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Abstract It has been observed that post-critically reflected S-waves and multiples from the
Moho discontinuity could play a relevant role on the ground motion due to medium to strong
size earthquakes away from the source. Although some studies investigated the correlation
between the Moho reflections amplitudes and the damage in the far field, little attention was
given to the frequency content of these specific phases and their scaling with magnitude. The
2012 Emilia seismic sequence in northern Italy, recorded by velocimetric and accelerometric
networks, is here exploited to investigate Moho reflections and multiples (SmSM). A single
station method for group velocity-period estimation, based on the multiple filter technique,
is applied to strong motion data to detect SmSM. Amplitude and frequency scaling with
magnitude is defined for earthquakes from Mw = 3.9 to Mw = 5.9. Finally, the ability of
SmSM to affect the ground motion for a maximum credible earthquake within the Po plain is
investigated by extrapolating observed engineering parameters. Data analysis shows that high
amplitude SmSM can be recognized within the Po plain, and at the boundaries between the
Po plain and the Alpine chain, at epicentral distances larger than 80km, in the period range
from 0.25 to 3s and in the group velocity window from about 2.6 to 3.2km/s. 5 % damped
pseudo-spectral accelerations at different periods (0.3, 1.0 and 2.0's), and Housner intensities,
are obtained from data characterized by large amplitude SmSM. A scaling relationship for
both pseudo-spectral accelerations and Housner intensities is found for the earthquakes of
the 2012 Emilia seismic sequence. Inics from VII to VIII is estimated, as a result of SmSM
amplitude enhancement, at about 100 km for a maximum credible earthquake (Mw = 6.7)
in the Po plain, showing that moderate to high damage cloud be caused by these specific
phases.
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1 Introduction

The Emilia seismic sequence of moderate-sized earthquakes started on May 2012, in northern
Italy (Po plain), where a thick (>2km) sedimentary alluvial deposits cover the external active
fronts of the Apennine belt (e.g. Pieri and Groppi 1981). Two major events shook the region on
May 20 (Mw 6.1, at 02:03 UTC) and May 29 (Mw 5.9, at 07:00 UTC). About 30 earthquakes
of magnitude above 4.0 were recorded in the first month of the sequence (© ISIDe Working
Group (INGV 2010), last accessed December 2012). Moment tensor (MT) solutions shows
predominantly reverse faulting, with a variable component of strike-slip (Pondrelli et al. 2012;
Sarao and Peruzza 2012), in agreement with the structural setting of the area, characterized
by north verging blind thrust faulting (Boccaletti et al. 2004).

In the near field, the strong ground motion recorded during the sequence, together with
the duration of the perturbation, caused casualties and severe damage to civil and industrial
structures, as well as to the historical and cultural heritage of the area (Piccinini et al. 2012).
Damage and seismic effects were also found far from the source at epicentral distances greater
than 50km (Galli et al. 2012). According to the web-based macroseismic survey, by Istituto
Nazionale di Geofisica e Vulcanologia (INGV) main shocks were felt in a large portion
of northern Italy, up to 200km (INGV, http://www.haisentitoilterremoto.it, last accessed
September 2012). Such a long-distance effect has been observed elsewhere by Liu and Tsai
(2009) and Eberhart-Phillips et al. (2010), suggesting large amplitude SmSM as the cause
for the damage and strong perception.

Previously, in central California, Bakun and Joyner (1984) found that the large positive
residuals in My, at distances between 75 and 125 km, could be a result of Moho reflections.
Few years later, Burger et al. (1987) published the attenuation relations of eastern North
America, which showed amplitudes in the distance range of 60—150km to be higher than
those at smaller and greater distances.

Bragato et al. (2011) pointed out how currently available peak ground motion predictive
equations largely underestimate the level of shaking in northeastern Italy, showing that the
Moho reflection effect is maximized at hypocentral distances between 90 and 150km.

Recently, Sugan and Vuan (2012) investigated the amplitude and frequency content of
SmSM, using a time-frequency analysis of accelerometric recordings, and evaluated the
transfer functions due to soft soils for SmSM considering a medium-sized inland Japanese
earthquake, where borehole and surface data were available. They showed that the spec-
tral amplitude enhancement for these specific phases is well correlated with National Earth-
quake Hazard Reduction Program (NEHRP) soil classification; the average transfer functions
between A + B and C sites, and C and D sites are both enhanced by a factor of about 2.

