Improved Sobolev inequalities on groups of Iwasawa type in presence of symmetry

Yang Qiaohua

Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences, Wuhan, People’s Republic of China

Received 1 June 2007
Available online 17 November 2007
Submitted by M.C. Nucci

Abstract

Let \(G \) be a simple Lie group of real rank one and \(N \) be in the Iwasawa decomposition of \(G \). We prove a refined version of the Sobolev inequality on \(N \) in presence of symmetry.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Simple Lie groups of real rank one; Cayley transform; Sobolev inequalities; Heisenberg type groups

1. Introduction

Let \(G \) be a simple Lie group of real rank one and \(N \) be in the Iwasawa decomposition of \(G \) with homogeneous dimension \(Q \geq 3 \) (see Section 2 for definitions and properties), and let us consider the following Sobolev inequality for the \(L^2 \)-norm of the gradient (see Folland [8]):

\[
\| \nabla_N f \|_2^2 \geq S_{\min} \| f \|_{2^*}^2, \quad \forall f \in S^1_0(N),
\]

for appropriate Sobolev space \(S^1_0(N) \), where \(2^* = \frac{2Q}{Q-2} \) be the critical Sobolev exponent, and \(S_{\min} \) be the best embedding constant. We are interested in the following question on \(N \): is there a natural way to bound the quantity

\[
\| \nabla_N f \|_2^2 - S_{\min} \| f \|_{2^*}^2
\]

from below in terms of the distance of \(f \) from the set of Sobolev minimizers?

The question in the case of \(N = \mathbb{R}^n \) is left by Brezis and Lieb [5] and a positive answer was given by Bianchi and Egnell [3]. The minimizers in (1.1) in the case of Heisenberg group have determined by Jerison and Lee in [11]. Loiudice [14] extended the results in [3] to the subelliptic context of Heisenberg group \(H_n \). In this paper, we consider the analogous question to the Kohn’s subelliptic context of \(N \) in presence of symmetry.

✩ This work was supported by the National Science Foundation of China under Grant #10571044.

E-mail address: qaohyang2465@yahoo.com.cn.

0022-247X/$ – see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2007.11.009
Let
\[U(\xi) = U(x, z) = k_0 \left(\left(1 + \frac{|x|^2}{4} \right)^2 + |z|^2 \right)^{-\frac{Q-2}{4}}, \quad \xi = (x, z) \in N, \] (1.2)
where the constant \(k_0 \) is chosen so that \(\| \nabla_N U \|_2^2 = 1 \). Let \(\mathcal{M} \) be the set of functions of the form
\[\varphi(\xi) = cU_{\lambda, \eta}(\xi) = c\lambda^{\frac{Q-2}{4}}U(\delta_\lambda(\tau_\eta^{-1}(\xi))), \]
where \(c \in \mathbb{R}, \lambda \in \mathbb{R}^+, \delta_\lambda \) is the natural dilations and \(\tau_\eta : N \to N \) is the operator of left-translation \(\tau_\eta(g) = \eta \circ g \). Thus the set \(\mathcal{M} \) is a \((\dim N + 2)\)-dimensional manifold embedded in \(S_0^1(N) \) by means of map
\[\mathbb{R} \times \mathbb{R}^+ \times N \ni (c, \lambda, \eta) \mapsto cU_{\lambda, \eta} \in S_0^1(N). \]
Let
\[S = \frac{\| \nabla_N U_{\lambda, \eta} \|_2^2}{\| U_{\lambda, \eta} \|_2^2} = \frac{\| \nabla_N U \|_2^2}{\| U \|_2^2}. \] (1.3)
Recall that for some constant \(c \), \(cU_{\lambda, \eta}(\xi) \) is a solution of the Yamabe-type equation on \(N \) (see [9, Theorem 1.1]). A simple calculation gives us
\[\Delta_N U_{\lambda, \eta} + S^{\frac{2^*}{2}}U_{\lambda, \eta}^{2^* - 1} = 0. \] (1.4)
Define the distance between \(\mathcal{M} \) and a function \(f \in S_0^1(N) \) as
\[d(f, \mathcal{M}) = \inf_{u \in \mathcal{M}} \| \nabla_N (f - u) \|_2 = \inf_{c, \lambda, \eta} \| \nabla_N (f - cU_{\lambda, \eta}) \|_2. \]
Observe that
\[d\left(c\lambda^{\frac{Q-2}{4}} f \circ \delta_\lambda \circ \tau_\eta, \mathcal{M} \right) = |c|d(f, \mathcal{M}). \]
We say that a function \(u : N \to \mathbb{R} \) has partial symmetry (with respect to a point \(\eta_0 \in N \)) if there exists a function \(\tilde{u} : N \to \mathbb{R} \) such that for every \(\eta \in N \), one has \(\tau_\eta u(\eta) = \tilde{u}(|x|, z) \). If \(u \) has partial symmetry and is a positive entire solution to the following Yamabe-type equation:
\[\Delta_N u + S^{\frac{2^*}{2}}u^{2^* - 1} = 0, \] (1.5)
then we must have \(u = U_{\lambda, \eta} \) for some \(\lambda \in \mathbb{R}^+ \) and \(\eta \in N \) (see [9]).

