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Abstract

Exponentially fitted Runge—Kutta—Nystrom (EFRKN) methods for the numerical integration of second-order
IVPs with oscillatory solutions are derived. These methods integrate exactly differential systems whose solu-
tions can be expressed as linear combinations of the set of functions {exp(4¢),exp(—4it)}, A € C, or equivalently
{sin(wt),cos(wt)} when 1 =iw, w € R. Explicit EFRKN methods with two and three stages and algebraic
orders 3 and 4 are constructed. In addition, a 4(3) embedded pair of explicit EFRKN methods based on
the FSAL technique is obtained, which permits to introduce an error and step length control with a small
cost added. Some numerical experiments show the efficiency of our explicit EFRKN methods when they are
compared with other exponential fitting type codes proposed in the scientific literature.
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1. Introduction

In the last decade a great interest in the research of new methods for the numerical integration of
initial value problems

y”:f(tay)a IE[Z(),T],

y(to) = yo,  ¥'(t0) = ¥p, (1)

whose solution exhibits a pronounced oscillatory character has arisen. Such problems often arise in
different fields of applied sciences such as celestial mechanics, astrophysics, electronics, molecular

* Tel.: +34-976-762009; fax: +34-976-761886.
E-mail address: jmfranco@posta.unizar.es (J.M. Franco).

0377-0427/$ - see front matter (©) 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2003.09.042


https://core.ac.uk/display/81219213?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jmfranco@posta.unizar.es

2 J.M. Franco ! Journal of Computational and Applied Mathematics 167 (2004) 1—-19

dynamics, and so forth; and they can be solved by using general purpose methods or by using codes
specially adapted to the structure or to the solution of the problem. In the case of specially adapted
methods, particular Runge—Kutta (RK) algorithms have been proposed by several authors [1-3,5,
7-12] in order to solve these classes of problems. A pioneer paper is due to Bettis [2], in which
adapted RK algorithms with 3 and 4 stages for the integration of ODEs with oscillatory solutions are
presented. More recently, in [3,7,8] the construction of RK and RK—Nystrom methods which integrate
trigonometric polynomials exactly or which have zero phase error (phase-fitted methods) is consid-
ered. These authors derive families of two-stage RK methods and families of two and three-stage
RKN methods with trigonometric order 1 and algebraic order up to 6, but the main handicap of
these methods is that they are fully implicit. Next, Simos and coworkers [1,9] constructed explicit
RK methods which integrate certain first-order initial value problems with periodic or exponential
solutions. On the other hand, Vanden Berghe et al. [11,12] introduced other exponentially fitted
RK (EFRK) methods which integrate exactly first-order systems whose solutions can be expressed
as linear combinations of functions of the form {e*,e~*} or {cos(wt),sin(wt)}. In addition, these
authors have implemented a variable step code by using their four-stage explicit EFRK method [12]
with error and step length control based on Richardson extrapolation. This variable step code has
been improved in [5] by constructing an embedded pair EFRK4(3) which corresponds in a unique
way with the algebraic pair Zonneveld 4(3) given in [6].

Here, we analyze the construction of exponentially fitted Runge—Kutta—Nystrom (EFRKN) methods
based on an extension of the ideas proposed in [11,12] which have been recently used by Simos
[10]. Our goal is to obtain practical and efficient explicit EFRKN methods as well as local error
estimations that allow the implementation of these methods in a variable step code with a small
computational cost added. The paper is organized as follows: In Section 2 we introduce a class of
explicit EFRKN methods together with the appropriate conditions so that the functions {e*,e™*}
or {cos(wt),sin(wt)} can be integrated exactly by these methods. We also make a study of the
local truncation error, obtaining the order conditions (up to fifth order) for this class of methods.
In Section 3 we derive explicit EFRKN methods with two and three stages and algebraic orders 3
and 4 as well as a 4(3) embedded pair based on the FSAL technique. Finally, in Section 4 some
numerical experiments are presented to show the efficiency of our explicit EFRKN methods when
they are compared with other exponential fitting codes proposed in the scientific literature.

2. Explicit EFRKN methods

In [11,12], Vanden Berghe and coworkers have introduced a class of explicit EFRK methods that
integrate exactly differential systems whose solutions can be expressed as linear combinations of the
set of functions {exp(Az),exp(—At)} or equivalently {sin(wt),cos(wt)} when 1 =iw, w € R. This
means that the stage equations and the final step equation have to integrate exactly these sets of
functions (see [7]).

