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ABSTRACT. - Using multipler techniques and Lyapunov methods, we prove that the energy in the higher- 
dimensional linear thermoviscoelasticity decays to zero exponentially by introducing a velocity feedback on part 
of the boundary of a thermoviscoelastic body, which is clamped along the rest of its boundary, to increase the 
loss of energy. 0 Elsevier, Paris 
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1. Introduction 

In this paper, we shall be concerned with the problem of exponential stabilization of 
the linear thermoviscoelastic model: 

’ U” - pAu - (A + p)Vdivu, 
+pg*Au+(X+b)g*Vdivv+crVB=O in f2 x (O,co), 

(1.1) 0’ - A0 + /3div u’ = 0 in R x (O,OO)~ 
u=o, d=O on I x (0, co), 
u(z, 0) = uO(z), d(~,o) = d(~), e(x,o) = eyx) in 52, 

L z&O) - u(z, -s) = wO(2, s) in R x (O,co), 

where the sign “*” denotes the convolution product in time, which is defined by 

g * v(t) = 
.I 

t 
g(t - s)u(z, s)ds. 

-lx2 

System (1.1) is a model for a linear viscoelastic body 62 of the Boltzmann type 
with thermal damping. The body 0 is a bounded domain in R” with smooth 
boundary l? = X2 (say C2) and is assumed to be linear, homogeneous, and 
isotropic. U(Z, t) = (~~(2, t), . . . , U, (z , t ) ) , e( Lc , t ) represent displacement and temperature 
deviations, respectively, from the natural state of the reference configuration at position z 
and time t. X, p > 0 are Lame’s constants and cy, p > 0 the coupling parameters; g(t) 

denotes the relaxation function, w’(z, s) is a specified “ history”, and U’(X), u1 (x), e”(x) 
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are initial data. By ’ we denote the derivative with respect to the time variable; A, 0. div 
denote the Laplace, gradient, and divergence operators in the space variables, respectively. 
We refer to [Nav] for the derivation of model (1.1). 

The following basic conditions on the relaxation function .9(t) are standard (see [Daf2, 
DafS]): 

(H,) 9 E cyo, co) n Ll(O. cc); 
(Hz) g(t) > 0 and g’(t) < 0 for t > 0; 
(If>) /E. = 1 - J,“g(t)dt > 0. 

Condition (Hz) simply states that the static modulus of elasticity is positive. This restriction 
is quite natural. In addition, conditions (HI) and (HP) imply 

(1.2) ,9(00) = En&.9(t) = 0. 

In what follows, we denote by 11 . 11 the norm of L’(G). The energy E(u, 8; t) of (1.1) 
is defined by 

(1.3) E(?L, H, t) = ;[~/rr’(t)l~2 + ;jlH(t)ll”] 

+ yIIV?rjt)ll” + (’ +Lpjh: IJdivU(t)l12 

g(t - s)jldivu(t) - div~~(s)j12$s. 

Here we have used the notation 

1111/l* = 2 11u;l12. for II = (?/I.. ” .?I,). 
i=l 

By straightforward calculation, we have 

(1.4) ,9’@ - S)p7?1@) - Vw(s)ll%s 

9’(t - s)lldivu(t) - divu(s)ll*ds 

Hence, the energy E(u, 0, t) decreases on (0, CO). Indeed, if the relaxation function y(t) 
satisfies conditions (HI), (H2) and (Hz), Navarro [Nav] proved the asymptotic stability 
for system (1 .l), that is: 

where Hi(O) denotes the usual Sobolev space. 
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However, the most interesting question is whether the energy decays exponentially as 
t + 0~). Namely, are there positive constants 111; w such that 

(1.5) E(u, 8, t) < MemWtE(u, 8,0), &LO? 

In the case of one space dimension, this question is in part positively answered. Indeed, 
if g(t) decays exponentially, Liu and Zheng [LZ2] recently proved that the energy also 
decays to zero exponentially. However, in the case of higher space dimension, the problem 
is much more complicated. In order to see such complexity, we look at some special cases: 
thermoelastic system and viscoelastic system. 

When 9 - 0, system (1.1) is reduced to the following thermoelastic system: 

( 

IL” - pAu - (X + p)Vdivu + (YVH = 0 in 62 x (0, x). 

(1.6) 
8’ - AH + ,6’div u’ = 0 in 62 x (0,x). 
IL = 0, 8=0 on F x (O! cc), 
u(x,O) = ZL”(X), w,‘(n;, 0) = ul(x), H(z!O) = 8’(x) in R. 

Its energy E(u, 8, t) is defined by 

(1.7) E(v 0, t) = ;[llW!12 + ;ll~~~)ll’l 

+ prr/t)l12 + ~lIdivu(t)[I’. 

In the one-dimensional space case, it has been shown (see [BLZ, Han, Kim, LZi]) that the 
energy decays exponentially. However, in the higher dimensional space case, it is by now 
well known (see [Dafi]) that the energy, in general, does not tend to zero as t + cc. Indeed, 
Lebeau and Zuazua [LeZ] recently gave a sufficient and necessary condition ensuring that 
the energy tends to zero exponentially as t --+ +cc in a bounded multi-dimensional smooth 
domain 0. This condition is written in terms of the dynamics of the rays of geometric 
optics. As a consequence of the result of [LeZ], it follows that when R is a bounded 
smooth convex open set, the energy does not decay exponentially to zero. This is because 
the total energy is not dissipated completely in the form of thermal energy. Therefore, in 
order to ensure the exponential stabilization in such case, a boundary velocity feedback 
was introduced in [Liu] to increase the loss of energy. 

When ci = p = 0, system (1.1) is decoupled into the following viscoelastic system: 

1 

‘# - ~LAU - (X + p)Vdivu 
+pug * Au + (X + IL){/ * Vdivu = 0 in 62 x (0: cc)! 