The Po plain region is only recently instrumented by strong motion stations, and for the
first time the 2012 Emilia seismic sequence gives an opportunity to study wave propagation
and SmSM generated and recorded within the deep basin. The method described in Sugan
and Vuan (2012) is here applied to some earthquakes of the seismic sequence to identify
the SmSM amplitudes and their scaling with magnitude within a specific frequency range.
SmSM amplitude enhancement was analysed in term of peak ground acceleration (PGA)
by Bragato et al. (2011) using earthquakes at hypocentral depths of about 20 km, localized
at the edge of the Po plain, along the Apenninic chain. The case study of the 2012 Emilia
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seismic sequence is of particular interest to understand if amplitude enhancement at specific
distances due to SmSM can be observed also for earthquakes located within the Po plain and
at shallower depth than those previously investigated in Bragato et al. (2011).

The method adopted does not require any manual picking of the waveforms, or need an a
priori well-known structural model. Nevertheless, we compute some synthetic seismograms
using a simple 1D velocity model (Vuan et al. 2011), to verify the consistency between
synthetic and observed SmSM travel time arrivals. The computation strengths the recognition
of SmSM, performed in the frequency-time domain on the basis of multiple filter technique
(MFT).

For evaluating if a far strong earthquake characterized by large amplitude SmSM can
affect the ground motion, we perform an estimation of the spectral accelerations (SAs) and
Housner intensities (SI) of observed data in the moment magnitude range from Mw = 3.9 to
Mw = 5.9. Macroseismic intensities at about 100 km from the source are then extrapolated
from SAs and SI parameters, assuming a maximum credible earthquake, in the Po plain
(northern Italy).

2 Multiple filter technique applied to the 2012 Emilia seismic sequence

The method described in Sugan and Vuan (2012) is applied to the dataset recorded in the
northern Italy during the 2012 Emilia seismic sequence, to identify the SmSM amplitude
enhancement. The procedure uses a single station method for group velocity-period estima-
tion, based on the MFT. A comb of narrow band filters with varying central frequency is
applied to the signal. Instantaneous spectral amplitudes are then displayed in terms of time
and frequency (group velocity and period). MFT analysis allows the recognition of different
seismic phases (surface waves, body waves, high frequency scattered waves) in the group
velocity-period domain, where SmSM can be described as a superposition of higher modes
of surface waves (Oliver and Ewing 1957, 1958).

MFT is performed using the code developed by Herrmann (2013) and computed in the
group velocity and period range from 0.1 to 7km/s and 0.1-30s, respectively. Further details
on the SmSM detection technique can be found in Sugan and Vuan (2012), where the method
is validated by using synthetic seismograms and observations.

The 2012 Emilia seismic events that have been selected in this study are listed in Table 1.
The earthquakes are variable in magnitude but are consistent in terms of focal mechanism
solutions (e.g. Sarad and Peruzza 2012) and depths, allowing the analysis to avoid possible
significant differences in the seismic source radiation pattern. The selected earthquakes are
clustered near the 29 May (Mw 5.9, at 07:00 UTC) event, and all have hypocentral depths
above 11 km (© ISIDe Working Group (INGV 2010), last accessed December 2012).

The main shock that occurred on 20 May, 2012 (Mw 6.1, at 02:03 UTC) has not been
accounted for the analysis, since it clearly shows a complex pattern of rupture, with at least
two separate pulses (Piccinini et al. 2012), whose combination could bias our analysis.

Earthquake locations and seismic stations are shown in Fig. 1, together with the location
of the seismic section A—A’, used in this study to evaluate SmSM travel time arrivals.

We use velocimetric data from INGV (Istituto Nazionale di Geofisica e Vulcanologia) and
OGS (Istituto Nazionale di Oceanografia e Geofisica Sperimentale) and accelerometric data
from INGV (Massa et al. 2012), located in the distance range from 0 to about 250 km from
the epicentral area (see Sect. 6).

