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Abstract

Exponentially &tted Runge–Kutta–Nystr+om (EFRKN) methods for the numerical integration of second-order
IVPs with oscillatory solutions are derived. These methods integrate exactly di4erential systems whose solu-
tions can be expressed as linear combinations of the set of functions {exp(�t); exp(−�t)}, �∈C, or equivalently
{sin(!t); cos(!t)} when � = i!, !∈R. Explicit EFRKN methods with two and three stages and algebraic
orders 3 and 4 are constructed. In addition, a 4(3) embedded pair of explicit EFRKN methods based on
the FSAL technique is obtained, which permits to introduce an error and step length control with a small
cost added. Some numerical experiments show the e;ciency of our explicit EFRKN methods when they are
compared with other exponential &tting type codes proposed in the scienti&c literature.
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1. Introduction

In the last decade a great interest in the research of new methods for the numerical integration of
initial value problems

y′′ = f(t; y); t ∈ [t0; T ];

y(t0) = y0; y′(t0) = y′
0; (1)

whose solution exhibits a pronounced oscillatory character has arisen. Such problems often arise in
di4erent &elds of applied sciences such as celestial mechanics, astrophysics, electronics, molecular
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dynamics, and so forth; and they can be solved by using general purpose methods or by using codes
specially adapted to the structure or to the solution of the problem. In the case of specially adapted
methods, particular Runge–Kutta (RK) algorithms have been proposed by several authors [1–3,5,
7–12] in order to solve these classes of problems. A pioneer paper is due to Bettis [2], in which
adapted RK algorithms with 3 and 4 stages for the integration of ODEs with oscillatory solutions are
presented. More recently, in [3,7,8] the construction of RK and RK–Nystr+om methods which integrate
trigonometric polynomials exactly or which have zero phase error (phase-&tted methods) is consid-
ered. These authors derive families of two-stage RK methods and families of two and three-stage
RKN methods with trigonometric order 1 and algebraic order up to 6, but the main handicap of
these methods is that they are fully implicit. Next, Simos and coworkers [1,9] constructed explicit
RK methods which integrate certain &rst-order initial value problems with periodic or exponential
solutions. On the other hand, Vanden Berghe et al. [11,12] introduced other exponentially &tted
RK (EFRK) methods which integrate exactly &rst-order systems whose solutions can be expressed
as linear combinations of functions of the form {e�t ; e−�t} or {cos(!t); sin(!t)}. In addition, these
authors have implemented a variable step code by using their four-stage explicit EFRK method [12]
with error and step length control based on Richardson extrapolation. This variable step code has
been improved in [5] by constructing an embedded pair EFRK4(3) which corresponds in a unique
way with the algebraic pair Zonneveld 4(3) given in [6].

Here, we analyze the construction of exponentially &tted Runge–Kutta–Nystr+om (EFRKN) methods
based on an extension of the ideas proposed in [11,12] which have been recently used by Simos
[10]. Our goal is to obtain practical and e;cient explicit EFRKN methods as well as local error
estimations that allow the implementation of these methods in a variable step code with a small
computational cost added. The paper is organized as follows: In Section 2 we introduce a class of
explicit EFRKN methods together with the appropriate conditions so that the functions {e�t ; e−�t}
or {cos(!t); sin(!t)} can be integrated exactly by these methods. We also make a study of the
local truncation error, obtaining the order conditions (up to &fth order) for this class of methods.
In Section 3 we derive explicit EFRKN methods with two and three stages and algebraic orders 3
and 4 as well as a 4(3) embedded pair based on the FSAL technique. Finally, in Section 4 some
numerical experiments are presented to show the e;ciency of our explicit EFRKN methods when
they are compared with other exponential &tting codes proposed in the scienti&c literature.

2. Explicit EFRKN methods

In [11,12], Vanden Berghe and coworkers have introduced a class of explicit EFRK methods that
integrate exactly di4erential systems whose solutions can be expressed as linear combinations of the
set of functions {exp(�t); exp(−�t)} or equivalently {sin(!t); cos(!t)} when � = i!, !∈R. This
means that the stage equations and the &nal step equation have to integrate exactly these sets of
functions (see [7]).

Here we intend to extend the ideas proposed in [11,12] to the case of RK–Nystr+om methods.
In order to carry out this goal we introduce a modi&cation in the s-stage classical explicit RKN
methods (s¿ 2), which have been recently used by Simos [10]:

g1 = yn + c1h1(z)y′
n; (2)
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gi = yn + cihi(z)y′
n + h2

i−1∑
j=1

aij(z)f(tn + cjh; gj); i = 2; : : : ; s; (3)

yn+1 = yn + hy′
n + h2

s∑
i=1

Mbi(z)f(tn + cih; gi); (4)

y′
n+1 = y′

n + h
s∑

i=1

bi(z)f(tn + cih; gi); z = �h; (5)

and may be expressed in Butcher tableau form as

c (z) A(z)
MbT(z)

bT(z)

=

c1 1(z) 0
c2 2(z) a21(z) 0
c3 3(z) a31(z) a32(z) 0
...