(1.8) II, = 0, on r’ x (0. oo), 
u(z, 0) = U(f(X); u’(x, 0) = d(z) in 0, 
u(z, 0) - u(z, -s) = wO(x, s) in 0 x (0.x), 

and the heat equation. The energy E(u, t) of (1.8) is defined by 

(1.9 E(u,t) = ~[lid(t)12 + p~jIVu(t)ll” + (X + /,,)r;:(ldivu(t)l12] 

+!! t 
2 J’ 

g(t - s)pu(t) - Vu(s)l12ds 
-m 

g(t - s)lldivu(t) - divu(s)l12aTs. 
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It can be easily seen from (1.4) that the asymptotic behaviour of the energy E(u, t) depends 
significantly on the relaxation function g(t) and the history w’(z, s) as well. Indeed, if 
.9(t) satisfies (Hi), (Ha) and (Ha) and w” E L2(g, (0, oo), (Hi(R))“), Dafermos in his 
pioneering work [Daf2, Dafs] proved that E(v, t) tends to zero asymptotically, where 
L2(g, (0, cc), (Hi(Q))n) denotes the “history space” of (Hi(R))“)-valued functions ~1 
on (0, cc) for which 

g(s))(V1~(s))l~ds + T /” .9(s)lldivw(s)l12d.~ < 30. 
(0 

Subsequently, extensive attention was paid to the problem of obtaining an explicit decay 
rate. In this aspect, Day [Day] first obtained a decay rate of t-l in the case of one space 
dimension by introducing a feedback at one end of an interval. Later, in the case of two 
space dimension, Leugering [Leui] established an exponential decay rate by introducing a 
velocity feedback on part of the boundary of a domain. On the other hand, if g(t) decays 
exponentially and the initial history ~1’ is taken to be zero, Desch and Miller [DM] proved 
that, in the case of one space dimension, the energy also decays to zero exponentially at 
a rate no better than g(t) decays. 

In view of the above, in order to obtain an explicit decay rate of energy of higher 
dimensional thermoviscoelastic system (1. l), it may be indispensable to introduce a 
velocity feedback on part of the boundary of a thermoviscoelastic body. Thus, in this 
paper, we introduce such a feedback to increase the loss of energy and establish the 
exponential stabilization. Similar boundary velocity feedbacks were extensively used for 
the wave equation [Che, KZ, Lagi], elastodynamic systems [AK, Lag21 and viscoelasticity 
[Leul, Leu2]. 

In order to design a boundary velocity feedback, we set 

(1.10) r1 = {x E r : m(z). v(x) 5 O}, 

(1.11) r2 = {:I: E r : m(z) . u(x) > 0). 

where 

(1.12) m(:JY) = :I: - 2;’ = (21 - & . . . . :JIrL - X”,) 

for some x0 E R”, 71 = (vi, . , vn) denotes the unit normal on I’ directed towards the 
exterior of R and 

(1.13) 

I1 is assumed either to be empty or to have a nonempty interior relative to I. Note 
that assumptions (1.10) and (1.11) imply that the domain Zn is simply connected and 
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star-shaped with respect to x0 E R or R = Ri - 22, both Ri and !Jz being star-shaped 
with respect to .x0. 

The boundary velocity feedback can be given as follows 

I 

o=o on r x (O,oo), 
71. = 0 

(1.14) 
on rl x (0, m), 

pg(u - g * IL) + (A + p)vdiv(u - g * U) 
+um.v(7L-g*u)+m.vu’=O on FZ x (0, oo), 

where a = a(~) is a given nonnegative function on l?a with 

(1.15) +) E c1(r2). 
It is clear that if m(z) . V(Z) > n on I’a for some q > 0 then a(s)m(z) . V(Z) can be 
any nonnegative function as we can take a(~) = f(~)/(m(z) . ~(a)), f(z) being any 
nonnegative function. Note that there is no velocity feedback on the part of r2 where 
m(5) . z+T) = 0. 

We will prove (see Theorem 2.1 below) that the energy of the thermoviscoelastic 
system with boundary velocity feedback (1.14) decays to zero exponentially as t -+ cc if 
A = mE$;a(~) is small enough and the following condition holds 

(1.16) rl f 0 or U(Z) 8 0. 

Whether this exponential stabilization holds for the large A is open. 
The rest of this paper is organized as follows. The main result of this paper is presented 

in Section 2. For the sake of completeness, we briefly discuss the semigroup associated 
with the thermoviscoelastic equations in Section 3. In Section 4, we prove the main result 
by using multiplier techniques and Lyapunov methods. Finally, in Section 5, we give 
comments on the case that (1.16) fails. 

2. Main Result 

In what follows, H”(G) denotes the usual Sobolev space (see [Ada]). For s > 0, H,(Q) 
denotes the completion of C,-(R) in H”(R), h w ere C?(0) denotes the space of all 
infinitely differentiable functions on R with compact support in R. Let X be a Banach 
space. We denote by Ck( [0, T]; X) the space of all k times continuously differentiable 
functions defined on [0, T] with values in X, and write C([O, T]; X) for CO([O, 2’1; X). 

Let U(Z) be the nonnegative function given in (1.14) satisfying (1.15) and v = 
(Vl,..., vn) the unit normal on l? directed towards the exterior of R. Suppose that 
r1 and r2 are given by (1 .lO) and (1.1 l), respectively, and I’t either is empty or has 
a nonempty interior relative to r. Assume that (1.16) holds. We recall that I] . I] denotes 
the norm of L2(R). 

We further introduce some function spaces. Set 

(2.1) H:,(Q) = (7~ c Ill(R) : u = 0 on r,]. 
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We define the norm of II;, (62) by 

Under condition (1.16), this norm is equivalent to the usual one induced by H1 (12) (see 
[Liu]). Let the “history space” L2(g: (0. m), (IT:, (62))“) consist of (II;, (fit))“)-valued 
functions w on (0, m) for which 

(2.3) IlwIl:‘(y.(o.m),(H~, ($2))“) = . I “=kM~ll:H:, (R))“dS < ‘cc 

Set 

(2.4) ‘FI = (H;,(q)‘” x (P(q)” x L2(f2) x L2(g, (0: cm). (II;, (q)‘“), 

with the energy norm 

where K denotes the positive constant in (Hs), that is, 

.oo 

(2.6) K=l- 
.I 

g(t)& > 0. 
0 

We further introduce three constants as follows. Set 

(2.7) 

where m(x) is given by (1.12). Let y be the smallest positive constant such that 

Let X0 be the best constant in Poincare’s inequality [DL, p.1251, namely, the smallest 
positive constant such that 

For each time t we may regard u and 6, as elements of function spaces. Accordingly, 
we suppress their argument z E W” from the notation. 
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Consider the thermoviscoelastic system with a boundary velocity feedback 

d’ - ,LLAU - (X + h)Vdivu 
+pg * Au + (X + b)g + Vdivu + aV6 = 0 in R x (0, co), 

19’ - A6’ + ,Ddiv u’ = 0 in R x (O,oo), 
o=o on I? x (0, cc), 

(2.10) u=o on Ii x (0,oo). 

pz(u - g * u) + (X + b)vdiv(u - g * r~) 
+am . Y(U - g * u) + m . vu’ = 0 on r2 x (0, co), 

u(0) = u”> u’(0) = 72, 8(O) = o” in 0, 
. u(0) - u(-s) = wO(s) in 51 x (0, LX). 

