the same way. [] 

The following three corollaries are immediate and are given without proof. 

Corollary 15. Np(G)=n if and only/J'6(G)~>2. 

Corollary 16. For any tree T, Np(T)=0.  

Corollary 17. For any graph G, Np(G)=O if and only !( G is a fi)rest. 

A l g o r i t h m  Np 
I npu t :  a n  a r b i t r a r y  g r a p h  G 
Output :  Np(G) a n d  a m a x i m u m  c a r d i n a l i t y  1 - m i n i m a l  n e a r l y  p e r f e c t  s e t  S 

Begin  
G'=G 
While  G' h a s  a v e r t e x  u of  d e g r e e  a t  m o s t  1 do 

V(C') = V(G' ) -  {u} 
od 

N.(G) = I V(G')l 
s= V(O') 

End  Np 
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Theorem 18. For any graph G, Algorithm Np computes Np(G) and finds a maximum 
cardinality 1-minimal nearly perfect set S. 

Proof. The Np-set S which results at the end of Algorithm Np is nearly perfect. Clearly 
if S is empty, then S is nearly perfect, and in this case the graph G has no cycles, and is 
therefore a forest. Corollary 17 then shows that in this case Np(G) has been correctly 
calculated. 

Let us assume without loss of generality, that G is connected. Assume next that the 
graph G has no cycle; i.e., G is a tree. One can easily prove by induction, that 
Algorithm Np removes every vertex of G. Hence Algorithm Np correctly asserts that 
Np(G)=0. Assume therefore that G has a cycle C. Algorithm Np cannot remove any 
vertex of C, regardless of the order in which the vertices of G are removed. For in order 
to remove a vertex of a cycle, its degree must become at most 1, which means that 
another vertex on the cycle must have been removed previously. 

Assume therefore that S is not empty and further assume that S is not a nearly 
perfect set. Then there exists a vertex v in V--S which is adjacent to at least two 
vertices, x and y, in S. Since v is in V - S ,  Algorithm Np removed v from V(G'), 
implying that when it was removed its degree was at most 1. This implies that either 
x or y must have been removed from S before v, which contradicts the assumption that 
x and y are in S. Thus, S is nearly perfect. By Lemma 14 it follows that S is 1-minimal 
nearly perfect. It remains to show that S has maximum cardinality. 

Assume that S is not of maximum cardinality and let M be a 1-minimal nearly 

perfect set with I M I > I S  I. Let the vertices of V(G)-S  be ordered as {ul, u2 . . . . .  Uk } in 
the order in which they are removed by Algorithm Np and let w = ul be the first vertex 
of M - S  which is removed by Algorithm Np. It follows from Lemma 14 that w is 
adjacent to at least two vertices in M, say r and s. But w is removed by Algorithm 
Np only if its degree becomes at most 1; i.e., either r or s must have been removed from 
V(G') before w. But this contradicts the assumption that w is the first vertex of M - S  
which is removed by Algorithm Np. Thus S is a maximum cardinality 1-minimal 
nearly perfect set. [] 

Theorem 19. Every graph G has a unique maximum cardinality 1-minimal nearly perfect 
set. 

Proof. We can assume without loss of generality that Np(G) ~ O. Let S be produced by 
Algorithm N~. By Theorem 18, we know that S is a maximum cardinality 1-minimal 
nearly perfect set. Let N be any other maximum cardinality 1-minimal nearly perfect 
set of G and let w be the first vertex of N - -  S which is removed by Algorithm Np. Since 
w is in N, it must have degree at least 2 in ( N ) ,  by Lemma 14. Let vertices x and y be 
vertices adjacent to w in ( N ) .  Consider the point in Algorithm Np when w is removed. 
Vertex w can only be removed when its degree has become at most 1; i.e., either x or y has 
been previously removed. But this contradicts the assumption that w is the first vertex of 
N - S  that is removed by Algorithm Np. Thus N - S  is empty and S is unique. [] 
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T h e o r e m  20. For any graph G, its unique maximum cardinality 1-minimal nearly perlect 
set consists of the set of all vertices which are contained in either a cycle or a path 
connecting two disjoint cycles. 

Proof. Let us assume without loss of generality that G is connected and that 

Np(G)#O. Using an argument similar to that used in proving Theorem 18, one can 
easily show that Algorithm Np cannot remove any vertex in a cycle or on a path 

connecting two disjoint cycles. Let x be any vertex in S which is not on a cycle or 

a path connecting two disjoint cycles. Since G is connected and we have assumed that 

Np(G) ¢0,  then by Corollary 17, G must contain a cycle C. Let P be a path from x to C. 
Let z be the vertex adjacent to x on P (cf. Fig. 8). Note that the edge xz is a bridge. 

Consider the connected component G~ containing x in G - x z .  It follows that Gx is 

a tree (else x is on a path connecting two disjoint cycles) and therefore Algorithm 
Np removes every vertex of Gx, which contradicts the assumption that x is in S. 

In order to illustrate the data structures which may be used to implement this 
algorithm, examples are shown in Fig. 9. For the given graph G, an array Degree, 
triply connected adjacency lists and a removal queue Q are shown. 
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Theorem 21. Algorithm Np can be implemented to run in O(IEI +l VI) time. 

Proof. We can assume that the input to Algorithm Np consists of a list of vertices and 
a list of edges (ordered pairs of vertices). The data structures in Fig. 9, consisting of 
a triply linked list of adjacencies and an array (1...n) of vertex degrees, can be 
constructed in O([E[) time. In O(I VI) time the vertices of degree at most 1 can be 
inserted into a simple queue Q. In O(1) time Algorithm Np can then remove a vertex of 
degree at most 1 from Q and update the linked lists, the array Degree, and the queue 
Q. Thus, the loop in Algorithm Np can be executed in O(I VI) time. [] 
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