Here we intend to extend the ideas proposed in [11,12] to the case of RK—Nystrom methods.
In order to carry out this goal we introduce a modification in the s-stage classical explicit RKN
methods (s > 2), which have been recently used by Simos [10]:

g1 = yu + c1hyi(2)y), (2)
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i—1

gi = Yo+ ey yy + 1Y @) f(ty + cihigy),  i=2....s, (3)
j=1
Va1 = Yu +hyy + 1D bi(2) f (b + cih, g;). (4)
i=1
Yio1 = Yo+ > bi@) [ty + cihig),  z=ih, (5)

i=1
and may be expressed in Butcher tableau form as
ci|n(z)| 0
2| 72(2) | a21(2) 0

cly@)| Az) 3|12 |an(z) an(z) 0
b'(z) = : : .
b'(z) 1s(2) | aa(z) ap(z) - ags-1(2) 0
bi(z) baz) - bii(z) by(z)
biz)  ba(z) - b)) by(2)
Algorithm (2)—(5) coincides with an s-stage classical RK—Nystrom method when the coefficients
yi(z)=1, i =1,...,s, and the remaining coefficients are constant. So, the factors y;(z) are intro-

duced in the stage definition so that the family of functions {exp(Ar),exp(—A¢)}, or equivalently
{sin(wt),cos(wt)}, can be integrated exactly by the method. Then, if we impose that method (2)-
(5) is exact for differential systems whose solutions are y(#)=e**, and we bear in mind the meaning
of the stages g;, it is natural to consider that g; = y(t, +c;h) = e+ and f(t, +c;h, g;) = y"(t, +
cih) = A2t utal)  This leads to the following equations for the coefficients of the method

et =1 + ¢1291(2), (6)
i—1

e =1dem(z)+27 Y ay(2)e™, i=2,...5, (7)
j=1

e =14+z+47 Zl;,-(z)ei‘”, (8)

i=1
e =1£z) bi(z)e™, z=ih 9)
i=1

Having in mind the relations cosh(z) = (¢ 4+ ¢77)/2 and sinh(z) = (¢’ — e %)/2, Eq. (6) implies
that ¢c; =0 and y;(z) =1, and Egs. (7)—(9) can be expressed in the form
i—1

h(c;z) — 1
Za,-j(z)cosh(cjz) = %,
j=1 :
i—1 .
h(ciz) — cizy; .
Zaij(Z)Sinh(CjZ): sinh(c:z) 2 o (Z), i=2,...5s, (10)
z

J=1
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Zb (z) cosh(ciz) = % Zb (z)sinh(c;z) = Smh(z;) (11)
Z bi(z) sinh(c;z) = % Z bi(z) cosh(ciz) = Smh(z) (12)

i=1 i=1

The conditions defined by Eqgs. (10)—(12) characterize when an explicit RKN method (2)—(5) with
¢y =0 and y,(z) =1 is exponentially fitted, and therefore they will be denominated as exponential
fitting conditions (EF conditions). An explicit RKN method (2)—(5) with ¢; =0 and y,(z)=1, which
satisfies the EF conditions (10)—(12), will be denominated an explicit EFRKN method.

On the other hand, the structure of method (2)—(5) indicates that it produces the solution of y”" =0
exactly at the outer point ¢,,; of the one-step interval, irrespective of what are the coefficients (i.e.
the method reduces to y,.1 = y, + hy,, ¥,., = »,). So, the advance formulas (4) and (5) of an
explicit EFRKN method are exact for the functions: 1, ¢, Sl

In the trigonometric case (A=iw, w € R), z=1v with v=wh, and the EF conditions emerge having
in mind the relations cosh(iv) = cos(v) and sinh(iv) =isin(v). In this case, the advance formulas of
the EFRKN method are exact for the functions: 1, ¢, cos(wt), sin(wt).

2.1. Algebraic order of the EFRKN methods

Now, we made a study of the local truncation error for the EFRKN methods in order to obtain
the order conditions for this class of methods.