We will prove that problem (2.10) is well-posed in Section 3. In fact, we will prove 
that system (2.10) generates a strongly continuous semigroup S(t) of contractions on ‘FI. 
Further, in order to ensure that the solution 1~ of (2.10) has sufficient regularity, in this 
paper, we suppose that 

(2.11) r, n Ti, = 0. 

Under this assumption, we have 

(2.12) u E C([O, CQ), (JJ2vw). 

This regularity property is needed for the proof of the following theorem. 
The thermoviscoelastic energy E(u, 8, t) of (2.10) is defined by: 

(2.13) ECU, 0, t) = IIW, u’(t), w, u(t) - u(t - 4)ll; 

= e4)ll$f;1 (a))- + ;[ll~Y)l12 + ;lls(~)ll’l 

+ 
I’ -0 O” .9(s)lb(t) - u(t - s)ll&I:, (n))Js 

= WllfH;, (n))- + ;Llla)ll’ + ;ils(t)l121 

t + 
.I’_, 

g(t - sN@) - 4afiY;, (n))Js. 

By a straightforward calculation, we obtain 

(2.14) E’(u,, 8, t) = J t -02 
g’(t - 4lMG - 4)ll&;, (*))72 d‘s 

- 
I’ . r2 

rn. vlu’(t)12dr - ~l[Vt9(t)j12. 

Therefore, the energy E(u, 8, t) decreases in (0, oc), and what is more, we have the 
following exponential decay rate. This is our main result of this paper. 
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THEOREM 2.1. - Let rl and lY2 be given by (1.10) and (l.ll), respectively, 
satisfying (2.11). Let (1.16) hold. Suppose that the relaxation function 9 sati@es (HI), 
(Hz) and (Hs) and the following condition: 

(Hd) there exists a constant K > 0 such that for t E (0, m) 

(2.15) -G(t) = 

Zf the function U(X) satisfies 

g(s)ds 2 Kg(t). 

+ (2 - n)a]RoY”[l + (1 - K)“] < 6, for n 5 2, 

a < (n - 2)~ - 2R; ’ for n > 3, 

then there are positive constants M, w, independent of (u’, ul, do, w’), such that 

(2.18) E(u, 4, t) 5 ME(u, 4, O)eewt, vtto, 

for all solutions of (2.10) with ( u”, uI, 8’, w”) E Ii. Further, the positive constants M, w 
can be explicitly given by 

(2.19) M = MW1, 

(2.20) w = -T-l lnp(T), 

(2.21) P(T) = 
exp[ST/(l + SC,)](l - SCl)tc + 2sCsK 

fc(1 - &Cl) 
> 

(2.22) 

(2.23) 

(2.24) 

1+sc1 T=l+(i. ln 2(1+ SCl) 

(1 - SC1) : 

6 min 1 Ic 1 1 2Ly = -- 
4KC, + Cltc’ C,’ C,’ 2/X, + cd; > ’ 

Cl = max{cl, c2, c3), 

cl = 2Ro(2 - 6) + In - 2((2 - ts) + l> 

+ In - 2iq; - K) + Z]; 
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4Ro 
c3= -+A& 

lL 

(2.25) 
c2 = a2[8R;(2 - ~)/p + X32 - &)In - 2) + X;] 

4E 
1 

(2.26) 

(2.27) 

c 3 _ 2% I y2RoK2 - 41~ - 21+ 11 
P 4& 

+ 1 > 

c 
4 

= dO)k% + ~ln - 2l%] 
4EP 

(2.28) c, 1 + E + - - n 5 2, = C 21n 21~ + 2K(A)(l tc)ROy2, 
1 + E + 2172 - 2]e, n 2 3, 

K(A) = 
2A2R2 
---?! - (n - 2)A, 

CL 
A = zzttu(x), 

{ 4 

K-2K(A)R,,y2(l+(l-n)2) 
min 2(l+/jL-2,) ) 3+21n-2/+(1+2jn-21)(1-n) > ’ n 2 2, 

(2.30) O<&= 
mln 2(l+lf’.-2,)) 3+2,n-2,+(1;21n-2,)(l-rc) > ’ n 2 3. 

REMARK 2.2. - Note that condition (H4) implies that the relaxation function g(t) decays 
exponentially. If the decay rate of g is weaker, we do not know if Theorem 2.1 still holds. 

REMARK 2.3. - Conditions (2.16) and (2.17) on the function U(X) imply that a can not 
be very large. If a is large, whether or not Theorem 2.1 still holds is an open problem. 
However, for the Lame system 

I 

U” - pAu - (X + p)Bdiv u = 0 in R x (O,co), 
u=o on I1 x (0, oo), 

au 
pLdV + (A + p)vdivu + am. vu + m . vu’ = 0 on I’2 x (0, cc), 
u(0) = UO, u’(0) = u1 in 0, 

this problem has been solved (see [Liu]). Thus, it is plausible to conjecture that Theorem 
2.1 should hold for large a as the energy of the thermoviscoelastic system may dissipate 
faster than the Lame system due to the additional dissipation of thermal energy and the 
viscous dissipation mechanism. 

REMARK 2.4. - Whether or not Theorem 2.1 holds if (2.11) fails is also an open problem. 
For the wave equation, this is true in the case where n 5 3 (see [KZ]) because a key 
inequality has been established by Grisvard [Gri] for the solution of the wave equation 
with such boundary singularity. However, the similar inequality of Grisvard for the system 
of thermoviscoelasticity has not been proved yet in the literature. 