All the velocimetric waveforms are corrected for the instrumental responses and then
differentiated to obtain accelerograms on which the analysis is performed. Horizontal com-
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Table 1 Earthquakes used in this study

List of the analyzed earthquakes

ID Date Lat. Long. Dep. Ml Strike Dip Rake Mo Mt Mw
yyyymm/dd — (N)  (E)  (km) ©) ©) ©) (Nm) Dep.
Time (UTC) (km)

1 2012/05/20 44.860 11.095 10.0 4.9 279(98) 64(26) 90(89) 3.70e+16 8 5.0

03:02:50

2 2012/05/23 44.868 11.251 4.8 4.3 271(105) 57 (33) 83(101) 1.47e+14 6 4.1
21:41:18

3 2012/05/29 44851 11.086 10.2 5.8 274(97) 64(26) 89(93) 7.66e+17 6 59
07:00:303

4 2012/05/29 44901 10943 3.2 45 279(97) 68(22) 91(88) 9.4le+l5 6 4.6
08:25:51

5 2012/05/29 44.888 11.008 6.8 5.3 269 (105) 65(26) 83(105) 2.28e+17 6 5.5
10:55:57

6  2012/05/31 44.891 10980 8.7 4.2 97(280) 49 (41) 92(-88) 7.l1le+14 10 3.9
19:04:04

Locations are taken from ISIDe (© ISIDe Working Group (INGV 2010), Italian Seismological Instrumental
and parametric database), MT solutions are taken from Sarad and Peruzza (2012)

ponents are rotated to provide radial and transverse components. The rotation is performed
to better identify SmSM on MFT diagrams as superposition of Love or Rayleigh higher
modes (transverse and radial components, respectively). Depending on the radiation pattern
the energy is differently split on the two components. Figure 2 shows an example of the MFT
diagrams obtained for the transverse component of two earthquakes, recorded by SANR
accelerometric station (see Fig. 1 for location), at a distance of about 95-97 km. The trans-
verse component in Fig. 2 has spectral amplitude values greater than the radial component.
The largest SmSM spectral amplitudes are clearly found at group velocities of about 3 km/s,
while low amplitude surface waves are found at lower group velocities (about 2km/s) and
longer periods. Surface waves amplitudes can enhance at a disadvantage of SmSM ampli-
tudes by using velocities or displacements instead of accelerations in the analysis (see Sugan
and Vuan 2012).

The existence of the SmSM domain can be detected predominantly in the azimuth range
0°-90°, in agreement with Bragato et al. (2011) for northeastern Italy. Propagation of these
kind of waves seems to be more efficient than elsewhere. Lg waves, at the same, propagate
efficently within the Po plain that is included in the Adriatic plate (Mele et al. 1997). Both
SmSM and Lg waves can be interpreted as a superposition of higher modes of surface waves,
even if Lg are found on longer source-receiver paths than SmSM.

Single station MFTs are used trying to highlight the distance-period window where SmSM
are relevant. Figure 3 shows the corresponding normalized spectral amplitude for all the
stations in the northeastern sector (source-receiver azimuth from 0° to 90°), as a function of
period versus distance in the 0.1-5s period range, for the two earthquakes that occurred on
May 20 at 03:02:50 (Mw 5.0), and on May 29 at 07:00 UTC (Mw 5.9). These two events
are consistent in MT solutions and epicentral parameters, even if they are slightly different
in MT focal depth (see Table 1).

Alarge amplitude SmSM domain can be recognized from about 80 to 160 km, at periods up
to 3 and 2 s for the Mw 5.9 and Mw 5.0 events, respectively. The enhancement of amplitudes
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Ligurian Sea
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Fig. 1 Location map of the earthquakes shown in Table 1 (white stars) and of the seismic stations used
in this study. OGS seismic stations (black triangles), INGV velocimetric seismic stations (black circles) and
INGV accelerometric seismic stations (white squares) (see Sect. 6). Seismic section A—A’ is located at the
boundaries between the Po plain and Alpine chain. The epicenter of the historical earthquakes occurred in
1117, 1695, 1920 and 1976 are shown (see text for details). The MT solution of the strongest event (ID 3 in
Table 1) is mapped (Sarad and Peruzza 2012). Map created using Wessel and Smith (1991)

Group velocity (km/s)
Group velocity (km/s)

0.198E+00 5.744B-02

0.1 1 10 0.1 1 10
Period (s) Period (s)
Fig.2 MFT analysis on SANR acceletometric INGV seismic station (transverse components are shown). a
Mw 5.9 event (ID 3 in Table 1); b Mw 5.0 event (ID 1 in Table 1). Color scale is in dB; red represents 100 dB.