We denote by \(S_{ps}(N) \) the subset of \(S_0^1(N) \) of the functions having partial symmetry. In this paper we prove the following.

Theorem 1.1. There exists a positive constant \(\alpha \), depending only on the dimension \(Q \), such that
\[\| \nabla_N f \|_2^2 - S\| f \|_2^2 \geq \alpha d(f, \mathcal{M})^2, \quad \forall f \in S_{ps}(N). \]
Furthermore, the result is optimal in the sense that it is false if the remainder term is replaced by \(d(f, \mathcal{M})^\beta \| \nabla_N f \|_2^{2-\beta} \), with \(\beta < 2 \).

A key argument in the proof of the theorem is the study of the eigenvalues of the following problem:
\[-U_{\lambda, \eta}^{2^* - 2^*} \Delta_N v = \mu v, \quad v \in S_0^1(N), \] (1.6)
which will be proved in Section 4 by using the Cayley transform and the spherical principal series representation of \(G \).

Remark 1.2. Garofalo and Vassilev [9] conjecture that the only positive entire solution of the Yamabe-type equation (1.5) is, up to group translations and dilations, \(U \) given by (1.2). If true, we could work with the space \(S_0^1(N) \) instead of \(S_{cyl}^1(N) \) in the proof of Theorem 1.1, which would provide a generalization of the result of [3] and [14] to the setting of groups of Iwasawa type.
2. Notation and preliminaries

We begin by describing the Lie groups and Lie algebras under consideration. A Heisenberg type group N is a Carnot group of step two with the following properties: the Lie algebra n of N is endowed with an inner product $\langle \cdot, \cdot \rangle$ such that, if \mathfrak{z} is the center of n, then $[\mathfrak{z}, \mathfrak{z}] = \mathfrak{z}$ and moreover, for every fixed $z \in \mathfrak{z}$, the map $J_z : \mathfrak{z}^\perp \to \mathfrak{z}^\perp$ defined by

$$J_z(\omega_1), \omega_2) = \{z, [\omega_1, \omega_2]\}, \quad \forall \omega_1, \omega_2 \in \mathfrak{z}^\perp,$$

(2.1)
is an orthogonal map whenever $\langle z, z \rangle = 1$.

We set $m = \dim \mathfrak{z}^\perp$ and $n = \dim \mathfrak{z}$. Since N has step two and since the stratification of the Lie algebra \mathfrak{g} is evidently $\mathfrak{z}^\perp \oplus \mathfrak{z}$, in the sequel we shall fix on N a system of coordinates (x, z) and that the group law has the form

$$(x, z) \circ (x', z') = \left(\sum_{i=1}^{m} x_i + x'_i, \sum_{j=1}^{n} z_j + z'_j + \frac{1}{2} \sum_{i=1}^{m} U^{(j)}(x)x'_i, \quad j = 1, 2, \ldots, n \right)$$

(2.2)

for suitable skew-symmetric matrices $U^{(j)}$, $j = 1, 2, \ldots, n$.