In addition, one could try to replace m(z) by a general vector field 1 = (il, . . . , In) 
as done for the wave equation in [Lagr]. But in the thermoviscoelastic system, 1 must 
satisfy the following 

(2.32) ]div(u. - g * u)]” - div(TL - g * U) 2 $$&(~i - g * u;) I 0. 
i,k=l 

As this inequality holds for all u E (Hi1 (0))n, it turns out that 1 has to be nearly equal to m. 
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3. Well-posedness 

The treatment of well-posedness of (2.10) is standard. For the sake of completeness, we 
give a brief discussion by using the theory of semigroups. For detailed discussion about 
the existence and regularity of a solution of viscoelastic system, we refer to [JR, RB, RL]. 

In order to use the theory of semigroups, we write (2.10) as follows: 

(3.1) 

r U” - K~AU - &.(A + h)VdivrL + CWVB 
--I-L Jd” g(s)Aw(t, s)ds 
-(X + h) sr g(s)Vdivw(t, s)ds = 0 

0’ - A0 + pdiv U’ = 0 
w(t, s) = u(t) - u(t - s) 
o=o 
u=o 

du 

in R x (0, co), 
in R x (O,oc), 
in 0 x (0, co) x (0, co)? 
on I x (0, co), 
on Ii x (0, cc). 

&pz + K(X + p)vdivu + &urn. 11~ 

+p Jooo g(s)Fds 
+(A + p)v Jo g(s)divw(t, s)ds 
+am . nJom g(s)w(t, s)ds + m . VU’ = 0 on rs x (0, cc), 

u(0) = z&O: u’(0) = 211, 8(O) = o” in R, 
, w(0, s) = wO(s) in R x (0,cc). 

Note that K. is given by (2.6). 
We define a linear unbounded operator A on ‘FI by 

A(u,IJ, 8, w) = (11, B(u, w) - crVt9, A0 - pdivv, u - w,), 

dW 
where w, = - and 

8.3 

B(u, w) = lchAu + IC,(X + p)Vdivu + p 
.I’l 

g(s)Aw(s)ds 
0 

+(X+/4 x 
I’ 

g(s)Vdivw(s)ds. 
. 0 

Set 

21(x, t) = ?L’(X, t); W(X> t, s) = u(x, t) - u(5, t - s): 

@ = (U, ‘U, 8,211). 

Then problem (3.1) can be formulated as an abstract Cauchy problem 
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on the Hilbert space ‘R for an initial condition Q(O) = (uol ul, Q”; w”). The domain of 
A is given by: 

D(A) = {(u, u,8, w) E 7-1 : 0 E H2(Cl) n H;(0), v E (H;, (CL’))~: 

tq- + &(A + p)vdivu + &am. vu 
au +P sy g(s) yds + (A + p)u .I” g(s)divw(s)ds 

0 0 

+am+v 
.I” 

g(s)w(s)ds + m . vu = 0 on !?2}, 
0 

where 

It is clear that D(A) is dense in ‘F1. 
To prove that A is dissipative, we need the following lemma. 

LEMMA 3.1. [KKK, p.4911 - If the function f : [0, a) 4 R is uniformly continuous 
and is in Ll(O,oo), then 

LEMMA 3.2. - Suppose that the relaxation function g satisjes (HI) and (Hz). [f 
w E Hl(g, (0, oo), (Hh, (S2))n) and w(0) = 0, then 

Ir’(s)llw(s)llPH~,(n,,n E -w-4 4 

and 
J& d411”(s)ll~H;1 (0))TI = 0. 

Proof. - For w E H’(g, (0, co), (IfhI(R) and w(O) = 0, we have 

It therefore follows that 
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which implies that for all t 2 0 

Thus 

On the other hand, for any 0 < s1 < s2 < cc, we have 

s(a4~2)ll&f;I (12))” - s(s1)II~M&f;, ((2))” = s .:” ~Ig(s)llw(s)l17H:~(il)).llds 

which, combining (3.2), implies that g(s)llw(s)[j~~;, (o)),, is uniformly continuous on 
[0, co). Hence Lemma 3.1 gives 

We denote by (., .) the inner product in L2(R) or (L*(R))“. 

LEMMA 3.3. -Let rl and IT2 be given by (1.10) and (l.ll), respectively, satisfying (2.11). 
Let (1.16) hold. Suppose that the relaxation function g satisfies (HI), (Hz) and (Hs). Then 
the operator A is dissipative and closed. 

Proof. - By a straightforward calculation, it follows from Lemma 3.2 that 

(Ah 21, fl, w), (7~7 21, fl, 4)~ 

= fi(w, u)(“;* (0))Tl + i(B(ul w) - nvfl, u) 

+ $j(Afl - Pdivw, fl) + (u - a, w)~~(~.(~,oo),(fq~ (0))~~) 

1 

=--I 2 r2 
m. h12dr - $w - sm4ill&I;, (c2))TL 1; 

-t 
J’ 0 

O3 S’(s)llW(S)ll;H~,~~r,,~~dS 
5 0. 

Thus, A is dissipative. 
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To prove that A is closed, let (u,, w,, fI,, w,) E D(A) be such that 

(G,G,&,w,) -+ (w~,~,w) in 7-l 

and 

367 

Then we have 

(3.3) 

(3.4) 21, + 2, in (L’(R))“, 

(3.5) 8, -+ 8 in L’(R), 

(3.6) 
and 

(3.7) 

(3.8) B(u,, w,) - aV8, + II, in (L2(R))“, 

(3.9) A8, - ,L?divv, + < in L2 (a), 

(3.10) %I - w,, + z in L2(g, (0, ~1, (G1(f12)Y). 

By (3.4) and (3.7), we deduce 

(3.11) v, + u in (H~l(0))” 

and 

(3.12) 21 = $0 E (H;l(R))“. 

By (3.9) and (3.11), we deduce 

(3.13) AO, + ,8divw + [ in L2(R), 

and consequently, it follows from (3.5) that 

(3.14) 8, -4 8 in H2(R) fl H;(R), 
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since A is an isomorphism from H’(0) n Hi (a) onto L*(R). It therefore follows from 
(3.9) and (3.14) that 

(3.15) ( = Ad - pdivu, 0 E H2(62) n H;(R). 