...
...

...
. . . . . .

cs s(z) as1(z) as2(z) · · · as; s−1(z) 0
Mb1(z) Mb2(z) · · · Mbs−1(z) Mbs(z)

b1(z) b2(z) · · · bs−1(z) bs(z)

Algorithm (2)–(5) coincides with an s-stage classical RK–Nystr+om method when the coe;cients
i(z) = 1, i = 1; : : : ; s, and the remaining coe;cients are constant. So, the factors i(z) are intro-
duced in the stage de&nition so that the family of functions {exp(�t); exp(−�t)}, or equivalently
{sin(!t); cos(!t)}, can be integrated exactly by the method. Then, if we impose that method (2)–
(5) is exact for di4erential systems whose solutions are y(t)=e±�t , and we bear in mind the meaning
of the stages gi, it is natural to consider that gi =y(tn + cih) = e±�(tn+cih) and f(tn + cih; gi) =y′′(tn +
cih) = �2e±�(tn+cih). This leads to the following equations for the coe;cients of the method

e±c1z = 1 ± c1z1(z); (6)

e±ciz = 1 ± cizi(z) + z2
i−1∑
j=1

aij(z)e±cjz; i = 2; : : : ; s; (7)

e±z = 1 ± z + z2
s∑

i=1

Mbi(z)e±ciz ; (8)

e±z = 1 ± z
s∑

i=1

bi(z)e±ciz ; z = �h: (9)

Having in mind the relations cosh(z) = (ez + e−z)=2 and sinh(z) = (ez − e−z)=2, Eq. (6) implies
that c1 = 0 and 1(z) = 1, and Eqs. (7)–(9) can be expressed in the form

i−1∑
j=1

aij(z) cosh(cjz) =
cosh(ciz) − 1

z2 ;

i−1∑
j=1

aij(z) sinh(cjz) =
sinh(ciz) − cizi(z)

z2 ; i = 2; : : : ; s; (10)
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s∑
i=1

Mbi(z) cosh(ciz) =
cosh(z) − 1

z2 ;
s∑

i=1

Mbi(z) sinh(ciz) =
sinh(z) − z

z2 ; (11)

s∑
i=1

bi(z) sinh(ciz) =
cosh(z) − 1

z
;

s∑
i=1

bi(z) cosh(ciz) =
sinh(z)

z
: (12)

The conditions de&ned by Eqs. (10)–(12) characterize when an explicit RKN method (2)–(5) with
c1 = 0 and 1(z) = 1 is exponentially &tted, and therefore they will be denominated as exponential
&tting conditions (EF conditions). An explicit RKN method (2)–(5) with c1 =0 and 1(z)=1, which
satis&es the EF conditions (10)–(12), will be denominated an explicit EFRKN method.

On the other hand, the structure of method (2)–(5) indicates that it produces the solution of y′′ =0
exactly at the outer point tn+1 of the one-step interval, irrespective of what are the coe;cients (i.e.
the method reduces to yn+1 = yn + hy′

n, y′
n+1 = y′

n). So, the advance formulas (4) and (5) of an
explicit EFRKN method are exact for the functions: 1, t, e±�t .

In the trigonometric case (�=i!, !∈R), z=i� with �=!h, and the EF conditions emerge having
in mind the relations cosh(i�) = cos(�) and sinh(i�) = i sin(�). In this case, the advance formulas of
the EFRKN method are exact for the functions: 1, t, cos(!t), sin(!t).

2.1. Algebraic order of the EFRKN methods

Now, we made a study of the local truncation error for the EFRKN methods in order to obtain
the order conditions for this class of methods.

In the case of a classical RKN method, the local truncation error in the approximation of the
solution and its derivative may be expressed as

en+1 = y(tn+1) − yn+1 =
p−1∑
j=0

hj+1


 ∑

�(nt)=j

�(j+1)(nt)F (j)(nt)(yn)


 + O(hp+1);

e′
n+1 = y′(tn+1) − y′

n+1 =
p∑

j=0

hj


 ∑

�(nt)=j

�
′( j)(nt)F (j)(nt)(yn)


 + O(hp+1);

where nt represents a Nystr+om tree of order �(nt), F (j)(nt) denotes the elementary di4erential as-
sociated to nt and the terms �(j+1)(nt) and �

′( j)(nt) depend on the coe;cients of the RKN method.
So, an RKN method is of order p if

en+1 = O(hp+1); e′
n+1 = O(hp+1);

or equivalently

�(j+1)(nt) = 0; ∀nt ∈N -trees; with �(nt)6p − 1;

�
′( j)(nt) = 0; ∀nt ∈N -trees; with �(nt)6p:

The terms �(j+1)(nt) and �
′( j)(nt) and therefore the order conditions (up to order 6 5) are tabulated

in [6]. In addition, if the row-sum conditions (usually imposed in the derivation of RKN methods)
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are satis&ed, then the number of order conditions is simpli&ed. The quantities

‖�(p+1)‖ = ‖(�(p+1)(nt1); : : : ; �(p+1)(nti))‖; ‖�′(p+1)‖ = ‖(�
′(p+1)(nt1); : : : ; �

′(p+1)(ntk))‖;
are denominated the principal terms of the local truncation error (see [4]).