The following theorem can be found in [4].

Theorem 2.1. N is a Heisenberg type group if and only if N is (isomorphic to) \mathbb{R}^{m+n} with the group law in (2.2) and the matrices $U^{(1)}, U^{(2)}, \ldots, U^{(n)}$ have the following properties:

(1) $U^{(j)}$ is an $m \times m$ skew symmetric and orthogonal matrix, for every $j = 1, 2, \ldots, n$;

(2) $U^{(i)}U^{(j)} + U^{(j)}U^{(i)} = 0$ for every $i, j \in \{1, 2, \ldots, n\}$ with $i \neq j$.

An easy computation shows that the vector field in the algebra n of $N = (\mathbb{R}^{m+n}, \circ)$ that agrees at the origin with $\frac{\partial}{\partial x_j}$ ($j = 1, \ldots, m$) is given by

$$X_j = \frac{\partial}{\partial x_j} + \frac{1}{2} \sum_{k=1}^{n} \left(\sum_{i=1}^{m} U^{(k)}_{i,j} x_i \right) \frac{\partial}{\partial z_k},$$

and that n is spanned by the left-invariant vector fields

$$X_1, \ldots, X_m, \quad Z_1 = \frac{\partial}{\partial z_1}, \ldots, Z_n = \frac{\partial}{\partial z_n}.$$

A simple calculation gives us (see e.g. [4])

$$[X_i, X_j] = \sum_{r=1}^{n} U^{(r)}_{i,j} Z_r$$

(2.3)

and hence we obtain, by (2.1) and (2.3),

$$J_z x = \sum_{r=1}^{n} \sum_{i=1}^{m} z_r x_i J_z (X_i) = \sum_{r=1}^{n} \sum_{i=1}^{m} z_r x_i \left(\sum_{j=1}^{m} U^{(r)}_{i,j} X_j \right)$$

$$= \sum_{j=1}^{m} \left(\sum_{r=1}^{n} \sum_{i=1}^{m} z_r x_i U^{(r)}_{i,j} X_j \right),$$

(2.4)

where

$$z = (z_1, \ldots, z_n) = z_1 Z_1 + \cdots + z_n Z_n,$$

$$x = (x_1, \ldots, x_m) = x_1 X_1 + \cdots + x_m X_m.$$
We denote $\nabla_{N} = (X_{1}, \ldots, X_{m})$. The Kohn’s sublaplacian on the Heisenberg type group N is given by (see [4])

$$
\Delta_{N} = \sum_{j=1}^{m} X_{j}^{2} = \sum_{j=1}^{m} \left(\frac{\partial}{\partial x_{j}} + \frac{1}{2} \sum_{k=1}^{n} \left(\sum_{l=1}^{m} U_{j,i}^{(k)} x_{l} \right) \frac{\partial}{\partial z_{k}} \right)^{2}
$$

$$
= \Delta_{x} + \frac{1}{4} |x|^{2} \Delta_{z} + \sum_{k=1}^{n} (U^{(k)} x, \nabla_{x}) \frac{\partial}{\partial z_{k}},
$$

where

$$
\nabla_{x} = \left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{m}} \right), \quad \Delta_{x} = \sum_{j=1}^{m} \left(\frac{\partial}{\partial x_{j}} \right)^{2}, \quad \Delta_{z} = \sum_{k=1}^{n} \left(\frac{\partial}{\partial z_{k}} \right)^{2}.
$$

When $\lambda > 0$ we define the homogeneous dilation δ_{λ} on N by $\delta_{\lambda}(x, t) = (\lambda x, \lambda^{2} t)$. It is easy to check that δ_{λ} is a group automorphism. We write Q for the homogeneous dimension of N, i.e., $Q = \text{dim} \mathfrak{z} + 2 \dim \mathfrak{z} = m + 2n$.