By (3.6) (3.10) and (3.1 l), we deduce 

(3.16) W, + 711 in P(g, (0, coo), (H;, (62))‘“) 

and 

(3.17) .z = w - w,, w E IP(g, (0, m), (IT;, (a))““), w(0) = 0. 

In addition, it follows from (3.3), (3.6) and (3.14) that 

(3.18) B(un: w,) - aV&, --f B(wJ) - ffV0 

in the sense of distribution. It therefore follows from (3.8) and (3.18) that 

(3.19) li, = B(u, ui) - oV8, B(u, w) E (L2(62))‘“, 

and consequently, 

(3.20) nu + 
/ 

O” g(s)w(s)ds E (IP(S2) n If;, (n)y, 
. 0 

since ,LLA + (X + PjVdiv is an isomorphism from H2 (62) n Hi1 (62) onto L2(f2). Moreover, 
by (3.11), (3.20) and the trace theorem (see [LM], Chap. l), we deduce that: 

dU 

+ P 8w(s) dTS> au -ddS + (A + pjv J (irn g(s)divw(s)ds 
*CU 

fUT7-L~U 
I 

g(s)w(s)ds + ml . uw = 0 on r2. 
t 0 

Thus, by (3.12), (3.15) (3.17), (3.19) and (3.20), we deduce 

Hence, A is closed. 0 

LEMMA 3.4. - The adjoint operator A* of A is also dissipative. 

Proof. - By a straightforward calculation, we can obtain 

g’(s) 
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where 

- (X + p) /W g(s)Vdivz(s)ds. 
Cl 

The domain of A* is given by 

a44 L?(s+- av ds + (A + CL)V g(s)divz(s)ds 

a77L ’ v 
s 

w g(s)z(s)ds - m . zqb = 0 on I?,}. 
0 

By a straightforward calculation, it follows from Lemma 3.2 that 

(A*($, +> I, 21, (4 lil, I, 4)~ 

5 0. 

Thus, A* is dissipative. q 
From Lemmas 3.3. and 3.4 and Corollary 4.4 in [Paz, p.1.51, we conclude that A 

generates a strongly continuous semigroup of contractions on X. Now an application of 
the theory of semigroups [Paz, Chap.41 gives: 

THEOREM 3.5. - Let rl and lY2 be given by (1.10) and (l.ll), respectively, 
satisfying (2.11). Let (1.16) hold. Suppose that the relaxation function g sutisjies (HI), 
(H2) and (I&). Then 

(i) for every initial condition (u’, Us, Q”, w”) E ‘H, problem (3.1) has a unique mild 
solution satisfying 

(74 ‘u, fl, ww) E C([O, 4; w. 

Moreover, we have for every t E [0, W) 

(3.21) IlMt), a), e(t), w(wi 5 IlbO, & o”, ~“Nw 

(i) For every initial condition (uO, ul, Q”, w”) E D(A), problem (3.1) has a unique 
classical solution satisfying 
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4. Proof of Main Result 

The idea of the proof of Theorem 2.1 is simple. It suffices to show that there exist 
positive constants T > 0 and 0 < p < 1 such that 

(4.1) E(u, 8. t) 2 pE(u, 8: O), Vt>T. 

However, the verification of (4.1) is generally not easy. Here we borrow the idea of 
the Lyapunov method to prove it. It is well known that the Lyapunov method is quite 
useful tool to treat the problem of stability for nonlinear dynamical systems and evolution 
equations (see [KKK, Wall). The key part of this method is the construction of a useful 
Lyapunov functional. Finding a Lyapunov function is easy, but finding a useful one not. 
The useful property of any Lyapunov functional is that its value can be shown to be 
nonincreasing along trajectories of solutions of a system and this property leads to many 
interesting conclusions. Therefore, we need to carefully construct a Lyapunov functional. 
In our situation, the Lyapunov functional we are going to construct actually is a generalized 
energy functional which is closely related to the energy functional E(u, 8: t). Such similar 
Lyapunov functional was constructed for the wave equation (see [Che, Lagi, Zau]), 
thermoelastic plate models (see [MZi, MZzJ) and others. As we will see, our Lyapunov 
functional does not exactly possess the properties that the Lyapunov functional defined 
for the nonlinear dynamical systems (see [KKK, Wall) has. Therefore, we may call our 
Lyapunov functional a generalized Lyapunov functional. 

In what follows, we assume the summation convention for repeated indices. 
Let U, 0 be the solution of (2.10) and 6 any positive number. We construct a Lyapunov 

functional V by 

(4.2) V(u, 8, t) = E(u, 8> t) + SJyu, 8, t), 

where 

(4.3) F(u,8J) = 
.I 

[a ‘. u,m . O(Ui - g * Ui) + (n - 2)U&; - g * Ui) + u;u@, 
R 

As we have assumed the summation convention, equality (4.3) means that 

F(u, 8, t) = 2 / [2uim V(Ui - g * Ui) + (n - a)U:(U; - g * Ui) + U~?&~. 
i=l ’ Q 

Let us recall some notation. By (( . (( we denote the norm of L2(0) or (L2(Q))n. The 
constants n, Ra, y and X0 are given by (2.6), (2.7), (2.8) and (2.9), respectively. 

In order to show that V is a generalized Lyapunov functional, we need to estimate 
V’(U, B, t). We begin with the following lemma: 

LEMMA 4.1. - Let lYl and r2 be given by (1.10) and (l.ll), respectively, satisjjkzg (2.11). 
Let (1.16) hold. Suppose that the relaxationfunction g satisfies (HI), (HZ) and (Ifs). Then 
we have 

(4.4) 
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for all solutions u,O of (2.10), where the positive constant C1, independent of u, 0, is 
given by (2.24). 