In the case of a classical RKN method, the local truncation error in the approximation of the
solution and its derivative may be expressed as

p—1
et = Y(tas1) = yupr = Y_W DT D @)FD(m)(y) | + O,
Jj=0 p(n)=j

P
e:l—s-l — y/(th) — y:l+1 = Zhl Z T (")(nz)FU)(nt)(yn) + (Q(hp'H),

J=0 p(n)=j

where 7, represents a Nystrom tree of order p(n;), FY)(n,;) denotes the elementary differential as-
sociated to 7, and the terms tU+"(n,) and 7/)(n,) depend on the coefficients of the RKN method.
So, an RKN method is of order p if

ent = O™, €y = O(h"),
or equivalently

V() =0, Vn, € N-trees, with p(n,) < p — 1,

r/(-/)(nt):0, Vn, € N-trees, with p(n,) < p

The terms U (n,) and 7 )(n,) and therefore the order conditions (up to order < 5) are tabulated
in [6]. In addition, if the row-sum conditions (usually imposed in the derivation of RKN methods)
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are satisfied, then the number of order conditions is simplified. The quantities
[ =GP ), 2P D@l PO = (1 ), T P D))

are denominated the principal terms of the local truncation error (see [4]).

In the case of EFRKN methods, the coefficients are step length dependent and therefore the
algebraic order conditions tabulated in [6] are not valid for these methods. In addition, as it can be
observed in [5,11,12], the exponentially fitted methods do not satisfy the row-sum conditions but
their coefficients are even functions of 4. So, in order to obtain the order conditions for EFRKN
methods, we consider the following assumptions

2

20)=e. A(0)e= . (13)

b(z) =B + PR + BV -, b(z) = b0 + bOR + 5 h (14)

p2)=e+yPn +yBht o A@) =AD + AP+ AV (15)
where e =(1,...,1)T and > =c-c=(c},...,cH)".

Using the assumptions mentioned above and following the way given in Hairer [6, pp. 143-148]
for obtaining the terms of the local truncation error, the order conditions for the EFRKN methods
(up to fifth order) are the following ones:

Order 1 requires:

pOTe =1. (16)
Order 2 requires in addition:

BOTe=1 pOTe=1 (17)

1
2’
Order 3 requires in addition:

pPTe=0, b= 3

BOTe=1. (18)
Order 4 requires in addition:

BTy =0, bs¥Tc=0,

HOTE3 — 1 pOT 40, _ 1

1
4 24>
BPTe=0, pOT*=1L. (19)
Order 5 requires in addition:
pHTe — 0 = pAT 2 = pOT 42 HOT 4 — L
BOT(c A0y =L, pOTLO2 = L

BOT(c-9®y=0, §PTe=0, HOT3 =1L HOT4Oc= L (20)
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With the help of these order conditions we have obtained (in the next section) practical and
efficient explicit EFRKN methods as well as an 4(3) embedded pair of explicit EFRKN methods.
To end this section, we present some properties related with the algebraic order reached by the
explicit EFRKN methods.

Property 2.1. An explicit EFRKN method with s > 2 satisfies the assumptions
2

20)=e, A(0)e= %

Proof. Using the second condition given in (10),

sinh(¢;z z ]

ni(z) = C(Z) _z /E;a,](z)smh(cjz) — 110G, i=2....s

and therefore y;(0)=1, i=2,...,s.
Using now the first condition given in (10)

i—1 5
Zaij(z)cosh(cjz) = %’ + 0%, i=2,...,s,
j=1
and therefore

Za(o) i=2,...,8. |

Theorem 2.2. An explicit EFRKN method with s = 2 and whose coefficients satisfy assumptions
(14)—(15) has algebraic order > 2.

Proof. Using conditions (11) and the expansions of the hyperbolic functions we have
Zb(z)— + 0%, Zb(z)c, = +(9(z ),

and therefore

- 1 1
oL spo. 21
2=y 20
Analogously, conditions (12) yield
Zb(z)— 1+ 0(z%), Zb(z)c,—f—i—(ﬁ(z ),
i=1
and therefore

;b,. =1, lz;b,. =15

So, the order conditions (16) and (17) are satisfied and the explicit EFRKN method has algebraic
order at least 2. [
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3. Construction of explicit EFRKN methods

In this section we analyze the construction of explicit EFRKN methods (up to order 4) with
the help of the order conditions obtained in the previous section. In addition, we derive an 4(3)
embedded pair and we analyze the principal terms of the local truncation error.

3.1. EFRKN methods with s =2

We consider the explicit EFRKN methods defined by the table of coefficients
0] 1 0
2| 72(2) | a2(2) 0

bi(z) ba(2)

bi(z)  by(z)

If we impose the EF conditions (10)—(12), the coefficients are given by

O

- sinh(z) — — cosh(z) -1 -

)= Saniesy DO=" 5 ~h)cosh(en),

)= 0L o) = T o) coshere), @)

with ¢, a free parameter. By Theorem 2.2, coefficients (21) define a method with algebraic order
> 2, and we use the free parameter in order to reach third order. Conditions (18) imply that ¢, =2/3.