Dotted black symbols show the maximum coherence of the signal on MFT diagrams. The waveform of the
analyzed signal and the maximum amplitude value are shown

at specific distances has been associated with an efficient propagation of SmSM in this portion

of the crust where the Moho discontinuity shows a variable depth range from 25 to 35km
(Finetti 2005) and an evident impedance contrast exists between the upper crust and the Moho.
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Fig. 3 Normalized spectral amplitude as a function of distance and period for the radial and transverse
components together. a 29 May, Mw 5.9 (at 07:00 UTC), analysis in the azimuth 0°-90°; b 20 May, Mw
5.0 (at 03:02 UTC), analysis in the azimuth 0°-90°. S represents upgoing S waves and SmSM represents the
critical and postcritical reflected SmS. Each black bar at the bottom of each graph represents a seismic station
at that specific distance

In general, the SmSM amplitudes are enhanced especially when earthquakes occur close
to the Moho boundary, therefore for earthquakes deeper than those of the 2012 Emilia seismic
sequence SmSM amplitudes can be even larger.
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Fig. 4 ZOVE (accelerometric INGV seismic station) spectral amplitude-period graph (a), and spectral
amplitude-velocity graph (b) for earthquake in Table 1, transverse (T) component. See Fig. 1 for station
location

3 Moho reflections at single stations

The enhancement of SmSM at specific distances is controlled by the crustal thickness,
earthquake depth, and source radiation pattern, and clearly shows regional variations (e.g.
Somerville and Yoshimura 1990; Furumura 2001; Liu and Tsai 2009; Eberhart-Phillips et al.
2010).

In the azimuthal range from 0° to 90° in the northeastern Italy, ZOVE, SANR and ASOL,
located at distances of about 75, 95 and 123 km respectively are characterized by the largest
amplitude SmSM.

For each period (from 0.1 to 30s) the maximum MFT amplitude (and the corresponding
group velocity) is taken and the spectral amplitude-period and spectral amplitude-velocity
values are visualized for each station and each seismic event of Table 1 (Figs. 4, 5, 6). The
transverse component is shown since it has spectral amplitude values higher than the radial
one.

The MFT spectral amplitude-period graphs (see Figs. 4a, 5a, 6a) clearly shows almost
three distinct domains: (1) the first is related to the arrival of S-waves (periods lower than
1's); (2) the second to the arrival of SmSM (periods up to 23 s); and (3) the third to the long
period surface waves (periods above 3 s and apparent velocity lower than 2.3km/s). From
ZOVE (at a distance of about 75km) to ASOL (at a distance of about 123km), the energy
distribution varies (Figs. 4, 5, 6), and the maximum amplitude pick shifts from S-wave at
ZOVE station to SmSM phases at SANR station, located at about 95 km (Fig. 5).

The highest SmSM amplitude is recorded by SANR station. This station is located along
the seismic section A—A’, in an area characterized by an efficient SmSM propagation, at
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Fig. 5 SANR (accelerometric INGV seismic station) spectral amplitude-period graph (a), and spectral
amplitude-velocity graph (b), for earthquake in Table 1, transverse (T) component. See Fig. 1 for station
location

the boundary between the Po plain and the Alpine chain. Site class of SANR according to
Eurocode8 (EC8) is C.

By analyzing MFT diagrams of SANR station we can observe that as the magnitude
increases, the pick amplitude shifts towards longer periods, while surface waves amplitude
also enhances in the range from 3 to 10s (see Fig. 5a). Lower frequencies are normally
associated with larger earthquakes. Similar findings are, generally, common to all the stations
located along the A—A’ section. Figure 5b shows the SANR spectral amplitude-velocity
domain dataset. Large amplitude SmSM have group velocities from 2.6 to 3.1 km/s. The shift
observed in the apparent velocity range between the Mw 5.9 and the Mw 5.0 events, could
be related both to uncertainties in defining the origin time of the events, and/or to possible
slight differences in hypocentral depths among the events. A common depth of about 10 km
is reported in the preliminary locations (© ISIDe Working Group (INGV 2010), last accessed
December 2012), while moment tensor available solutions indicate a deeper hypocenter for
the Mw 5.0 event (see Table 1) respect to the other events (Pondrelli et al. 2012; Sarad
and Peruzza 2012). However, group velocities lower than 2.3 km/s, that can be associated
with surface waves amplitudes, show a consistent frequency range for the Mw 5.9 and Mw
5.0 events (Fig. 5b). Reflected waves that are characterized by a sub-vertical propagation,
are more sensitive to lateral heterogeneities and are probably more influenced by different
hypocentral source depth, than surface waves travelling mainly in the horizontal plane. This
could explain the velocity shift observed for SmSM for the Mw 5.9 and the Mw 5.0 events.