In the case of EFRKN methods, the coe;cients are step length dependent and therefore the
algebraic order conditions tabulated in [6] are not valid for these methods. In addition, as it can be
observed in [5,11,12], the exponentially &tted methods do not satisfy the row-sum conditions but
their coe;cients are even functions of h. So, in order to obtain the order conditions for EFRKN
methods, we consider the following assumptions

(0) = e; A(0)e =
c2

2
; (13)

Mb(z) = Mb(0) + Mb(2)h2 + Mb(4)h4 + · · · ; b(z) = b(0) + b(2)h2 + b(4)h4 + · · · ; (14)

(z) = e + (2)h2 + (4)h4 + · · · ; A(z) = A(0) + A(2)h2 + A(4)h4 + · · · ; (15)

where e = (1; : : : ; 1)T and c2 = c · c = (c2
1; : : : ; c

2
s )T.

Using the assumptions mentioned above and following the way given in Hairer [6, pp. 143–148]
for obtaining the terms of the local truncation error, the order conditions for the EFRKN methods
(up to &fth order) are the following ones:

Order 1 requires:

b(0)Te = 1: (16)

Order 2 requires in addition:

b(0)Tc = 1
2 ; Mb(0)Te = 1

2 : (17)

Order 3 requires in addition:

b(2)Te = 0; b(0)Tc2 = 1
3 ;

Mb(0)Tc = 1
6 : (18)

Order 4 requires in addition:

b(0)T(c · (2)) = 0; b(2)Tc = 0;

b(0)Tc3 = 1
4 ; b(0)TA(0)c = 1

24 ;

Mb(2)Te = 0; Mb(0)Tc2 = 1
12 : (19)

Order 5 requires in addition:

b(4)Te = 0 = b(2)Tc2 = b(0)TA(2)e; b(0)Tc4 = 1
5 ;

b(0)T(c · A(0)c) = 1
30 ; b(0)TA(0)c2 = 1

60 ;

Mb(0)T(c · (2)) = 0; Mb(2)Tc = 0; Mb(0)Tc3 = 1
20 ; Mb(0)TA(0)c = 1

120 : (20)
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With the help of these order conditions we have obtained (in the next section) practical and
e;cient explicit EFRKN methods as well as an 4(3) embedded pair of explicit EFRKN methods.
To end this section, we present some properties related with the algebraic order reached by the
explicit EFRKN methods.

Property 2.1. An explicit EFRKN method with s¿ 2 satis>es the assumptions

(0) = e; A(0)e =
c2

2
:

Proof. Using the second condition given in (10),

i(z) =
sinh(ciz)

ciz
− z

ci

i−1∑
j=1

aij(z) sinh(cjz) = 1 + O(z2); i = 2; : : : ; s;

and therefore i(0) = 1; i = 2; : : : ; s.
Using now the &rst condition given in (10)

i−1∑
j=1

aij(z) cosh(cjz) =
c2
i

2
+ O(z2); i = 2; : : : ; s;

and therefore
i−1∑
j=1

a(0)
ij =

c2
i

2
; i = 2; : : : ; s:

Theorem 2.2. An explicit EFRKN method with s¿ 2 and whose coe?cients satisfy assumptions
(14)–(15) has algebraic order ¿ 2.

Proof. Using conditions (11) and the expansions of the hyperbolic functions we have
s∑

i=1

Mbi(z) =
1
2

+ O(z2);
s∑

i=1

Mbi(z)ci =
1
6

+ O(z2);

and therefore
s∑

i=1

Mb(0)
i =

1
2
;

s∑
i=1

Mb(0)
i ci =

1
6
:

Analogously, conditions (12) yield
s∑

i=1

bi(z) = 1 + O(z2);
s∑

i=1

bi(z)ci =
1
2

+ O(z2);

and therefore
s∑

i=1

b(0)
i = 1;

s∑
i=1

b(0)
i ci =

1
2
:

So, the order conditions (16) and (17) are satis&ed and the explicit EFRKN method has algebraic
order at least 2.
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3. Construction of explicit EFRKN methods

In this section we analyze the construction of explicit EFRKN methods (up to order 4) with
the help of the order conditions obtained in the previous section. In addition, we derive an 4(3)
embedded pair and we analyze the principal terms of the local truncation error.

