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Abstract Stable isotopic compositions of carbon (d13C)
and oxygen (d18O) in plants reflect growth conditions.
Therefore, these isotopes might be good indicators of
changes in environmental factors, such as variations in
air temperature caused by climate change. It is predicted
that climate change will lead to a greater increase in
minimum air temperatures (primarily during the night)
than in maximum air temperatures (primarily during the
day) in many parts of Japan. In the present study, we
investigated whether the d13C and d18O of the rice grain
Koshihikari (Oryza sativa L.) from the northern lati-
tudes (30.49�–37.14�) of Japan reflect variations in air
temperature during grain filling and are related to the
yield and proportion of first-grade rice (<15 % trans-
parency, roundness, and cracking) as an indicator of
quality. We revealed that rice d13C was not correlated
with mean maximum or minimum air temperatures for
each prefecture. By contrast, rice d18O was positively
correlated with mean minimum air temperature, sug-

gesting that rice d18O reflects changes in night air tem-
perature. We further showed that an increase in the
mean minimum air temperature during grain filling had
a negative effect on rice yield and quality. Our findings
indicate that the d18O of rice grain may be a good
indicator of physiological changes in response to mini-
mum air temperatures during grain filling.

Keywords Carbohydrate Æ Climate
change Æ Koshihikari rice Æ Minimum air temperature Æ
Oxygen isotope discrimination

Introduction

The Intergovernmental Panel on Climate Change (IPCC
2007) has developed future climate scenarios based on
expected increases in temperature and atmospheric
concentrations of greenhouse gases such as carbon
dioxide (CO2), methane, and nitrous oxide. Increased
concentrations of CO2, coupled with higher tempera-
tures, are likely to have a considerable impact on the
future dynamics of water and nutrients, and also on the
structure and function of ecosystems (Cramer et al.
2001; Henry et al. 2005). This, in turn, will lead to
substantial changes in agricultural crops (Peng et al.
2004; Yoshimoto et al. 2005; Masutomi et al. 2010),
which are widely distributed and grown using the same
agricultural management practices.

The Japanese archipelago extends over a distance of
approximately 2,000 km, and its climate ranges from
subtropical to subarctic (Japan Meteorological Agency
2005). There are concerns that climate change in the
region will affect not only the production but also the
quality of rice (Oryza sativa L.)—one of the most
important basic food resources in Japan. The impact of
climate change on rice production has been investigated
extensively using crop models and climate change sce-
narios (Matthews et al. 1997; Aggarwal and Mall 2002;
Tao et al. 2008). The results suggest that global warming
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will enhance rice production in northern Japan, but
reduce production by at least 15–30 % in the south-
central and southwestern parts of the country (Horie
et al. 1995). In addition, high temperatures during the
grain-filling period may reduce rice quality, as measured
by grain size, transparency, roundness, and cracking
(Yamakawa et al. 2007; Morita 2008; Hasegawa et al.
2011). However, the way in which high air temperature,
especially at night, decreases the fertility of rice grains
remains unclear (Cheng et al. 2009).

Carbon isotope discrimination (D13C) occurs in C3

plants, owing to series of isotope fractionations along
the photosynthesis pathway. As a consequence, plant
carbon is invariably depleted in 13C in respect to the
isotopic composition of atmospheric CO2. The param-
eter D13C is an important indicator of all those condi-
tions affecting the photosynthetic set point, i.e., the
internal to atmospheric CO2 concentration ratio (Ci/Ca)
(Farquhar et al. 1989). The d13C of plants depends on
fractionation during diffusion of CO2 into the leaf, and
also on subsequent photosynthetic metabolism and wa-
ter-use efficiency (WUE) independently (Farquhar et al.
1982; Kume et al. 2003; Hanba et al. 2010; Ma et al.
2012). Most carbon stored in mature rice grains origi-
nates from CO2 assimilation during the grain filling
period, with the flag leaf as the most photosynthetically
active (Murchie et al. 1999). Factors such as the pho-
tosynthesis rate of the flag leaf during this period could
potentially determine grain yield (Dingkuhn et al. 1989).
Furthermore, the plastic response of WUE to water
availability has been demonstrated using instantaneous
gas-exchange measurements, by analyses of plant d13C
(Ehleringer and Cooper 1988; Toft et al. 1989; Centritto
et al. 2009). Therefore, rice d13C may reflect an inte-
gration over time of photosynthesis and plant water
status (with related factors such as sunshine hours,
precipitation, humidity, and air temperature), as this is
affected by water availability and evapotranspiration
demand by the atmosphere.