The spectral amplitude-period relationships, for the two events of Mw 5.9 and 5.0 in
Table 1, are analyzed along the A—A’ seismic section for the transverse component. In Fig. 7
the maximum spectral amplitude is reached at a distance of about 50km (OPPE), and is
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Fig. 6 ASOL (accelerometric INGV seismic station) spectral amplitude-period graph (a), and spectral
amplitude-velocity graph (b), for earthquake in Table 1, transverse (T) component. See Fig. 1 for station

location
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Fig.7 Spectral amplitude-period graphs for the events that occurred (a) on May 29, Mw 5.9 (at 07:00 UTC)
and (b) on May 20, Mw 5.0 (at 03:02 UTC). See Fig. 1 for earthquakes and station locations. The transverse
components are shown

related to low velocity surface waves. SANR station (EC8 class C site) clearly recorded
higher amplitudes than the nearer ZOVE station (EC8 class A site); in this case, amplitude
values are related both to SmSM (see Fig. 5) and local site effects.
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Table 2 Velocity model (Vuan et Velocity model

al. 2011)
Thickness (km) Vp (km/s) Vg (km/s) Qp Qs
0.5 1.5 0.6 20 10
0.5 2 1.2 200 100
0.5 2.42 1.4 200 100
1.5 3.9 2.25 600 300
2 4.75 2.75 1000 500
15 6.05 3.5 1000 500
10 6.8 3.93 1000 500
20 7.7 441 1000 500
50 7.7 431 1000 500
50 7.7 4.21 1000 500
50 7.7 4.31 1000 500
Half-space 7.79 4.41 1000 500

To evaluate travel time arrivals between synthetic and observed group velocities, we
perform some numerical simulations using the Wavenumber Integration Method (WIM;
Herrmann 2013). WIM computes synthetic seismograms for a point source described by its
focal mechanism, seismic moment, and depth, solving the full-wave equation in anelastic
media, with an horizontally layered structure. We adopted the 1-D crustal model proposed
by Vuan et al. (2011), which includes 7 crustal layers and Q factors, and the Moho at 30km
(Table 2). Furthermore, we used the focal mechanism of the Mw 5.0 event, so that the point
source approximation is still acceptable. The strike, dip and slip angles of the two nodal planes
are those obtained by Sara0 and Peruzza (2012): 279°, 64° and 90° for the first plane; 98°,
26° and 89° for the second plane. We set the source depth at 10km, and assume a source time
function of 0.8s, to compute synthetic accelerograms for frequencies up to 4 Hz. Receivers
are placed at the surface, corresponding to recorded data along the A—A’ seismic section,
at epicentral distances from 50 to 200km. Figure 8 shows the comparison of synthetic and
observed accelerations for the radial and transverse components. The SmSM observed travel
time arrivals are characterized by an apparent velocity in the range from 2.6 to 3.2km/s
(dashed lines in Fig. 8) and are consistent with synthetic SmSM travel times. The match
between waveforms can be considered satisfactory, even in terms of Q crustal structure.

4 Can SmS reflections and multiples cause damage in and around the Po plain?

The maximum expected magnitude in northern Italy and surroundings can be defined from
“Catalogo Parametrico dei Terremoti Italiani (CPTI)” (Rovidaetal. 2011) and by the Database
of Individual Seismogenic Sources (DISS) 3.1.1 (DISS Working Group 2010; Basili et al.
2008). According to the seismogenic zonation of Italy, and the historical seismic events
selected in the Italian macroseismic catalogs (e.g., Stucchi et al. 2007; Locati et al. 2011),
the stronger historical events in the surrounding of the 2012 Emilia seismic sequence are:
(1) the 1117 Mw = 6.7 Veronese earthquake; (2) the 1695 Mw = 6.5 Asolo earthquake;
and (3) the 1920 Mw = 6.5 Garfagnana earthquake (Fig. 1). In particular, the strongest
event is associated with the debated source of the January 3, 1117 earthquake; that has been
hypothesized to be either a segment of the Eastern South-Alpine chain on the Veneto plain
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Fig.8 Observed (a, ¢) and synthetic (b, d) accelerations for the radial and transverse components along the
section A—A’ in Fig. 1. The apparent velocities of 2.6 and 3.2km/s are represented by dashed lines. SmSM
phases are generally included in the apparent velocity fan. The same band pass filter from 0.2 to 4 Hz is applied

(shown in Fig. 1), east of the Lessini chain (Galadini et al. 2005), or a blind thrust of the
northern Apennine chain near Cremona (Galli 2005).