3.1. EFRKN methods with s = 2

We consider the explicit EFRKN methods de&ned by the table of coe;cients

0 1 0
c2 2(z) a21(z) 0

Mb1(z) Mb2(z)

b1(z) b2(z)

If we impose the EF conditions (10)–(12), the coe;cients are given by

2(z) =
sinh(c2z)

c2z
; a21(z) =

cosh(c2z) − 1
z2 ;

Mb2(z) =
sinh(z) − z
z2 sinh(c2z)

; Mb1(z) =
cosh(z) − 1

z2 − Mb2(z) cosh(c2z);

b2(z) =
cosh(z) − 1
z sinh(c2z)

; b1(z) =
sinh(z)

z
− b2(z) cosh(c2z); (21)

with c2 a free parameter. By Theorem 2.2, coe;cients (21) de&ne a method with algebraic order
¿ 2, and we use the free parameter in order to reach third order. Conditions (18) imply that c2 =2=3.
So, we have obtained a third-order explicit method whose principal terms of the local truncation
error are

‖�(4)‖2 =
√

0:000386 + 0:000193�4; ‖�′(4)‖2 =
√

0:00176 + 0:000364�4;

which will be denominated as EFRKN3. For small values of z it is preferable to use series expansions
for the coe;cient values of the method:

2(z) = 1 + 2
27 z2 + 2

1215 z4 + 4
229635 z6 + · · · ;

a21(z) = 2
9 + 2

243 z2 + 4
32805 z4 + 2

2066715 z6 + · · · ;

Mb2(z) = 1
4 − 13

2160 z2 + 271
816480 z4 − 1877

125971200 z6 + · · · ;
Mb1(z) = 1

4 − 17
2160 z2 + 55

163296 z4 − 13231
881798400 z6 + · · · ;

b2(z) = 3
4 + 1

144 z2 + 13
38880 z4 − 709

58786560 z6 + · · · ;
b1(z) = 1

4 − 1
144 z2 + 11

38880 z4 − 731
58786560 z6 + · · · :

In addition, these expressions show that assumptions (14)–(15) are satis&ed by the method.
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3.2. EFRKN methods with s = 3

In this case, the explicit EFRKN methods are de&ned by the table of coe;cients

0 1 0
c2 2(z) a21(z) 0
c3 3(z) a31(z) a32(z) 0

Mb1(z) Mb2(z) Mb3(z)

b1(z) b2(z) b3(z)

Imposing that the advance formulas (4) and (5) are exact whenever f(t; y) = 1, or equivalently

b1(z) + b2(z) + b3(z) = 1; Mb1(z) + Mb2(z) + Mb3(z) = 1=2; (22)

and the EF conditions (10)–(12), the coe;cients bi(z), Mbi(z), i(z), a21(z) and a32(z) are determined
in terms of the arbitrary coe;cients c2, c3 and a31(z). In addition, the derived method satis&es the
third-order conditions and some of the conditions given in (19). So, we use the free parameters c2,
c3 and a31(z) in order to reach fourth order. Conditions (19) yield the nonlinear system

3 − 4(c2 + c3) + 6c2c3 = 0;

a31(0)(−12c2 + 18c2
2) + 2c2

2c3 + 6c2c2
3 − 12c2

2c
2
3 − 2c3

3 + 3c2c3
3 = 0; (23)

which have in&nitely many solutions.
If we chose a31(z)=0, then the nodes are given by c2 =1=2, c3 =1, and the remaining coe;cients

of the method are

2(z) =
2 sinh(z=2)

z
; a21(z) =

cosh(z=2) − 1
z2 ;

3(z) =
2 tanh(z=2)

z
; a32(z) =

2 sinh2(z=2)
z2 cosh(z=2)

;

b1(z) = b3(z) =
2 sinh(z=2) − z
4z cosh2(z=4)

; b2(z) =
2 − 2 cosh(z) + z sinh(z)
z(sinh(z) − 2 sinh(z=2))

;

Mb1(z) =
2(z cosh(z) − sinh(z)) + (4 − z2) sinh(z=2) − 2z cosh(z=2)

2z2(sinh(z) − 2 sinh(z=2))
;

Mb2(z) =
2 − 2 cosh(z) + z sinh(z)
2z(sinh(z) − 2 sinh(z=2))

;

Mb3(z) =
2z cosh(z=2) − (4 + z2) sinh(z=2) + 2(sinh(z) − z)

2z2(sinh(z) − 2 sinh(z=2))
: (24)

So, we have obtained a fourth-order explicit method whose principal terms of the local truncation
error are

‖�(5)‖2 =
√

0:0000887 + 0:000014�4; ‖�′(5)‖2 =
√

0:0000837 + 0:000017�4;



J.M. Franco / Journal of Computational and Applied Mathematics 167 (2004) 1–19 9

which will be denominated as EFRKN4. For small values of z, the series expansions for the coe;-
cients are given by

2(z) = 1 + 1
24 z2 + 1

1920 z4 + 1
322560 z6 + 1

92897280 z8 + 1
40874803200 z10 + · · · ;

3(z) = 1 − 1
12 z2 + 1

120 z4 − 17
20160 z6 + 31

362880 z8 − 691
79833600 z10 + · · · ;

a21(z) = 1
8 + 1

384 z2 + 1
46080 z4 + 1

10321920 z6 + 1
3715891200 z8

+ 1
1961990553600 z10 + · · · ;

a32(z) = 1
2 − 1

48 z2 + 31
11520 z4 − 173

645120 z6 + 25261
928972800 z8 − 675691

245248819200 z10 + · · · ;