So, we have obtained a third-order explicit method whose principal terms of the local truncation
error are

17¥|, = 1/0.000386 + 0.0001934, ||z ®]||, = v/0.00176 + 0.000364 1%,

which will be denominated as EFRKN3. For small values of z it is preferable to use series expansions
for the coefficient values of the method:

— 2,24, 2 A4 4 6 ...
1) =1+ 52"+ 532 + g2+

2, 2 2, 4 4, 2 6,
a1(2) =5+ 3532 * 3w Z T weesZ T

- 1 13 271 4 1877
by(z) =7 — 715 2 2+ 816480 2 125971200 2+
TN 1 7 A 13231 6,
bi(z) =4 160 £ 2+ 163296 ~ 887984002 T
_3 2 134 709
by(z) =3 1442 + 33830 2 5878656OZ +-
A _nl

—1_
bi(z) =3 144 ? 4 38880 58786560 2+

In addition, these expressions show that assumptions (14)—(15) are satisfied by the method.
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3.2. EFRKN methods with s =3

In this case, the explicit EFRKN methods are defined by the table of coefficients

0 1 0

2| 72(2) [ a21(z) 0
cs|13(2)|azi(z)  axn(z) 0
51(2) 52(2) 53(2)
bi(z)  ba(z) b3(z)

Imposing that the advance formulas (4) and (5) are exact whenever f(z, y) =1, or equivalently
bi(z) + by(2) + b3(2) =1, bi(2) + ba(z) + bs(z) = 1/2, (22)

and the EF conditions (10)—(12), the coefficients b;(z), bi(z), yi(2), a21(z) and as(z) are determined
in terms of the arbitrary coefficients ¢, ¢3 and as3;(z). In addition, the derived method satisfies the
third-order conditions and some of the conditions given in (19). So, we use the free parameters c,,
¢3 and a3;(z) in order to reach fourth order. Conditions (19) yield the nonlinear system

3 —4(c; +¢3) + 6¢cac3 =0,
a31(0)(—12¢; + 18¢3) + 2c3c3 + 6¢x¢3 — 12¢5¢5 — 23 + 3cacy = 0, (23)

which have infinitely many solutions.
If we chose a31(z)=0, then the nodes are given by ¢, =1/2, ¢c3=1, and the remaining coefficients
of the method are

'VZ(Z) — M, a21(2) = COSh(i#)
2 tanh(z/2 2sinh’(z/2
73(2) = M’ a5(2) = m
iy 2@ —z 2= 2c0sh(z) + zsinh(a)

biz) =bs(z) = 4z cosh’(z/4) P = z(sinh(z) — 2sinh(z/2)) ’
5 (s — 2(z cosh(z) — sinh(z)) + (4 — z%) sinh(z/2) — 2z cosh(z/2)

1(2) = 222(sinh(z) — 2 sinh(z/2)) ’
; 2 —2cosh(z) + z sinh(z)

22) = 5 (Sinh(z) — 2sinh(z)2))’
Bi(z) = 2z cosh(z/2) — (4 + 2%) sinh(z/2) + 2(sinh(z) — Z)' (24)

222(sinh(z) — 2 sinh(z/2))

So, we have obtained a fourth-order explicit method whose principal terms of the local truncation
error are

79|, = 1/0.0000887 + 0.000014/4,  ||7® ||, = 1/0.0000837 + 0.0000174,
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which will be denominated as EFRKN4. For small values of z, the series expansions for the coeffi-
cients are given by

6 1 8 1 10
72(z) =1 + Z + 1920 2+ 322560 + 93507280 2 T aos7asoz00Z o

17 .6 31 .8 691  _10
7(z)=1 2+ 120 201602 T 362880 79833600 2 T
1 12 1 4 1 6 1 8
a(z)=35+ 357 + w2 + omow 2+ 3715807200 2
1 10
+ 1961990553600 2 T s
1 1.2 31 4 173 .6 25261 8 675691 0,
a(z) =3 — 5% + 15w 2 635120 2 1 928972800 345248819200 2 T s
7 112 9 4 17 6 29 8
bi(z)=% — 2 + 7m0 2 19353600 © 1 1362493440 2
_ 71173 0y
133905855283200 )