Using data from SANR accelerometric station and for the events in Table 1 we estimate
the 5 % damped SAs at the periods of 0.3, 1.0 and 2.0, and SI in the range from 0.1 to 2.5s
(Housner 1952).

SAs can be related to the MCS macroseismic intensity (Iyvcs) using the available period
dependent regression (Faenza and Michelini 2011) while SI has been evaluated since it
has been recently considered a very effective parameter to correlate the severity of seismic
events with building structural damage (Pergalani et al. 1999; Masi et al. 2010; Chiauzzi
et al. 2012). For SI both Iycs and European Macroseismic Scale—EMS98 intensity (Igms,
Griinthal 1998) are evaluated.
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Fig. 9 SANR SAs (0.3, 1 and 25) as a function of Mw. The values at Mw 6.7 are extrapolated using a linear
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Fig. 10 SANR SI as a function of Mw. The values at Mw 6.7 are extrapolated using a linear fit

A linear fitting is tried to extrapolate SAs and SI for an earthquake of Mw = 6.7, the
maximum expected magnitude (Figs. 9, 10). In Table 3 we list the SAs values observed for
Mw = 5.9 and the extrapolated ones for the maximum credible earthquake (Mw = 6.7).
MCS intensity is determined using the regressions developed by Faenza and Michelini (2011),
considering the maximum SA among the two horizontal components. The MCS values we
find for the Mw = 5.9 are 1° higher than those provided by the macroseismic study of the
2012 Emilia sequence by Galli et al. (2012). Inmcs = VII and Iyjcs = VIII can be obtained
at periods of 1 and 2, respectively, for a possible Mw = 6.7 earthquake.

In addition, we use the regressions between Iyjcs and SI (Koliopoulos et al. 1998) and Igms
and SI (Chiauzzi et al. 2012). The linear trend between Mw and SI is shown in Fig. 10, while
in Table 4 we list the SI values observed and extrapolated for Mw = 5.9 and Mw = 6.7. SI
values obtained for the Mw 5.9 fit the Iycs provided by Galli et al. (2012). Both regressions
in Table 4 pointed out a MCS and EMS9S intensity of about VII for a Mw = 6.7, indicating
that moderate to heavy damage from a strong earthquake can be expected at some critical
distances in northeastern Italy.
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Table 3 SAs values obtained for

the Mw 5.9 (SANR stationand >/ IMCS

event ID 3 in Table 1) and Mw SAs (s) logl0 SAs IMcs o (Imcs)

extrapolated for a Mw 6.7 (cm/s/s)

earthquake (see Fig. 9) and the

corresponding value of Iycs 5.9 0.3 1.79 5.66 VI 0.53

calculated using the regression of

Faenza and Michelini (2011) 10 1.26 370 Vi 0.36
2.0 1.02 6.35 VI 0.29

6.7 0.3 2.38 7.12 VII 0.53

1.0 2.09 7.40 VIl 0.36
2.0 2.03 8.37 VIII 0.29

Table 4 SI values obtained for the Mw 5.9 (SANR station and event ID 3 in Table 1) and extrapolated for
a Mw 6.7 earthquake (see Fig. 10) and the corresponding value of Iyjcs calculated using the regression of
Koliopoulos et al. (1998) and Igys using Chiauzzi et al. (2012)

SI-Ipmcs and SI-Igms

Mw SI Imcs IEms

cm In (cm) log10 (cm) Koliopoulos et al. (1998) Chiauzzi et al. (2012)
5.9 6.53 1.88 0.815 4.77 \% 5.28 \'%
6.7 38.90 3.66 1.59 7.00 VII 6.65 VII

Generally, the ability or not of some engineering parameters to correlate with MCS inten-
sity has to be evaluated specifying the spectral range. Riddel (2007) showed that acceleration
related indices are the best for rigid systems, velocity-related indices are better for interme-
diate period systems, and displacement-related indices are better for flexible systems. Rigid,
intermediate, and flexible systems can be characterized by periods of about 0.2, 1, and 5s,
respectively (Riddel 2007). Since our study focuses on SmSM, propagating far from the
source, with maximum spectral amplitudes in the period range from 0.25 to 3, it is not
surprising that MCS intensity is better correlated with SI than period dependent SA. Other
studies (Decanini et al. 2002; Masi et al. 2010) have demonstrated that SI can be an effective
parameter to correlate the severity of seismic motions to structural damage, particularly in
cases of existing non-ductile reinforced concrete buildings.