Oxygen isotope discrimination (D18O) in C3 plants
occurs mainly during transpiration at the leaf relating to
the atmospheric to internal vapor pressure ratio (Bar-
bour 2007). Although the oxygen stable isotopic com-
position (d18O) of xylem water reflects purely soil water
taken up by roots (Dawson and Ehleringer 1991), there
are complex phenomena of remixing and back diffusion
of the enriched water with xylem water (i.e., metabolic
water) arriving to the leaves and permeating the chlo-
roplasts, consequently determining the d18O of meta-
bolic water (Farquhar and Lloyd 1993). Additionally,
the d18O of soil water is normally closely linked to pre-
cipitation, which becomes enhanced with d18O as the
temperature increases at lower latitudes and altitudes
(Dansgaard 1964; Mizota and Kusakabe 1994). The
metabolic water retains the environmental signal (both
soil water and transpiration effects) and is detectably
affected by air temperature, which imprints the isotopic
signature of the organic matter by means of isotopic
exchange on the gem-diole groups of triose-phosphates

(Samuel and Silver 1965; Sternberg et al. 1986; Roden
and Farquhar 2012). Maximum air temperature (pri-
marily during the day) has the potential to affect both
photosynthesis and transpiration, whereas minimum air
temperature (primarily at night) may affect transpira-
tion, which promotes translocation in mature rice
grains. Therefore, it is expected that the d13C and d18O
of organic matter in rice grains will reflect physiological
changes in response to warming impacts. If the d13C and
d18O of rice grains reflect an increase in maximum and/
or minimum air temperatures, they may provide direct
indicators for changes in rice yield and quality under
conditions of climate change.

The aim of the present study was to investigate
whether stable carbon and oxygen isotopes of rice or-
ganic matter reflect variations in air temperature during
grain filling, and are related to the yield and quality of
rice. We analyzed the d13C and d18O of rice grains from
the northern latitudes (30.49�–37.14�) of Japan in rela-
tion to mean maximum and minimum air temperatures,
yield, and quality—as defined by the content of first-
grade rice.

Materials and methods

Rice and rice-field water samples

A total of 205 samples of the japonica rice cultivar
Koshihikari (Oryza sativa L.) were obtained from 114
paddies within 21 prefectures in September 2007, and 91
paddies within 13 prefectures in September 2008, on the
Japanese islands of Honshu, Shikoku, and Kyusyu
(detailed in Fig. 1; Table 1). We selected and polished
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Fig. 1 Sampling locations of Koshihikari rice (Oryza sativa L.) and
rice-field water in Japan. Closed and open circles represent locations
of rice samples in 2007 and 2008, respectively. Open triangles
represent locations of rice-field water samples in 2007
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rice crops for which heading and flowering occurred
between July and August. Each polished rice grain
sample (50 g) was freeze-dried and ground into a pow-
der for stable isotope analysis. In May 2007, water
samples were filtered by a membrane filter (nominal pore
size: 0.45 lm, ADVANTEC, Tokyo, Japan) and col-
lected in 100 ml polyethylene bottles from the irrigation
ditch of one rice field in each of the following locations
(within the region 24.35–38.17�N): Sado (Niigata), Uo-
numa (Niigata), Murakami (Niigata), Matsusaka (Mie),
Matsukawa (Nagano), Matsumoto (Nagano), Matsue
(Shimane), Unnan (Shimane), and Ishigaki (Okinawa) in
order to consider geographical changes in isotopic
composition of source water (Fig. 1). The rice crops
were irrigated and fertilized according to conventional
management practices for rice farming in Japan. Inter-
mittent irrigation was applied from approximately
1 month after transplanting to maintain wet soil condi-
tions. Irrigation was stopped from approximately
1 month after ear emergence until harvest, because
precipitation water provided sufficient water levels for
crop production (e.g., Chapagain and Yamaji 2010).