ToN_ 1, 1 2 1 .4 16 1 8
byz)=3+ 752" — woem 2 T 676500 2 1226244096 ©

691 S0
+ Tsszme000 2 T

2 13 16 251 8
by(z) = 1440 253840 2 T 1290240 2 12262440960 ©

171 10
Lo sy 10

669529276416000
1 L 2 L4 16 1 8
bi(z)=b3(z) =G — 752" T 0602 — 678002 T 1226249096 2
691 0,
TT1588212736000 2+ ">
2, 1 2 1 .4 161 8
byz)=3+ 352 — 22 T imman 2 613120088 2
691 S04
+ 5570410036800 2 T

and they satisfy assumptions (14)—(15).
Conditions (22) imply that the advance formulas (4) and (5) of the method EFRKN4 are exact

for the functions: 1,72, e,

3.3. EFRKN methods with s =4 (FSAL)

Now we analyze the case of EFRKN methods with 4 stages by using the FSAL technique [4]
(the last evaluation at any step is the same as the first evaluation at the next step). In this case, the
methods require 3 evaluations per step except at the first step in which 4 evaluations are required,
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and they are defined by the table of coefficients
0] 1 0
2 | 12(2) | a2 (2) 0
c3 | y3(2) a_31(z) 0_32(2) _0
1| 1 |bi(z) ba(z) bs(2) 0
bi(z2) ba(z) bi(z) 0
bi(z)  ba(z) bi(z) ba(z)
Imposing that the weights of the advance formulas (4) and (5) satisfy

bi(z) + ba(z) + b3(z) + ba(z) =1,  bi(2) + ba(z) + b3(z) = 1/2,
by(z)cr + b3(z)es + ba(z) = 1/2, (25)

in addition to the EF conditions (10)~(12), the coefficients b;(z), bi(z), 7:(z), ax(z) and as(z)
are determined in terms of the arbitrary parameters c;, ¢; and a3(z). With these conditions, the
resulting method has order 3 and it satisfies some of the conditions given in (19). So, we use the
free parameters ¢, ¢3 and a3(z) in order to reach fourth order. In this case, conditions (19) yield that
c3(3(1 = 12¢3) + 6c3c3 — 3 + 3cacs(1 + ¢3))

602(02 — 1)(26‘2 — 1) '
The choice a3 (z)=a31(0) defines a two-parameter family of fourth-order explicit EFRKN methods.

Now, we select the nodes so that the principal terms of the local truncation error should be as small
as possible. We have found that the choice ¢, = 1/4, ¢ =7/10 give

179, = V2.14 x 10-7 + 536 x 10-824, |||, = 1/3.08 x 106 + 1.43 x 10-64,
and the remaining coefficients of the method are
4 sinh(z/4) cosh(z/4) — 1

a31(0) = (26)

72(2) = a(z) = = :
1000 sinh(7z/10) + (1000 + 7z* — 1000 cosh(7z/10)) tanh(z/4)
73(2) = 7002
7 1000 cosh(7z/10) — 1000 — 722
a1(2) = 15500 @2() = 100022 cosh(z/4) .
sinh(9z/40)(z* cosh(9z/40) + 2 cosh(19z/40) — 2 cosh(21z/40) — 2z smh(19z/40))
bi(z) = 22(sinh(z/4) + sinh(9z/20) — sinh(7z/10))
3 222 cosh(7z/10) + 2 sinh(3z/10) + 2 sinh(7z/10) + z? sinh(7z/10) — 2 s1nh(z)
2(2) = 2z2(sinh(z/4) + sinh(9z/20) — sinh(7z/10))
By(2) —2z cosh(z/4) + (2 + z*) sinh(z/4) + 2(z + sinh(3z/4) — sinh(z))
3(z) =

2z2(sinh(z/4) + sinh(9z/20) — sinh(7z/10)) ’

_M _ M _N _ M
o) =5 b =T bE=T, )=, 27)
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where D=2z(6sinh(z/4)+ 5 sinh(3z/10)+ 20 sinh(9z/20) — 15 sinh(7z/10) — 14 sinh(3z/4) 4 9 sinh(z)),

z 3z 7z 3z
N =-9+ 6cosh<2) + 15 COSh(lO) —15 cosh<10> — 6cosh<4) + 9cosh(z)

eran(2) () o3,

N =4 (zoosh (3 ) —2sinh (3 ) ) (=5sinn (5 ) +2sinh (3 ).