Mb1(z) = 1
6 − 1

480 z2 + 19
483840 z4 − 17

19353600 z6 + 29
1362493440 z8

− 71173
133905855283200 z10 + · · · ;

Mb2(z) = 1
3 + 1

720 z2 − 1
80640 z4 + 1

9676800 z6 − 1
1226244096 z8

+ 691
111588212736000 z10 + · · · ;

Mb3(z) = 1
1440 z2 − 13

483840 z4 + 1
1290240 z6 − 251

12262440960 z8

+ 351719
669529276416000 z10 + · · · ;

b1(z) = b3(z) = 1
6 − 1

720 z2 + 1
80640 z4 − 1

9676800 z6 + 1
1226244096 z8

− 691
111588212736000 z10 + · · · ;

b2(z) = 2
3 + 1

360 z2 − 1
40320 z4 + 1

4838400 z6 − 1
613122048 z8

+ 691
55794106368000 z10 + · · · ;

and they satisfy assumptions (14)–(15).
Conditions (22) imply that the advance formulas (4) and (5) of the method EFRKN4 are exact

for the functions: 1; t; t2; e±�t .

3.3. EFRKN methods with s = 4 (FSAL)

Now we analyze the case of EFRKN methods with 4 stages by using the FSAL technique [4]
(the last evaluation at any step is the same as the &rst evaluation at the next step). In this case, the
methods require 3 evaluations per step except at the &rst step in which 4 evaluations are required,
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and they are de&ned by the table of coe;cients

0 1 0
c2 2(z) a21(z) 0
c3 3(z) a31(z) a32(z) 0
1 1 Mb1(z) Mb2(z) Mb3(z) 0

Mb1(z) Mb2(z) Mb3(z) 0

b1(z) b2(z) b3(z) b4(z)

Imposing that the weights of the advance formulas (4) and (5) satisfy

b1(z) + b2(z) + b3(z) + b4(z) = 1; Mb1(z) + Mb2(z) + Mb3(z) = 1=2;

b2(z)c2 + b3(z)c3 + b4(z) = 1=2; (25)

in addition to the EF conditions (10)–(12), the coe;cients bi(z), Mbi(z), i(z), a21(z) and a32(z)
are determined in terms of the arbitrary parameters c2, c3 and a31(z). With these conditions, the
resulting method has order 3 and it satis&es some of the conditions given in (19). So, we use the
free parameters c2, c3 and a31(z) in order to reach fourth order. In this case, conditions (19) yield that

a31(0) =
c3(c2

2(1 − 12c3) + 6c3
2c3 − c2

3 + 3c2c3(1 + c3))
6c2(c2 − 1)(2c2 − 1)

: (26)

The choice a31(z)=a31(0) de&nes a two-parameter family of fourth-order explicit EFRKN methods.
Now, we select the nodes so that the principal terms of the local truncation error should be as small
as possible. We have found that the choice c2 = 1=4, c3 = 7=10 give

‖�(5)‖2 =
√

2:14 × 10−7 + 5:36 × 10−8�4; ‖�′(5)‖2 =
√

3:08 × 10−6 + 1:43 × 10−6�4;

and the remaining coe;cients of the method are

2(z) =
4 sinh(z=4)

z
; a21(z) =

cosh(z=4) − 1
z2 ;

3(z) =
1000 sinh(7z=10) + (1000 + 7z2 − 1000 cosh(7z=10)) tanh(z=4)

700z
;

a31(z) =
7

1000
; a32(z) =

1000 cosh(7z=10) − 1000 − 7z2

1000z2 cosh(z=4)
;

Mb1(z) =
sinh(9z=40)(z2 cosh(9z=40) + 2 cosh(19z=40) − 2 cosh(21z=40) − 2z sinh(19z=40))

z2(sinh(z=4) + sinh(9z=20) − sinh(7z=10))
;

Mb2(z) = −2z − 2z cosh(7z=10) + 2 sinh(3z=10) + 2 sinh(7z=10) + z2 sinh(7z=10) − 2 sinh(z)
2z2(sinh(z=4) + sinh(9z=20) − sinh(7z=10))

;

Mb3(z) =
−2z cosh(z=4) + (2 + z2) sinh(z=4) + 2(z + sinh(3z=4) − sinh(z))

2z2(sinh(z=4) + sinh(9z=20) − sinh(7z=10))
;

b1(z) =
N1

D
; b2(z) =

N2

D
; b3(z) =

N3

D
; b4(z) =

N4

D
; (27)
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where D= z(6 sinh(z=4)+5 sinh(3z=10)+20 sinh(9z=20)−15 sinh(7z=10)−14 sinh(3z=4)+9 sinh(z)),