Meteorological and rice statistical data collection

Meteorological data (mean maximum and minimum air
temperatures, precipitation, and sunshine hours during
the grain-filling period) were obtained from local mete-
orological stations within a 15-km radius of each sam-
pling point (Japan Meteorological Agency 2012). Where
possible, these data were collected for the grain-filling
period of Koshihikari rice, determined according to
statistical reports (Ministry of Agriculture, Forestry and
Fisheries 2012). Rice yield and grade data for 2007 and
2008 were collected from statistical reports (Ministry of
Agriculture, Forestry and Fisheries 2012). We used the
characteristics of first-grade rice (<15 % transparency,
roundness, and cracking) as indicators of quality.

Stable isotope analysis

The d13C of rice grain (d13Crice) was determined using an
elemental analyzer/isotope ratio mass spectrometer (EA/
IRMS, Finnigan Delta V Advantage, interfaced with
FlashEA 1112 HT; Thermo Fisher Scientific, Bremen,
Germany) (Suzuki et al. 2008). Subsamples of rice
(1.0 mg) were placed into tin capsules (5 · 9 mm) and
loaded into the auto-sampler of the EA/IRMS. The
obtained CO2 was separated on a PorapakQS column
(length, 3 m) at 40 �C. The d notation defined in Eq. (1)
was used to describe the isotopic composition.

dð&Þ ¼ ðRsample=Rstandard � 1Þ � 1000 ð1Þ

where Rsample is the isotope ratio of the sample, and
Rstandard is the isotope ratio of the international stan-
dard, Vienna Pee Dee Belemnite. Each sample was

determined in duplicate, and analytical errors in d13C
had a standard deviation (SD) <0.1 &.

The d18O of rice grain (d18Orice) and rice-field water
(d18Owater) were determined by EA/IRMS in the pyro-
lysis mode. Subsamples of rice and rice-field water
(0.5 mg and 1.0 lL, respectively) were placed into silver
capsules (5 · 3 mm). Care was taken to avoid atmo-
spheric contamination of the samples. All rice samples
were dried overnight by lyophilization before isotope
measurement. Pyrolysis was performed in a ceramic tube
of glassy carbon at 1,450 �C under a continuous flow of
He at 100 ml min�1. The gas obtained was separated
from residual gases by molecular sieving through a 5-Å
column (length, 3 m) at 50 �C (Werner et al. 1996;
Böhlke et al. 2003; Leuenberger and Filot 2007). d18O
was calculated according to Eq. (1) and expressed rela-
tive to that of Vienna Standard Mean Ocean Water (V-
SMOW). The measured d18O values were obtained using
known isotope benzoic acid standards (+71.4,
+23.2 &) purchased from Indiana University (India-
napolis, IN). The accuracy of the obtained d18O values
was checked independently against V-SMOW and
Vienna Standard Light Antarctic Precipitation stan-
dards distributed by the International Atomic Energy
Agency. Four working standards—dibenzo-24-crown-8
(�15.7 &), dibenzo-18-crown-6 (+1.7 &), b-D-galact-
ose pentaacetate (+12.7 &), and D-(+)-sucrose octa-
acetate (+26.8 &)—were determined every six samples
to confirm the reproducibility of the measurements
(Nakashita et al. 2008). The analytical error of the iso-
tope measurements had a SD <0.3 &, with a minimum
sample amount of 10 lmol oxygen.