Proof. - It is easy to see that 

(4.5) 

t 
+ Ro J dt - 4Nml12 + IIV~i(41121~s 

= Ro(2 --;[[~:(t)l/~ + Rol(Vu;(t)(j2 t + Ro J g(t - s)llVu;(t) - Vu,(s) - vui(t)(12ds 
I Ro(2 --;~~u:(t)ll” + Ro(3 - 2~))~Vui(t)~~~ 

J 
t 

+ 2Ro g(t - s)llVu;@) - VUi(S)lJ2dS. 
-co 

Using (2.9), we obtain 

(4.6) I J u:(ui - g * ui)dzl 
R 

= I b ujuidz - J' 
-cc 

g(t - s)ds l u:(t)u;(s)q 

I ~ll4(W + $(t)l12x;I(n, 
1 t 

+ 2 _ SO - 4~11~::(~)112 + md~)ll;;l(n,l~~ I, 
<2--K. 
- -+4(t)l12 + x3; - “)ll~i(mI~,(n) 

J 
t + xg 

-cc SO - 4lldt) - m2,;,(c)~% 

and 

(4.7) 

Noting (2.24), we deduce from (4.5), (4.6) and (4.7) that 

which implies (4.4). 
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LEMMA 4.2. - Let g E L1(Opco). Set 

H(u, 0, t> 

J 1 
= $“:I” + pvuiv(ui - g w ui) + (A + ,u)divudiv(u - g * u)]dx 

and 

+ 
J 

am. vui(ui - g * ui)dr, 
r2 

(4.8) 

Then we have 

G(t) = - g(s)ds. 

(4.9) 

and 

(4.10) J t -cc g(t - ~)ll~(S)ll~~~I(12))“~~ 
d t 

=- J dt --oc 
G(t - s)llu(s)ll~~~lc~~~~~d~~ + (1 - ~)llu(t)Il$~,(12))“. 

Proof. - By straightforward calculation, we obtain 

(4.11) J 
t g(t - s)lIVu;(t) - Vu;(s)(12ds 

=; - r;)lJVui(t)J12 + i” g(t - s)((Vu;(s)l12ds 
ryj t 

-2 
JJ 

g(t - s)Vu;(t)Vui(s)dzds 
-cxz 12 

= -(I + K)lIvw(# + .I’_: g(t - 411~~i(4112d~ 

+ 2 Vui(t)V(u&) - g * ui(t))dx, 

and 

(4.12) J 
t g(t - s)llVw(s)l12ds -02 

=--- ft s_’ G(t - s)llVu&)l12ds + (1 - ~)l(V’lLi(t)l12. 
lx 
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Similarly, we have 

.I 
t 

g(t - s)ljdivu(t) - divu(s)lj2ds 
-m 

(4.13) = -(I + ~)jjdivu(t)ll” + /’ g(t - s)l)divu(s)l12ds 
30 

+ 2 
s 

divu(t)div(u(t) - g * u(t))&, 
n 

(4.14) I 
t 

g(t - a)([divu(s)((2ds 
. -cc 

d t =- 
/ dt . 

G(t - s)l(divu(s)(12ds + (1 - r;)lldivu(t)))2: 
-m 

(4.15) am. z&(t) - u;(s)12drds 

= -Cl+ fi) J,, am. vJu;(t)(2dr + am * I/IUi(s)(2dl?ds 
2 Lg@ - s)I, 

+2 am. YU;(t)(Ui(t) - g * ui(t))dI’, 

(4.16) .I” g(t - s) 1, am * +i(s)12drds 
-cc 2 

am. vlui(s)12dI’ds + (1 - 6) 
I 

am. vlUi(t)12dIY. 
. r2 

Hence, (4.9) and (4.10) follow from (4.1 l)-(4.16). 0 

LEMMA 4.3. - Let lTl and r2 be given by (1.10) and (l.ll), respectively, satisfying (2.11). 
Let (1.16) hold. Suppose that the relaxation function g satisfies (HI), (Hz) and (Hz). Let 
U, 0 be the solution of(2.10). Z’thefinction u(x) satisfzes (2.16) and (2.17), then we have 

1 llV8(t))(2 + C, 
s 

m . y12C’12dlY 
rz 

- ~(~)ll~q, (fi))JS 

where the positive constants C2, Cs, 6’4, Cs are given by (2.25)-(2.28), respectively. 
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Proof. - By (4.3), we have 

(4.18) vu, 0, t) 

= 
s 

2uyrn. V(u; - g * u;)d2 + 2u:rn. V(ui - g * ui)‘dx 
R I R 

+ 
J 

(n - 2)(ui - 9 * u&‘dx + 
J 

(n - 2)u;(ui - g * ui)‘dx 
II R 

+ 
.I 

uiu;dx + Iju;II”. 
R 

We now estimate every integral in (4.18) as follows. Since u - g * u = 0 on PI, we have 

(4.19) 

Thus, we obtain 

(4.20) 2 
/ 

u:rn. V(ui - g * ui)dx 
.R 

= 2 1 [wJ(ui - g * w) + (A + p)&(div(u - g * u)) - ag] 
R 

x m . V(u; -g * u;)dx 

=P Jr 2z(ui r au - g * ui)m . V(u; - g * ui) - m . vJV(ui - g * ui))2]dr 

+ (n - qPlIv(~i - Y * UJII” 

+ (A + 4 .I 
-P+P)j 

2div(u - 9 * u) rnhv,&(ui - g * u;)dr 
k 

m . vldiv(u - g * u)12dr 

+ (n - 2)(X + p)(Jdiv(u - g * u)II” - 2~4~ / (m. V(u; - g * ui))gdx 
R 2 

= 1 m.u[~l~(~~~-g*rLi)/2+(X+/l)ldiV(u-g*u)12]dr (=II) 
r1 

+2 
.I[ ‘ 

r17 p$(ui - g * 1~;) + (A + p)vidiv(u - 9 * u)] m . V(ui - g * ui)dr 

- J m . u[plV(ui - 9 * ui)12 + (A + p)ldiv(u - g * u)12]dr (= 13) 
rz 

+ (n - q[Pllw4 - .9 * u;)l12 + (A + p)lJdiv(u - g * u>II”] (= 14) 

-2a 
J’ 

(m.V(ii;-g*u;))$$k (=&) 

= 11 + I,“+ 14 + 15 
1 

c 

-2 
I 

[am * v(u; - g * ui) + m . vui]m . V(ui - g * u;)dlY (= 12). 
l-2 
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Since rn, . v 2 0 on F1, we have 

(4.21) 

Since 

(4.22) 

we have 

(4.23) 

In addition, we have 

(4.24) 

.I 
t + 

--m 
g(t - S)[~llVUi(S)ll” + ~llvS(t)ll’jds 

I M)l/2H:$1) + 2a2R;f - K, ((ve(t)I,” 

fE .I t -c?z 
g(t - ~)llw$;l (c+ 

It therefore follows from (4.20)-(4.24) that 

(4.25) 2 
s 

uyrn. V(ui - g * ui)dz 
11 

L 

+ EIIf4Mq (0) + 2a2Rff - K, ,,myt),,” 

.I’ 
t 

+E go - ~)ll”i(mf;J~~~~~ 

+ (n $lPllv(~i(t) - g * ui(t))112 + (A + ~)lldiv(u(t) - g * 4t))l121. 