It is known that a Heisenberg type group N is the Iwasawa N-group of a real rank one simple Lie group if and only if its Lie algebra satisfies the J^{2}-condition (see e.g. [7]). We shall henceforth assume that this condition holds.

We write S for the unit sphere in $\mathfrak{z}^{1} \oplus \mathfrak{z} \oplus \mathbb{R}$, i.e.,

$$
S = \{(x', z', t') \in \mathfrak{z}^{1} \oplus \mathfrak{z} \oplus \mathbb{R} : |x'|^{2} + |z'|^{2} + |t'|^{2} = 1\}.
$$

The Cayley transform $C : N \rightarrow S$, introduced in [6], is given by (see e.g. [1])

$$
C(x, z) = \frac{1}{\mathcal{B}(x, z)} \left(\mathcal{A}(x, z) x, 2z, -1 + \frac{|x|^{4}}{16} + |z|^{2} \right)
$$

$$
= \frac{1}{\mathcal{B}(x, z)} \left(x + \frac{|x|^{2}}{4} x - Jz x, 2z, -1 + \frac{|x|^{4}}{16} + |z|^{2} \right), \quad (2.5)
$$

where $\mathcal{A}(x, z)$ and $\mathcal{A}(x, z)$ denote the linear maps $1 + \frac{|x|^{2}}{4} + Jz$ and $1 + \frac{|x|^{2}}{4} - Jz$, respectively, and the real number $\mathcal{B}(x, z)$ is defined by

$$
\mathcal{B}(x, z) = \left(1 + \frac{|x|^{2}}{4} \right)^{2} + |z|^{2}. \quad (2.6)
$$

Its inverse $C^{-1} : S \setminus \{o\} \rightarrow N$ is given by

$$
C^{-1}(x', z', t') = \frac{1}{(1 - t')^{2} + |z'|^{2}} \left(2(1 - t') + Jz' \right) x', 2z'.
$$

Here o stands for $(0, 0, 1)$. Note that if $(x', z', t') = C(x, z)$, then

$$
\mathcal{B}(x, z) = \frac{4}{(1 - t')^{2} + |z'|^{2}}.
$$

When the dependence on (x, z) in N is clear, we just write \mathcal{A}, \mathcal{A} and \mathcal{B}.

The Jacobian determinant $J_{C^{-1}}$ of the map C^{-1} is given by (see e.g. [2])

$$
J_{C^{-1}}(\xi) = \frac{d\mathcal{B}^{-1}(\xi)}{d\sigma(\xi)} = \left(\frac{4}{(1 - t')^{2} + |z'|^{2}} \right)^{Q / 2}
$$

for all $\xi = (x', z', t') \in S \setminus \{o\}$, where σ denotes the standard measure on the sphere. Clearly

$$
J_{C} = J_{C^{-1}} \circ C = \mathcal{B}^{-Q / 2} = \left(\left(1 + \frac{|x|^{2}}{4} \right)^{2} + |z|^{2} \right)^{-Q / 2}. \quad (2.7)
$$

We obtain, by (1.2), (2.6) and (2.7),
\[U(\xi) = k_0 B^{-\frac{Q}{2}} = k_0 J_{\xi}^{\frac{1}{2} - \frac{1}{2}}, \]
\[U(\xi)^{1-2^*} = k_0^{-2} B^{-\frac{Q+2}{2}} = k_0^{-2} J_{\xi}^{\frac{1}{2} - \frac{1}{2}}. \] (2.8)

For real \(\beta \), we define the homogeneous Sobolev space \(S_0^\beta(N) \) to be the completion of \(C_c^\infty(N) \), the space of smooth functions with compact support on \(N \), with respect to the norm
\[\| f \|_{S_0^\beta(N)} = \left((-\Delta_N)^{\beta} f \right)^{\frac{1}{2}}_N = \left((-\Delta_N)^{\frac{\beta}{2}} f \right)_2, \quad \forall f \in C_c^\infty(N), \]
where \(\langle \cdot, \cdot \rangle_N \) denotes the usual inner product on \(L^2(N) \).