N1 = −9 + 6 cosh
( z

4

)
+ 15 cosh

(
3z
10

)
− 15 cosh

(
7z
10

)
− 6 cosh

(
3z
4

)
+ 9 cosh(z)

−5z sinh
(

3z
10

)
+ 10z sinh

(
9z
20

)
− 4z sinh

(
3z
4

)
;

N2 = 4
(
z cosh

( z
2

)
− 2 sinh

( z
2

)) (
−5 sinh

( z
5

)
+ 2 sinh

( z
2

))
;

N3 = 10
(
z cosh

( z
2

)
− 2 sinh

( z
2

)) (
−2 sinh

( z
4

)
+ sinh

( z
2

))
;

N4 = −9 + 14 cosh
( z

4

)
+ 5 cosh

(
3z
10

)
− 5 cosh

(
7z
10

)
− 14 cosh

(
3z
4

)
+ 9 cosh(z)

− 4z sinh
( z

4

)
+ 10z sinh

(
9z
20

)
− 5z sinh

(
7z
10

)
:

This method will be denominated EFRKN4F, and for small values of z the series expansions for
the coe;cient are given by

2(z) = 1 +
z2

96
+

z4

30720
+

z6

20643840
+

z8

23781703680
+

z10

41855798476800
+ · · · ;

3(z) = 1 − z2

300
+

159z4

800000
− 13967z6

2880000000
+

8931917z8

72576000000000

− 69131417z10

22176000000000000
+ · · · ;

a21(z) =
1
32

+
z2

6144
+

z4

2949120
+

z6

2642411520
+

z8

3805072588800

+
z10

8036313307545600
+ · · · ;

a32(z) =
119
500

+
77z2

30000
+

256067z4

5760000000
− 351701z6

768000000000

+
9222666821z8

663552000000000000
− 1519748735123z10

4379443200000000000000
+ · · · ;

Mb1(z) =
1

14
+

z2

5040
− 629z4

120960000
+

4099z6

56448000000

− 992337887z8

1072963584000000000
+

270621455579z10

23433524674560000000000
+ · · · ;

Mb2(z) =
8

27
− z2

3240
− 1937z4

544320000
+

209z6

54432000000
− 26260033z8

689762304000000000

+
200929607z10

1158800670720000000000
+ · · · ;
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Mb3(z) =
25

189
+

z2

9072
+

1907z4

1907217728000
− 4661z6

60963840000

+
1859736289z8

1931334451200000000
− 494432457737z10

42180344414208000000000
+ · · · ;

b1(z) =
1
14

+
z2

8400
− 503z4

117600000
+

45331z6

705600000000
− 6814329551z8

7823692800000000000

+
14555700385913z10

4717877694359406832025600000000000000
+ · · · ;

b2(z) =
32
81

− z2

4050
+

473z4

97200000
− 1612757z6

24494400000000

+
25977716983z8

30177100800000000000
− 4838146239331z10

427966156800000000000000
+ · · · ;

b3(z) =
250
567

+
z2

4536
+

797z4

381024000
− 679589z6

13716864000000

+
12694368991z8

16899176448000000000
− 27398706112457z10

2636271525888000000000000
+ · · · ;

b4(z) =
5
54

− z2

10800
− 19z4

7087500
+

835117z6

16329600000000

− 1355296393z8

1828915200000000000
+

31702189865821z10

3138418483200000000000000
+ · · · ;

which satisfy assumptions (14)–(15).
Conditions (25) imply that the advance formula (4) of the method EFRKN4F is exact for the

functions: 1; t; t2; e±�t , whereas the advance formula (5) is exact for the functions: 1; t; t2; t3; e±�t .

3.4. The 4(3) embedded pair

Now our interest is focused on the construction of an embedded pair of explicit EFRKN methods
based on the above EFRKN4F method. In order to carry out this goal, we consider another explicit
EFRKN method of 4 stages and order 3

y∗
n+1 = yn + hy′

n + h2
4∑

i=1

Mb∗
i (z)f(tn + cih; gi);

y
′∗
n+1 = y′

n + h
4∑

i=1

b∗
i (z)f(tn + cih; gi);

with the same stages that the EFRKN4F method. It should be noted that the fourth-order approxi-
mations yn and y′

n are used as the initial values for obtaining the third-order approximations y∗
n+1

and y
′∗
n+1, that is to say, the embedded pair is applied in local extrapolation mode or higher-order
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mode. In order to obtain the third-order method, we impose that the new weights Mb∗
i (z) and b∗

i (z)
satisfy the EF conditions (11) and (12) and the condition

b∗
1(z) + b∗

2(z) + b∗
3(z) + b∗

4(z) = 1: (28)

This last condition implies that the advance formula (5) of the method is exact for the functions:
1, t; t2; e±�t . With these conditions, the resulting method has order 3, it satis&es the order conditions
(16)–(18), and the weights are determined in terms of the arbitrary parameters b∗