Ny =10 (zcosh(§> . 2sinh(§>> (—2sinh<z> n sinh(%)) ,

No=—9+ 14cosh(2) +5 coshGg) . SCosh(;%) 14cosh<3 ) +9cosh(z)

. z . 9z Tz
— 4z smh(z) + 10z s1nh<20> — 5z smh<10>

This method will be denominated EFRKN4F, and for small values of z the series expansions for
the coefficient are given by

2 Z4 6 8

z z z Z10
pr— 1 —_— DY
72(2) * 96 + 30720 * 20643840 + 23781703680 + 41855798476800 e
z2 15924 13967z° 893191728
1) =1- 505+ -

300 ~ 800000 2880000000 * 72576000000000
B 6913141720 n
22176000000000000 ’

22 Z4 26 Z8
@1(2) =35+ 5142 T 2929120 T 2622411520 T 3805072588800
ZlO
* 8036313307545600 T
aralz) = Q—F 7722 N 256067z 35170128
277500 30000 T 5760000000 768000000000
9222666821z°  15197487351237" N
663552000000000000  4379443200000000000000 ’
( ) 1 z2 62924 . 409926
S
! *5040 ~ 120960000 T 56448000000
B 99233788728 N 270621455579z10 N
1072963584000000000 ' 23433524674560000000000 ’
n 8 22 193724 2092° 2626003328
by(2)= o — i —

27 3240 544320000 i 54432000000  689762304000000000
200929607210 .
1158800670720000000000 ’
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b_3(z) _ g n z? + 1907z* B 4661z°
189 9072 1907217728000 60963840000
185973628928 4944324577370
1931334451200000000  42180344414208000000000 o
12 50324 4533126 68143295512°
bi(z)=—

14 * 8400 117600000 i 705600000000  7823692800000000000

N 14555700385913z10 N
4717877694359406832025600000000000000 ’

ba(2) 32 72 N 47324 1612757z°
Z)=— — —
2 81 4050 = 97200000  24494400000000
25977716983z% 483814623933121° N
30177100800000000000  427966156800000000000000 ’
250 72 79724 679589z°
by(z) === + + —
567 4536 381024000 13716864000000
N 1269436899128 273987061124572'° N
16899176448000000000  2636271525888000000000000 ’
5 z2 19z* 835117z°
by(z)=— — — +
54 10800 7087500 = 16329600000000
135529639328 31702189865821z'°

1828915200000000000 * 3138418483200000000000000 e
which satisfy assumptions (14)—(15).
Conditions (25) imply that the advance formula (4) of the method EFRKN4F is exact for the
functions: 1,¢,¢2,e**, whereas the advance formula (5) is exact for the functions: 1,¢, 2,83, e,

3.4. The 4(3) embedded pair

Now our interest is focused on the construction of an embedded pair of explicit EFRKN methods
based on the above EFRKN4F method. In order to carry out this goal, we consider another explicit
EFRKN method of 4 stages and order 3

4
Va1 = Ya+hyy + BB f (1 + eih, g)),

i=1

4
Yai =Y+ bIE) [t + cihugo),

i=1

with the same stages that the EFRKN4F method. It should be noted that the fourth-order approxi-
mations y, and y, are used as the initial values for obtaining the third-order approximations y
and y;,";l, that is to say, the embedded pair is applied in local extrapolation mode or higher-order
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mode. In order to obtain the third-order method, we impose that the new weights 5;‘(2) and b} (z)
satisfy the EF conditions (11) and (12) and the condition
bi(z) + b5(z) + b3(z) + by (z) = 1. (28)
This last condition implies that the advance formula (5) of the method is exact for the functions:
1, t,#2,e**. With these conditions, the resulting method has order 3, it satisfies the order conditions
(16)—(18), and the weights are determined in terms of the arbitrary parameters by(z), b3(z) and
b5 (z). Inspired by the classical RKN4(3) pair obtained in [4], we choose the parameter values
bi(z) = —1/3, bi(z)=3/20, bi(z)=—1/20,
and the remaining weights are given by
20z cosh(z/4) — 20 sinh(z/4) + 3z* sinh(9z/20) — 20 sinh(3z/4) — z smh(3z/4)

biz) = 2022 sinh(z/4)
B5(z) — (20 + z%) sin(z) — 20z — 322 sinh(7z/10)

2(2) = 2022 sinh(z/4) .
o) N

5= 3z(sinh(z/4) + sinh(9z/20) — sinh(7z/10))’
. N;

2(2) = 3z(sinh(z/4) + sinh(9z/20) — sinh(7z/10))’
b Ny

3(2) = 3z(sinh(z/4) + sinh(9z/20) — sinh(7z/10))’

where

N z 3z Tz 3z 3z
N, —3cosh<z> +3cosh<10> — 3cosh<10> - 300sh< 4> +zsmh<10>
9 3
+4zsinh <23> — zsinh (:)

3z 3z
=-3- 300sh<10> +300sh<10> + 3 cosh(z) zsmh(lo)

— 4z sinh ( ZO) + z sinh(z),

3 3
Ny=3-3 cosh(%) + 3 cosh (:) — 3 cosh(z) + 4z sinh(%) + z sinh (:) — z sinh(z).