As in [2], we shall denote by \(W_j \) the vector field
\[W_j = \frac{\mathcal{C}_* X_j}{|\mathcal{C}_* X_j|} = J_{\xi}^{\frac{1}{2}} (\mathcal{C}_* X_j), \quad j = 1, \ldots, m, \]
and the sublaplacian \(\mathcal{L} \) on \(S \) by
\[\langle \mathcal{L} f | f \rangle_S^{\frac{1}{2}} = \sum_{j=1}^m (W_j f | W_j f)_S, \quad \forall f \in C_c^\infty(S). \]

In the real case, when \(\dim Z = 0 \), the operator \(\mathcal{L} \) is the Laplace–Beltrami operator on the Euclidean sphere. In the complex case, when \(\dim Z = 1 \), the operator \(\mathcal{L} \) is the laplacian considered by Geller [10] on the complex sphere.

The sublaplacian \(\Delta_N \) and \(\mathcal{L} \) are linked by the equality (see e.g. [1])
\[J_{\xi}^{\frac{1}{2} - \frac{1}{2}} (-\Delta_N) (J_{\xi}^{\frac{1}{2} - \frac{1}{2}} f \circ \mathcal{C}) = \left((\mathcal{L} + b) f \right) \circ \mathcal{C}, \quad \forall f \in C_c^\infty(S), \] (2.9)
where
\[b = \frac{(Q - 2)}{4} \cdot \dim Z^{\frac{1}{2}}. \] (2.10)

Definition 2.2. For real \(\beta \), we define the Sobolev space \(S_0^\beta(S) \) to be the completion of the space of smooth functions on \(S \), with respect to the norm
\[\| f \|_{S_0^\beta(S)} = \left((\mathcal{L} + b)^{\beta} f | f \right)^{\frac{1}{2}}_S = \left((\mathcal{L} + b)^{\frac{\beta}{2}} f \right)_{L^2(S)}, \quad \forall f \in C_c^\infty(S). \]

An important property of these Sobolev spaces is the following (see [1]).

Theorem 2.3. Let \(-\frac{Q}{2} < \beta < \frac{Q}{2} \). The map
\[T_\beta: f \mapsto J_{\xi}^{\frac{1}{2} - \frac{\beta}{2}} f \circ \mathcal{C} \]
is a bounded invertible operator from \(S_0^\beta(S) \) to \(S_0^\beta(N) \).

In particular, we shall work with the spaces \(S_0^1(S) \), \(S_0^1(N) \) and the space of cylindrically symmetric functions of \(S_0^1(N) \), namely in
\[S_{cyl}^1(N) = \{ u \in S_0^1(N): u(x, z) = u(|x|, z) \}. \]
Let us also observe that \(S_{cyl}^1(N) \) is a Hilbert space endowed with the scalar product \((u, v) = \int_N \nabla_N u \cdot \nabla_N v \, dx \, dz \).

3. The Fourier transform on \(K/M \)

Let \(G \) be a simple Lie group of real rank one. We refer to [12,13] for the spherical principal series of \(G \). Given an Iwasawa decomposition \(KAN \) of \(G \), we write \(M \) for the centralizer of \(A \) in \(K \). Then \(MAN \) is a parabolic subgroup and \(S \) may be identified with \(K/M \) (see [1]).
Let \(\hat{K} \) denote the set of equivalence classes of irreducible finite-dimensional representations of \(K \). For an irreducible representation \((\pi_\tau, V_\tau) \in \hat{K}, \) set
\[
V_\tau^M = \{ v \in V_\tau : \pi(m)v = v, \forall m \in M \}.
\]
It is known that
\[
L^2(K/M) = \bigoplus_{(\pi_\tau, V_\tau) \in \hat{K}} V_\tau^M.
\]
In the degenerate case where \(\dim \mathfrak{z} = 0 \), provided that \(\dim \mathfrak{z} \perp \geq 2 \), the subspaces of spherical harmonics of degree \(d \) are \(K \)-invariant and irreducible. For every \(d \in \mathbb{N} = \{0, 1, 2, \ldots\} \), we denote by \(\tau_d \) the corresponding class one representation.