Since by (1.2) 

s 

t 

(4.26) -g(O) = g’(s)& = g’(t - s)ds, 
-cc 
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we have 

(4.27) 2 ’ 
J 

uirn. V(ui - y * ui)‘dz 
R 

+ 1: lg’(t - j:ll,&llu;(t),,2 + ~1lvu(t) - Vai(s)//2]ds 

= (E - n)llu;(t)l12 + i’ m. 1+L;12dr 
. I-2 

+ 2dwG t 

LLE .I 
--M ld(t - 4lIlW - m;;,(qdS. 

Using (2.8) and (2.9), we deduce 

(4.28) (n - 2). )L; - g * ui)u;dx 
I 

= (n - 2) / (Ui - 
. Cl 

g * ?Li) [/LA(Ui - g * Ui) 

+ (A + p)&(div(*L - g *u)) - *&]d:L. 

= (n - 2) J’ c;& - 
rn 

g * ui) + (A + p)v;div(u - g * u)] (TL; - g * ui)d~ 

- (n - qPllwi(~) - 9 * wW)l12 + 0 + ~WivW) - 9 * 4M121 
- (n - 2)a J (Ui - g * &z 

t 

ZY -(n - 2) /’ ; am. v(u; - g * ui) + m . VU:](u; - g * ui)dr 
. IT2 

- (n - ~>[Pllwi(~) - 9 * w(t>>l12 + (A + ~L>lldiv(4t) - 9 * 4t))l121 
- (72 - 2)a l g 14 - I” 

-cx 
g(t - S)Ui(<+L~] dz 

5 -(?z - 2) 
.I 

am. ~171~ - g * Ui12dr 
r9 
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- (7L - 2)[PlF7(74q - 9 * w(t))ll” + (A + ~cL)llW4t) - g * 4t))l121 

+ (7L - 21---- ‘“f,“; IlVW12 + &In - w(~)ll&;l(i~, 

5 -(7L - 2) 
s 

am. vlui - g * u;12dr 
r2 

+ In. - qY2&(2 - 6) 
4& I . I-2 

m . v)ui12dr + 2Eln - 2111u;(t)ll&1 (9 

+ 172 - 21a2%x2 - 4 Ip7Qt)I12 

4E 

+ 2&lTz - 21 
s 

t Se - MMyl (n)ds 

- (n - a)[pll&t) - 9 * udt>)l12 + (A + dlldivW - g * 4t))l121. 

Using (2.9) and (4.26), we obtain 

Similar to (4.28), we deduce 

(4.30) 
.I 

. u;uj’dz 
11 

= / ui [pA(ui - g * ui) + (X + p)&(div(u - g * u)) - a:] dz 
R z 

ZZ 
I’ [ 

ui 
. r2 

p&(ui - g * u;) + (A + p)vidiv(u - g * u)] dr 

- I [pvuJ@i - g * ui) + (A + p)divudiv(u - g * 2~)]d~ 
. 61 

=- s ui[am . Y(U; - g * ui) + m . vul]dI’ 
r2 

- J’ [pvuiv(ui - g * ui) + (A + p)divudiv(zl. - g * u)]dz 
Q 
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- 
s 

[PvuiV(uLLi - 9 * u;) + (A + p)divudiv(u - g * u)]dx. 

Noting definitions’(2.25)-(2.27) of C2, C,, C,, it therefore follows from (4.18) and 
(4.25)-(4.30) that: 

(4.31) F’(u, 0, t) 

5 - 
s 

[pVuiV(ui - g * ui) + (A + p)divudiv(u - g * u)]dx 
R 

am. vu;(ui - g * u;)dlY + [~(l + In - 21) - 1111~1(~>112 

+ $ /i G(t - ~~)IIui(s)II%;lco~ds 
. 00 

+ [E(l + 112 - 21) - ;] ll4(W + EC3 + 2ln - ~l)ll~dM7;, (a) 

. + c2pqt)ll” + G I 
m . vlu:12dr 

- r2 

+ c4 , 

(use (4.10)) 

TOMETI- 1998-No4 



THE EXPONENTIAL STABILIZATION OF THE HIGHER-DIMENSIONAL LINEAR SYSTEM 379 

5 -E(u, 8, t) + p2 + $1 Ipqt>l12 + (73 / m . vlu:12dI- 

r2 

s t -I- c4 --oo I& - 4lllw(~) - f4mf;Jnjds 

+ [I+ (E + % - 2141; i 03 G(t - ~)ll~i(~)lli;~~n~~s 

+ [&Cl + In - 21) - ;] ll~I(w (= fd 

+ k(3 + 2ln - 21) + (& + 2ln - 214(1 - 6) - “]ll”i(t)ll&;,(n) (= f2) 
2a2Ri 
- - (n - 2)a] Iu; - g * ?Ai12dlY (= f3). CL 

If n 2 3, then, by (2.17), we deduce that j’s < 0. In addition, by definition (2.30) of E, we 
have fl 5 0 and fi <_ 0. Hence, noting definition (2.28) of C,, (4.17) follows from (4.31). 

If n 5 2, then we estimate f3 as follows. Let K(A) be given by (2.29). Using (2.8), 
we deduce 

+ 2K(A)(l - K) / m . v 1’ g(t - s)(u;(~)(~dsdr 
rz -m 

I 2K(A)R~r211ui(t)ll~~1(,) 
+ 2K(A)(l- +GYY~ .I t SO - ~)ll~i(mI~&n)~~ 

= ‘=+Wk~“[l+ (1 - &i(t)ll&;l(n) (use (4.10)) 

+ L-(A)@- ~)Roy~$ -t .I ’ cc W - Wd~)l12,~l~~i~~~ 

Set 

(4.33) CG = ~(3 + 2(n - 21) + (E + 2ln - 21~)(1 - 6) - K + 2K(A)Ror”[l+ (1 - K)“]. 