To have a further evidence of our results we consider the macroseismic field of the 1976
Mw = 6.5 Friuli earthquake in northeastern Italy (Fig. 1). The Italian Macroseismic Database
(Locati et al. 2011) for the Friuli earthquake presents four localities at distances consistent
with a possible SmSM amplitude enhancement with Iyjcs = VI—VII in agreement with
Imcs values (Tables 3, 4) extrapolated from the 2012 Emilia seismic sequence. The same
macroseismic catalogue shows also that Inyjcs = VIIIhas been previously reached in northern
Italy at an epicentral distance of about 100km for the 1117 Mw = 6.7 Veronese earthquake,
even if historical data are poorly constrained.

5 Discussion and conclusions
Using a previously developed and validated procedure (see Sugan and Vuan 2012), we identify

and investigate the SmSM amplitude and frequency domain scaling with magnitudes (Mw
from 3.9 to 5.9) observed in the northern Italy during the 2012 Emilia seismic sequence.
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High amplitude SmSM reflections have been recognized at epicentral distances larger
than 80km, in the period range from 0.25 to 3s and in the group velocity window from 2.6
to 3.2km/s.

The SmSM propagate efficiently in the azimuth 0°-90° due to a combination of radia-
tion pattern, crustal properties, and local effects. Analyzing the events of the same seismic
sequence with consistent focal mechanisms and epicentral locations, we observe that as the
magnitude increases, the SmSM pick amplitude shifts towards longer periods, while similarly,
the surface wave amplitudes enhance in the period range from about 3 to 10s.

The amplitudes of different phases (S-waves, Moho reflections and multiples, surface
waves) are modulated with distance. Along a section characterized by efficient SmSM prop-
agation, at epicentral distances from about 75 to 123 km, the maximum amplitude pick shifts
from S to SmSM domain, with the largest SmSM amplitude enhancement at about 95km
(SANR station, ECS class C site). Comparing the peak ground acceleration value (PGA),
the pseudo-spectral accelerations and Housner intensity observed at SANR for the Mw 5.9
earthquake with ground motion prediction equation (Bindi et al. 2011) we find that PGA and
SA (15s) are increased by a factor of about 2-3 due to SmSM phases and a local site effect,
while SI is increased by a factor of about 1.3.

The ground motion pseudo-spectral acceleration and Housner intensity scaling with mag-
nitude at SANR station allow us to extrapolate the corresponding values for a Mw 6.7 earth-
quake: the maximum credible magnitude in northern Italy in the surroundings of the 2012
Emilia sequence.

The available regressions applied to some shallow earthquakes of the 2012 Emilia
sequence show that an average Inics = VII—VIII (moderate to high damage) can be expected
at distances of about 100km, for a Mw 6.7 earthquake at an ECS8 C site.

For the same magnitude, an event characterized by even deeper focal depth could show
larger SmSM amplitudes and therefore could further increase macroseismic intensities. An
additional enhancement should be expected for D sites, as pointed out by Sugan and Vuan
(2012).

6 Data and resources

We used data released from Istituto Nazionale di Geofisica e Vulcanologia (INGV) and
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS). OGS data include
other Italian and international institutions: e.g. the Province of Trento (Provincia Autonoma
di Trento) and Veneto Region in Italy; the Environmental Agency of the Republic of Slovenia
(ARSO); and the Austrian Central Institute for Meteorology and Geodynamics (Zentralanstalt
fiir Meteorologie und Geodynamik, ZAMG). The INGV data used in this work are available
at the Web addresses http://iside.rm.ingyv.it (© ISIDe Working Group (INGV 2010), Italian
Seismological Instrumental and parametric database, last accessed September 2012) and
http://ismd.mi.ingv.it/ismd.php.
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