In the other cases, the space of spherical harmonics of a given degree are not always irreducible. One has to restrict attention to so-called bigraded spherical harmonics. Roughly speaking, to any class one representation there corresponds a pair of integers \((d_1, d_2) \). When \(\dim \mathfrak{z} = 1 \) (the complex case) we consider \((d_1, d_2) \in \mathbb{N}^2 \). When \(\dim \mathfrak{z} = 3 \) (the quaternionic case) or \(\dim \mathfrak{z} = 7 \) (the octonionic case), we consider only pairs of integers \((d_1, d_2) \in \mathbb{N}^2 \) where \(d_1 \geq d_2 \geq 0 \).

Define the sublaplacian \(\mathcal{L}^\sharp \) on \(K/M \) by
\[
\mathcal{L}^\sharp f^\sharp = (\mathcal{L} f)^\sharp, \quad f \in C^\infty(S).
\]
We see that (see e.g. [1]), in the real case (where \(\dim \mathfrak{z} = 0 \)),
\[
(\mathcal{L}^\sharp + b)^\wedge (\tau_d) = \left(\frac{Q}{2} - 1 + d \right) \left(\frac{Q}{2} + d \right),
\]
while in the other cases,
\[
(\mathcal{L}^\sharp + b)^\wedge (\tau(d_1, d_2)) = \left(\frac{Q}{2} - 1 + 2d_1 \right) \left(\frac{\dim \mathfrak{z} \perp}{2} + 2d_2 \right).
\]
Since \(\mathcal{L}^\sharp \) is \(M \)-invariant, it acts on \(V_\tau \) by scalar multiples, say
\[
\mathcal{L}^\sharp Y_\tau = \lambda_\tau Y_\tau, \quad Y_\tau \in V_\tau^M,
\]
then
\[
\lambda_\tau = (\mathcal{L}^\sharp + b)^\wedge (\tau) - b.
\]
We obtain, by (2.10), (3.2) and (3.3),
\[
\lambda_{\tau(d_1, d_2)} = \left(\frac{Q - 2}{2} + 2d_1 \right) \left(\frac{\dim \mathfrak{z} \perp}{2} + 2d_2 \right) - \frac{(Q - 2)^2}{4} \cdot \dim \mathfrak{z} \perp.
\]

4. The main results

In the following lemma, we calculate the first and second eigenvalues of (1.5) and the corresponding eigenspaces.

Lemma 4.1. Let \(\mu_i, \ i = 1, 2, \ldots, \) be the eigenvalues of (1.5) given in increasing order. Then

1. \(\mu_1 = S^{2^*} \) is simple with eigenfunction \(U_{\lambda, \eta} \);
2. \(\mu_2 = S^{2^*}(2^* - 1) \) has multiplicity \((\dim N + 1) \) with corresponding eigenspace spanned by \(\{ \partial_{\eta} U_{\lambda, \eta}, \nabla_{\eta} U_{\lambda, \eta} \} \).

Furthermore, the eigenvalues do not depend on \(\lambda \) and \(\eta \).