4(z), Mb∗
3(z) and

Mb∗
4(z). Inspired by the classical RKN4(3) pair obtained in [4], we choose the parameter values

b∗
4(z) = −1=3; Mb∗

3(z) = 3=20; Mb∗
4(z) = −1=20;

and the remaining weights are given by

Mb∗
1(z) =

20z cosh(z=4) − 20 sinh(z=4) + 3z2 sinh(9z=20) − 20 sinh(3z=4) − z2 sinh(3z=4)
20z2 sinh(z=4)

;

Mb∗
2(z) =

(20 + z2) sin(z) − 20z − 3z2 sinh(7z=10)
20z2 sinh(z=4)

;

b∗
1(z) =

N ∗
1

3z(sinh(z=4) + sinh(9z=20) − sinh(7z=10))
;

b∗
2(z) =

N ∗
2

3z(sinh(z=4) + sinh(9z=20) − sinh(7z=10))
;

b∗
3(z) =

N ∗
3

3z(sinh(z=4) + sinh(9z=20) − sinh(7z=10))
;

where

N ∗
1 = 3 cosh

( z
4

)
+ 3 cosh

(
3z
10

)
− 3 cosh

(
7z
10

)
− 3 cosh

(
3z
4

)
+ z sinh

(
3z
10

)

+ 4z sinh
(

9z
20

)
− z sinh

(
3z
4

)
;

N ∗
2 = −3 − 3 cosh

(
3z
10

)
+ 3 cosh

(
7z
10

)
+ 3 cosh(z) − z sinh

(
3z
10

)

− 4z sinh
(

7z
10

)
+ z sinh(z);

N ∗
3 = 3 − 3 cosh

( z
4

)
+ 3 cosh

(
3z
4

)
− 3 cosh(z) + 4z sinh

( z
4

)
+ z sinh

(
3z
4

)
− z sinh(z):

The new embedded pair will be denominated EFRKN4(3)F, and for small values of z the series
expansions for the weights of the third-order formula are given by

Mb∗
1(z) = − 7

150
− 529z2

45000
− 4192z4

14765625
− 441517z6

189000000000

− 76458659z8

7484400000000000
− 113878959611z10

4086482400000000000000
+ · · · ;
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Mb∗
2(z) =

67
150

+
9977z2

360000
+

79636507z4

60480000000
+

1270638757z6

48384000000000

+
4090303650217z8

15328051200000000000
+

27719213106114401z10

16738231910400000000000000
+ · · · ;

b∗
1(z) =

13
21

+
23z2

10080
− 10597z4

564480000
+

330971z6

1354752000000

− 6575318689z8

2145927168000000000
+

238284355301z10

6248939913216000000000
+ · · · ;

b∗
2(z) = −20

27
− 253z2

6480
− 294689z4

1088640000
− 640751z6

870912000000

− 1829801551z8

1379524608000000000
− 5947927819z10

12051526975488000000000
+ · · · ;

b∗
3(z) =

275
189

+
667z2

18144
+

882353z4

3048192000
+

239671z6

487710720000

+
16959017983z8

3862668902400000000
− 6350406603661z10

168721377656832000000000
+ · · · ;

which satisfy assumptions (14)–(15).
For z → 0 the EFRKN4(3)F pair reduces to the classical RKN4(3) pair obtained in [4].

4. Numerical experiments

In order to evaluate the e4ectiveness of the EFRKN methods derived in the above section, we use
several model problems which have periodic or almost periodic solutions. The new EFRKN methods
have been implemented in &xed step and variable step codes, and have been compared with other
exponential &tting type codes proposed in [5,11,12]. Numerical considerations indicate that Taylor
series should be used for the coe;cients of the new EFRKN methods when |z|¡ 0:3, and they
contain terms up to z10 in order to obtain the coe;cients with arithmetic precision of 16 digits. The
criterion used in the numerical comparisons is the usual test based on computing the maximum global
error over the whole integration interval. In Figs. 1–5 we have depicted the e;ciency curves for the
tested codes. These &gures show the decimal logarithm of the maximum global error (sd(e)) against
the computational e4ort measured by the number of function evaluations required by each code.

4.1. Comparisons with >xed step-size

As test problems we have considered a linear model problem as well as a nonlinear problem, and
the codes used in the comparisons have been denoted by

• EFRKN4F: The trigonometric version of the method derived in Section 3.3.
• EFRKN4: The trigonometric version of the method derived in Section 3.2.
• VBERGHE4: The fourth-order and four-stage EFRK method obtained in [11].
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-2

sd
(e

)

0 15000 30000 45000 60000 75000
Function evaluations

× EFRKN4F
EFRKN4

•• VBERGHE4

Fig. 1. Linear problem with resonance: tend = 1000.

Problem 1. We consider the linear problem with resonance

y′′ + y = 0:001 cos(t); t ∈ [0; tend];

y(0) = 1; y′(0) = 0;

whose analytic solution is given by y(t) = cos(t) + 0:0005t sin(t).

In our test we choose the parameter value tend = 1000, and the numerical results stated in Fig. 1
have been computed with integration steps h = 1=2j; j = 0; 1; : : : ; 4 and � = i.