The new embedded pair will be denominated EFRKN4(3)F, and for small values of z the series
expansions for the weights of the third-order formula are given by

B (2) 7 52972 4192z 441517z°

Z)=—— — — —

: 150 45000 14765625 189000000000
7645865928 1138789596112!°

~ 7484400000000000  4086482400000000000000
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67  9977z° 79636507z* 1270638757z°

by(z) = —
2(2) 150 + 360000 * 60480000000 + 48384000000000
40903036502172% . 27719213106114401z'° n
15328051200000000000  16738231910400000000000000 ’
N 13 23272 10597z* 330971z°
bi(z)= -+ - +
21 10080 564480000 1354752000000
657531868928 n 238284355301z!° n
2145927168000000000 ~ 6248939913216000000000 ’
bi(2) 20 25372 294689z* 6407512%
Z)=—— — - _
2 27 6480 1088640000 870912000000
182980155128 5947927819210 n
1379524608000000000  12051526975488000000000 ’
. 275 66722 882353z% 239671z°
b3(z) = —o + + +
189 ° 18144 3048192000 = 487710720000
1695901798328 6350406603661z'°

3862668902400000000  168721377656832000000000 L
which satisfy assumptions (14)—(15).
For z — 0 the EFRKN4(3)F pair reduces to the classical RKN4(3) pair obtained in [4].

4. Numerical experiments

In order to evaluate the effectiveness of the EFRKN methods derived in the above section, we use
several model problems which have periodic or almost periodic solutions. The new EFRKN methods
have been implemented in fixed step and variable step codes, and have been compared with other
exponential fitting type codes proposed in [5,11,12]. Numerical considerations indicate that Taylor
series should be used for the coefficients of the new EFRKN methods when |z| < 0.3, and they
contain terms up to z'° in order to obtain the coefficients with arithmetic precision of 16 digits. The
criterion used in the numerical comparisons is the usual test based on computing the maximum global
error over the whole integration interval. In Figs. 1-5 we have depicted the efficiency curves for the
tested codes. These figures show the decimal logarithm of the maximum global error (sd(e)) against
the computational effort measured by the number of function evaluations required by each code.

4.1. Comparisons with fixed step-size

As test problems we have considered a linear model problem as well as a nonlinear problem, and
the codes used in the comparisons have been denoted by

e EFRKNA4F: The trigonometric version of the method derived in Section 3.3.
e EFRKN4: The trigonometric version of the method derived in Section 3.2.
e VBERGHE4: The fourth-order and four-stage EFRK method obtained in [11].
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-2 X EFRKN4F
o EFRKN4
¢ VBERGHE4
-4
z
B
-6
-8 T L T i
0 15000 30000 45000 60000 75000

Function evaluations

Fig. 1. Linear problem with resonance: feng = 1000.

Problem 1. We consider the linear problem with resonance
Y 4+ y=0.001cos(t), €0, el
»(0)=1, y,(O):O,

whose analytic solution is given by y(¢) = cos(¢) + 0.0005¢ sin(¢).

In our test we choose the parameter value f.,q = 1000, and the numerical results stated in Fig. 1
have been computed with integration steps A= 1/2/,j=0,1,...,4 and A =1i.

Problem 2. We consider the nonlinear problem

2
Y+ 100y, + yzyfzz = /1), »©O)=1, y(0)=e,

1T )2
i—»
Yy +25y + 53 = fa(t), »(0)=—¢ 15(0)=5,
ntn

with ¢ = 1073 and
2 cos(10)sin(5¢) 4 2&(sin(5¢) sin(t) — cos(10¢) cos(t)) — &2 sin(2¢)

0= cos2(10¢) + sin®(5t) 4 2&(sin(z) cos(10¢) — cos(t) sin(5¢)) + &2

+ 99¢sin(?),

cos?(10t) — sin?(5¢) + 2&(sin(t) cos(10¢) + cos(¢) sin(5¢)) — &2 cos(2t)

fA0)= cos2(10¢) + sin®(5t) + 2&(sin(z) cos(10¢) — cos(t) sin(5¢)) + &2

— 24¢cos(t).