Proof. A simple scaling argument shows that the eigenvalues do not depend on \(\lambda \) and \(\eta \). Hence we may assume that \(\lambda = 1, \eta = 0 \) and consequently \(U_{\lambda, \eta} = U \). We want to study the eigenvalue problem
\[
-\Delta_N v = \mu U^{2^*-2} v, \quad v \in S_0^1(N).
\]
Now we consider the linear map \(T : S^1_0(\mathbb{S}) \rightarrow S^1_0(N) \) defined by
\[
T(u)(\xi) = U(\xi)u(c^2(\xi)), \quad u \in S^1_0(\mathbb{S}), \quad \xi \in N.
\]
According to Theorem 2.3, the map \(T \) is an isometry from \(S^1_0(\mathbb{S}) \) to \(S^1_0(N) \). Let \(u \in S^1_0(\mathbb{S}) \) and let \(T(u) \) be a solution of (4.1). Then we obtain, by (2.2), (2.9) and (4.1),
\[
(L + b)u = J_{c^2}^{-1/2}(-\Delta_N)(J_{c^2}^{-1/2}u)
= k_0^{2\sigma-1}U(\xi)^{1-2\sigma}(-\Delta_N)(k_0^{-1}U(\xi)u)
= k_0^{2\sigma-2}U(\xi)^{1-2\sigma}(-\Delta_N)(T(u))
= \mu k_0^{2\sigma-2}U(\xi)^{1-2\sigma}U(\xi)^{2\sigma-2}T(u)
= \mu k_0^{2\sigma-2}u.
\]
Therefore
\[
(L)u = (\mu k_0^{2\sigma-2} - b)u = \tilde{\mu}u,
\]
where
\[
\tilde{\mu} = \mu k_0^{2\sigma-2} - b.
\]
By (3.4), the first eigenvalue \(\tilde{\mu}_1 = 0 \) (in this case we have \(d_1 = 0 \) and \(d_2 = 0 \)) is simple with corresponding eigenfunction the constant function. Hence, by means of the isometry \(T \), we obtain that the first eigenfunction of (4.1) is \(U \), corresponding to the eigenvalue \(S^2 \) according to (4.1).

The second eigenvalue \(\tilde{\mu}_2 = \dim \mathbb{S}^\sigma \) (in this case we have \(d_1 = 1 \) and \(d_2 = 0 \)) is \((\dim N + 1) \)-dimensional with corresponding eigenspace spanned by the \(K \)-spherical harmonics of degree 1 restricted to \(\mathbb{S} \), i.e., the function \(\{x_1, \ldots, x_m, z_1, \ldots, z_n, t\} \) restricted to \(\mathbb{S} \).

Let \(\eta = (\eta_1, \ldots, \eta_m, w_1, \ldots, w_n) \in N \). We obtain
\[
U_{\lambda, \eta} = \lambda \Omega^{\sigma_2} \frac{1}{U(\partial_{(\tau_{\eta^{-1}})(\xi)})} = k_0 \lambda \Omega^{\sigma_2} \frac{1}{\left(1 + \frac{|x|^2}{4} \right)^{1/2} + |z|^2} \frac{1}{2} \left(1 + \frac{|x|^2}{4} \right) x_j + \sum_{r=1}^n z_r \left(-\sum_{i=1}^m U^{(r)}_{j,i} x_i\right)
\]
Since \(U^{(j)} \) is an \(m \times m \) skew symmetric matrix, for every \(j = 1, 2, \ldots, n \), we obtain, by a simple calculation,
\[
\frac{\partial U_{\lambda, \eta}}{\partial y_j} \bigg|_{\lambda=1, \eta=0} = -\frac{Q-2}{4} U(\xi) \left(1 + \frac{|x|^2}{4}\right)^{1/2} + |z|^2 \left(2 + \frac{|x|^2}{4}\right) x_j - \frac{1}{4} \sum_{r=1}^n z_r \sum_{i=1}^m U^{(r)}_{j,i} x_i
\]
\[
\frac{\partial U_{\lambda, \eta}}{\partial w_r} \bigg|_{\lambda=1, \eta=0} = -\frac{Q-2}{4} U(\xi) \left(1 + \frac{|x|^2}{4}\right)^{1/2} + |z|^2 \left(2 + \frac{|x|^2}{4}\right) (-2z_r)
\]
\[
\frac{\partial U_{\lambda, \eta}}{\partial \lambda} \bigg|_{\lambda=1, \eta=0} = -\frac{Q-2}{4} U(\xi) \left(1 + \frac{|x|^2}{4}\right)^{1/2} + |z|^2 \left(2 + \frac{|x|^2}{4}\right) \left(2 + \frac{|x|^2}{4} + 4|z|^2\right)
\]
\[
= -\frac{Q-2}{4} U(\xi) \left(1 + \frac{|x|^2}{4} + |z|^2\right).
\]
Therefore, by (2.4) and (2.5),
\[
\frac{Q-2}{4} \cdot T(x'_j) = \left. \frac{\partial U_{\lambda, \eta}}{\partial y_j} \right|_{\lambda=1, \eta=0}, \quad j = 1, \ldots, m, \\
\frac{Q-2}{2} \cdot T(z'_r) = \left. \frac{\partial U_{\lambda, \eta}}{\partial w_r} \right|_{\lambda=1, \eta=0}, \quad r = 1, \ldots, n, \\
-\frac{Q-2}{2} \cdot T(t') = \left. \frac{\partial U_{\lambda, \eta}}{\partial \lambda} \right|_{\lambda=1, \eta=0}.
\]