Problem 2. We consider the nonlinear problem

y′′
1 + 100y1 +

2y1y2

y2
1 + y2

2
= f1(t); y1(0) = 1; y′

1(0) =  ;

y′′
2 + 25y2 +

y2
1 − y2

2

y2
1 + y2

2
= f2(t); y2(0) = − ; y′

2(0) = 5;

with  = 10−3 and

f1(t) =
2 cos(10) sin(5t) + 2 (sin(5t) sin(t) − cos(10t) cos(t)) −  2 sin(2t)

cos2(10t) + sin2(5t) + 2 (sin(t) cos(10t) − cos(t) sin(5t)) +  2
+ 99 sin(t);

f2(t) =
cos2(10t) − sin2(5t) + 2 (sin(t) cos(10t) + cos(t) sin(5t)) −  2 cos(2t)

cos2(10t) + sin2(5t) + 2 (sin(t) cos(10t) − cos(t) sin(5t)) +  2
− 24 cos(t):

The analytic solution of this initial-value problem is given by

y1(t) = cos(10t) +  sin(t); y2(t) = sin(5t) −  cos(t);

and represents a periodic motion with two dominant frequencies and a small perturbation of low
frequency. In our test we choose the parameter value tend = 100 and the di4erent components of the
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sd
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0 2600 5200 7800 10400 13000

Function evaluations

× EFRKN4F
EFRKN4

•• VBERGHE4

Fig. 2. Nonlinear problem: tend = 100.

system have been integrated with di4erent �-values: �1 = i10 for the &rst component and �2 = i5 for
the second component. The numerical results stated in Fig. 2 have been computed with integration
steps h = 1=2j; j = 1; 2; : : : ; 5.

As it can be observed in Figs. 1 and 2, the new fourth-order EFRKN methods show a more e;cient
behaviour than the exponentially &tted method VBERGHE4. In addition, among the fourth-order
EFRKN methods, the code EFRKN4F which has optimized the principal terms of the local truncation
error performs more e;ciently than the code EFRKN4.

4.2. Comparisons with variable step-size

In this case we have considered the test problems used in [5] and the codes used in the comparisons
have been denoted by

• EFRKN4(3)F: The trigonometric version of the embedded pair derived in Sections 3.3 and 3.4.
• EFRK4(3): The trigonometric version of the embedded pair obtained in [5].
• VBExtrapo: The variable step code proposed by Vanden Berghe et al. [12].

Problem 3. We consider the linear problem with variable coe;cients

y′′ + 4t2y = (4t2 − !2) sin(!t) − 2 sin(t2); t ∈ [0; tend];

y(0) = 1; y′(0) = !;

whose analytic solution is given by

y(t) = sin(!t) + cos(t2):
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Fig. 3. Linear problem with variable coe;cients: ! = 10; tend = 10.

This solution represents a periodic motion that involves a constant frequency and a variable fre-
quency. In our test we choose the parameter values ! = 10, tend = 10, and the numerical results
stated in Fig. 3 have been computed with error tolerances Tol = 10−j; j¿ 2 and � = i10.

Problem 4. We consider the periodically forced nonlinear problem (undamped Du;ng’s equation)

y′′ + y + y3 = (cos(t) +  sin(10t))3 − 99 sin(10t); t ∈ [0; tend];

y(0) = 1; y′(0) = 10 ;

with  = 10−3. The analytic solution is given by

y(t) = cos(t) +  sin(10t);

and represents a periodic motion of low frequency with a small perturbation of high frequency. In
our test we choose the parameter value tend = 100, and the numerical results stated in Fig. 4 have
been computed with error tolerances Tol = 10−j; j¿ 3 and � = i.

Problem 5. We consider the nonlinear system

y′′
1 = −4t2y1 − 2y2√

y2
1 + y2

2

; y1(0) = 1; y′
1(0) = 0; t ∈ [0; tend];

y′′
2 = −4t2y2 +

2y1√
y2

1 + y2
2

; y2(0) = 0; y′
2(0) = 0;

whose analytic solution is given by

y1(t) = cos(t2); y2(t) = sin(t2):

This solution represents a periodic motion with variable frequency. In our test we choose the pa-
rameter value tend = 10, and the numerical results stated in Fig. 5 have been computed with error
tolerances Tol = 10−j; j¿ 2 and � = itn (n¿ 1) at each step.
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Fig. 4. Undamped Du;ng’s equation: tend = 100.
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Fig. 5. Nonlinear system: tend = 10.

As it can be observed in Figs. 3–5, the new embedded pair EFRKN4(3)F shows a more e;cient
behaviour than the exponentially &tted variable step codes EFRK4(3) and VBExtrapo.

In view of the numerical results obtained in Problems 1–5, we may conclude that the new
fourth-order EFRKN methods derived in Section 3 perform more e;ciently than other exponen-
tial &tting type codes recently proposed in the scienti&c literature.

All the computations have been carried out in double-precision arithmetic in a PC computer of
the University of Zaragoza.
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