JOURNAL DE MATHBMATIQUES PURES ET APPLIQUCES 



380 w. LIU 

It therefore follows from (2.28), (4.31) and (4.32) that: 

+ Hl + In - 20 - $4w (= fl) 
+ Gll~i(Mf~~ (62) (= f2), 

which implies (4.17) in view of definition (2.30) of E. cl 

LEMMA 4.4. - Let lYl and lT2 be given by (1.10) and (1.1 I), respectively, satisfying 
(2.11). Let (1.16) hold. Suppose that the relaxation function g satisfies (HI), (Hz) and 
(IIs). Assume that the function U(X) sutisjes (2.16) and (2.17). Let U? 0 be the solution 
of (2.10). If 

(4.35) O<Ssmin L A- 
{ 

2a 
c3: Cd’ apt, + ax; > ’ 

then we have 

(4.36) dqu,0,t) 5 -V’(u,0J) + sc,$ f 
I . 02 G(t - “)II?1(S)ll~~~1cr2,,~dS, 

where 

(4.37) 
6 

r==l+ 
and the constant Cl, 6’2, C’s, C’s are given by (2.24)-(2.28), respectively. 

Proof. - It follows from (2.14), (4.17) and (HZ) that: 

V’(u, 8, t) = E’(u, 0, t) + SF’(u, 0, t) 

2 -6E(u, 8, t) + [6(c2 + 3) - ;] pM(t>II” 

+ (SC3 - 1) J m . ~lu’[~dF 
r2 

+ (SC, - 1) 
I , -; I.& - 4llW) - wll&;,(n))Js 

+ bC& J 
t 

-cc G(t - ~~)ll~(s)ll~q, (n)pk 

which, combining (4.4) and (4.35), implies (4.36). 
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It is well known (see [KKK, Wall) that, for a dynamical system S(t),,u on a metric - 
space X, a Lyapunov functional usually has the following property 

(4.38) V’(S(t)z) 5 -W(S(t)2) 5 0, V’zEX, 

where W is a given function. Because in (4.36) there is an additional term 

the functional V does not satisfies (4.38). Thus, it is referred to as a generalized Lyapunov 
functional. 

We are now ready to prove Theorem 2.1. 

Proof of Theorem 2.1. - Multiplying both sides of (4.36) by ert and integrating from 
0 to t, we obtain 

(4.39) V(u, 0, t)eTt - V(u, 0,O) 

J 
t = SC5eTt 

-cc 
G(t - ~)/l~(~)ll~~:~(~)),d~ 

(use (H4) and note G(t - s) 5 0) 
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< 26&K +(u, 0,O) + 2SC5KE(u, 8,O) 

l-n 
+ 2SCsK-(e’i - l)E(u, 0,O) 

+ 26CsK(e’ - 1)-Q, d,O) 

= ~6CSKe’“E(u, 8,O). 

It therefore follows from (4.4) that 

and then 

(4.40) 

where 

(4.41) p(t) = 
epTt(l + SC~)K + 2SC5K 

6(1 -SC1) . 

If 6 is small enough and t is large enough so that 

(4.42) 

and 

(4.43) 

2SCE;K 1 
IF(1 - SC1) = z 

then p < 1. This holds if t = T and S are given by (2.22) and (2.23), respectively. Let 
S(t) be the semigroup generated by system (2.10). Then (4.40) implies that 

(4.44) IlW>ll L P. 

Let t = nT + s, 0 2 s < T. Then 

IMU 5 IIwllll~w)Il I IlsmII”II 5 MT))“? 

which implies that 

Ils(t)ll 5 MT))-le-“t> 
where 

(4.45) w = -T-l lnp(T) > 0. 

Hence, the proof of Theorem 2.1 is complete. 
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5. Further Comments 

If Ii = 0 and o(z) E 0, we first note that system (2.10) does not generate a semigroup 
in the following space with zero average 

?-I,={( u, v, 8, w) E (H’(q)” x (L”(fqn x L2(fl) x L2(g, (0>4> PYWY : 

&is = ~u(x)dz = ~w(r:s)dx = o}. 

To see this, we define the function 

Since 
f”(t) = l u”(t)& 

= 
s 

[pA(u - g * u) + (A + ,u)Vdiv (u - g * u) - aVO]dz 
R = s b 
r 

a(u if * u, + (A + p)div(U - g * U)V - c&v]dl? =- s m . vu’(t)dr, 
r 

f(t) and f’(t) may not be constants along the solution trajectories of (2.10). Thus, ‘Ra may 
not be invariant under the flow given by (2.10). Consequently, system (2.10) is unlikely 
to generate a semigroup. 

For the system of thermoelasticity, we have found a space invariant under the flow given 
by the system. This space is given by 

w = v x L2(R), 

where 

v = {(u,?J) E (H’(q)” x (L”(n)y : s m . vudlY + 
s 

vdz = 0). 
r R 

However, for the system of thermoviscoelasticity, it seems difficult to find such an 
invariant subspace. We can consider the following subspace: 

‘FI= {( u, 21,8, w) E (H1(R)y x (L2(R)y x L2(fl) x L2(g, (0,4, wl(wn) : 

This space does be invariant under the flow given by (2.10) if the boundary condition 
on lY2 of (2.10) is replaced by 

pg(u - g * u) + (A + p)vdiv(u - g * U) 

+ 
.I 

om g(s)w’(t, s)ds + m . vu’ = 0. 
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But bad things happen. The energy E(u, 0, t) may not decrease as 

g’(t - s)lldivu(t) - divu(s)j12ds 

- 
J’ 

Tn. vlu’(t)12dr - 
I-2 

may not always less than zero. Further, we do not know whether or not the energy 
norm on ‘FI is equivalent to the usual one induced by (HI (fl))lL x ( L2(R))” x L2( f2) x 
L2(g, (0, cc), (Hi(R))“) and whether or not system (2.10) with this boundary condition 
generates a semigroup. 

In conclusion, the case that Ii = @ and u(x) - 0 is open. 
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