The analytic solution of this initial-value problem is given by
y1(t) =cos(10t) 4 esin(t), y»(¢) = sin(5¢) — ecos(?),

and represents a periodic motion with two dominant frequencies and a small perturbation of low
frequency. In our test we choose the parameter value f.,¢ = 100 and the different components of the
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x EFRKN4F
o EFRKN4
* VBERGHE4
-3
® 5
B
-7 4
-9 T T T T
0 2600 5200 7800 10400 13000

Function evaluations

Fig. 2. Nonlinear problem: z.,¢ = 100.

system have been integrated with different A-values: A; =110 for the first component and A, =i5 for
the second component. The numerical results stated in Fig. 2 have been computed with integration
steps h=1/2/, j=1,2,...,5.

As it can be observed in Figs. 1 and 2, the new fourth-order EFRKN methods show a more efficient
behaviour than the exponentially fitted method VBERGHE4. In addition, among the fourth-order
EFRKN methods, the code EFRKN4F which has optimized the principal terms of the local truncation
error performs more efficiently than the code EFRKN4.

4.2. Comparisons with variable step-size

In this case we have considered the test problems used in [5] and the codes used in the comparisons
have been denoted by

e EFRKN4(3)F: The trigonometric version of the embedded pair derived in Sections 3.3 and 3.4.
e EFRK4(3): The trigonometric version of the embedded pair obtained in [5].
e VBExtrapo: The variable step code proposed by Vanden Berghe et al. [12].

Problem 3. We consider the linear problem with variable coefficients
V' + 4y = (4 — o) sin(wt) — 2sin(£?), ¢ € [0, tena]s

»0)=1, y(0)=o,

whose analytic solution is given by

¥(t) = sin(wt) + cos(1?).
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x EFRKN4(3)F
-2 o EFRK4(3)
o VBEXtrapo
-4
O
B
6 -
-8 T T T T
0 9000 18000 27000 36000 45000

Function evaluations
Fig. 3. Linear problem with variable coefficients: @ = 10, fena = 10.

This solution represents a periodic motion that involves a constant frequency and a variable fre-
quency. In our test we choose the parameter values w = 10, #,g = 10, and the numerical results
stated in Fig. 3 have been computed with error tolerances Tol =107/, j > 2 and A =1i10.
Problem 4. We consider the periodically forced nonlinear problem (undamped Duffing’s equation)
V' 4+ y+ > = (cos(r) + esin(10¢))> — 99esin(10¢), 7 € [0, fena],
W0)=1, »'(0)=10e
with ¢ = 1073, The analytic solution is given by
y(t) = cos(t) + ¢sin(10¢),

and represents a periodic motion of low frequency with a small perturbation of high frequency. In
our test we choose the parameter value #.,q = 100, and the numerical results stated in Fig. 4 have
been computed with error tolerances Tol =107/, j >3 and A =1.

Problem 5. We consider the nonlinear system

2

V= —4tty, — %, nO0)=1, 1(0)=0, ¢€[0,fenal,
Mtn
2y1

VY =—4ty, + 12(0)=0, 4(0)=0,

Vit

whose analytic solution is given by
yi(t) =cos(s®),  y,(t) = sin(#*).

This solution represents a periodic motion with variable frequency. In our test we choose the pa-

rameter value #.,g = 10, and the numerical results stated in Fig. 5 have been computed with error
tolerances Tol =107/, j > 2 and A=it, (n = 1) at each step.
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3 -
x EFRKNA4(3)F

4 o EFRK4(3)
] » VBExtrapo
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-7 4
-8 -
-9 T

T T T 1
0 8000 16000 24000 32000 40000
Function evaluations

Fig. 4. Undamped Duffing’s equation: #enq = 100.

x EFRKN4(3)F
o EFRK4(3)
-2 4 e VBExtrapo

C)

-6 T T T T 1
0 2500 5000 7500 10000 12500
Function evaluations

Fig. 5. Nonlinear system: f.,q = 10.

As it can be observed in Figs. 3-5, the new embedded pair EFRKN4(3)F shows a more efficient
behaviour than the exponentially fitted variable step codes EFRK4(3) and VBExtrapo.

In view of the numerical results obtained in Problems 1-5, we may conclude that the new
fourth-order EFRKN methods derived in Section 3 perform more efficiently than other exponen-
tial fitting type codes recently proposed in the scientific literature.

All the computations have been carried out in double-precision arithmetic in a PC computer of
the University of Zaragoza.
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