Now observe that, by (1.4),
\[
\Delta_N \frac{\partial U_{\lambda, \eta}}{\partial y_j} + S \frac{u}{2^*} (2^* - 1) U_{\lambda, \eta}^{2^* - 2} \frac{\partial U_{\lambda, \eta}}{\partial y_j} = 0, \quad j = 1, \ldots, m, \\
\Delta_N \frac{\partial U_{\lambda, \eta}}{\partial w_r} + S \frac{u}{2^*} (2^* - 1) U_{\lambda, \eta}^{2^* - 2} \frac{\partial U_{\lambda, \eta}}{\partial w_r} = 0, \quad r = 1, \ldots, n, \\
\Delta_N \frac{\partial U_{\lambda, \eta}}{\partial \lambda} + S \frac{u}{2^*} (2^* - 1) U_{\lambda, \eta}^{2^* - 2} \frac{\partial U_{\lambda, \eta}}{\partial \lambda} = 0.
\]

Hence, by means of the isometry \(T \), we obtain that the second eigenvalue \(\mu_2 = S \frac{u}{2^*} (2^* - 1) \) and the corresponding eigenspace is spanned by \{\(\partial_\lambda U_{\lambda, \eta}, \nabla_\eta U_{\lambda, \eta} \}\). This completes the proof of the lemma. \(\square \)

Lemma 4.2. There exists a positive constant \(\alpha \), depending only on the dimension \(Q \), such that
\[
\| \nabla_N f \|^2_2 - S \| f \|^2_{2^*} \geq \alpha d(f, \mathcal{M})^2 + o(d(f, \mathcal{M})^2),
\]
for all \(f \in S^1_0(N) \) with \(d(f, \mathcal{M}) < \| \nabla_N f \|_2 \).

Proof. Recalling the results in Lemma 4.1, we can see that the proof is completely analogue to the context of \(\mathbb{R}^n \) [3] and subelliptic context of Heisenberg group \(\mathbb{H}_n \) [14]. \(\square \)

Proof of Theorem 1.1. The optimality of the result follows from the last part of the proof of the lemma above (see [3] and [14]). We note that it is enough to prove the following inequality:
\[
\| \nabla_N f \|^2_2 - S \| f \|^2_{2^*} \geq \alpha d(f, \mathcal{M})^2
\]
for all \(f \in S_{cyl}(N) \), the space of cylindrically symmetric functions of \(S^1_0(N) \). The proof is just the same as in [3] and [14]. These complete the proof of Theorem 1.1. \(\square \)

Acknowledgment

The author thanks the referee for his/her careful reading and very useful comments which improved the final version of this paper.

References