Statistical analysis

Correlations between rice (d13C, d18O, yield, and qual-
ity) and meteorological data (mean maximum and
minimum air temperatures, precipitation, and sunshine
hours during the grain-filling period) were tested inde-
pendently using Pearson’s product-moment coefficient
with the average values for each prefecture. We excluded
from our statistical analyses the rice yield and quality of
2007 data from Kagoshima and Miyazaki prefectures,
because of typhoon damage. Correlations between the
d18Owater and the d18Orice, and also between the mean
minimum air temperature during grain filling and the
d18Orice and the d18Owater with global mean 18O enrich-
ment of carbohydrate relative to the source water
(+27 &, Sternberg 1989), were tested using Pearson’s
product-moment coefficient. In this study, the 18O
enrichment of rice grain to source water was defined as
d18Orice–d

18Owater (e.g. Matsuo et al. 2013). We com-
pared the theoretical values (d18Owater + global mean
18O enrichment) with measured d18Orice, because the
difference between the theoretical and measured 18O
enrichments may reveal physiological changes such as
rice translocation and evaporative demands. For all
tests, an a value of 0.05 was used to indicate statistical
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significance. All analyses were conducted using R ver.
2.15.0 (R Development Core Team 2012).

Results

Rice yields ranged from 2.05 to 6.27 t ha�1 in 2007,
and from 4.67 to 6.35 t ha�1 in 2008 (Table 1). The
proportion of first-grade rice in the rice yield (rice
quality) ranged from 0 to 97 % in 2007, and from
30 % to 98 % in 2008. There was a positive correlation
between yield and quality (Table 2). Sunshine hours
during grain filling ranged from 144 to 276 h in 2007,
and from 118 to 268 h in 2008. Sunshine hours were
not correlated with yield or quality of rice (Table 2).
Precipitation during grain filling ranged from 10 to
701 mm in 2007, and from 37 to 389 mm in 2008.
Precipitation was also not correlated with yield or
quality of rice (Table 2).

Rice d13C ranged from �28.4 to �26.8 & in 2007,
and from �28.1 to �27.1 & in 2008 (Table 1). Rice d13C
was not correlated with yield, quality, sunshine hours, or
precipitation (Table 2). d18Orice ranged from 20.8 to
24.1 & in 2007, and from 20.4 to 23.9 & in 2008
(Table 1). d18Orice was not correlated with sunshine
hours, yield, quality or precipitation (Table 2). The
d18Orice was not correlated with the d13C (Table 2).

The mean maximum air temperatures ranged from
30.6 to 34.5 �C in 2007, and from 28.3 to 34.5 �C in 2008
(Table 1). The maximum air temperature was negatively
correlated with rice yield (Fig. 2a), quality (Fig. 2b), but
not with d13C (Fig. 2c), or d18Orice (Fig. 2d).

The mean minimum air temperatures ranged from
19.4 to 24.9 �C in 2007, and from 19.3 to 24.6 �C in 2008
(Table 1). The minimum air temperature was negatively
correlated with rice yield (Fig. 2e) and quality (Fig. 2f),
positively correlated with d18Orice (Fig. 2h), but not
correlated with rice d13C (Fig. 2g).

There was a positive correlation between the
d18Owater and d18Orice (Fig. 3). The 18O enrichment of
rice relative to rice-field water decreased significantly
with an increase in the mean minimum air temperature
during grain filling (Fig. 4).

Discussion

In the present study, the d18Orice was correlated posi-
tively with the d18Owater (Fig. 3), confirming that the
oxygen atoms in the organic compounds of rice grain
were derived mainly from the region-specific ambient
water. The d18O of precipitation and groundwater (i.e.,
source water for rice plants) varied in accordance with
climatic and geographical changes relating to amount
and thermal effects (Dansgaard 1964; Rozanski et al.
1992), and becomes enhanced at lower latitudes and
altitudes in Japan (e.g., Mizota and Kusakabe 1994).
Therefore, similar to variations in the d18O of organic
compounds (e.g., cellulose, sucrose, etc.) in trees to T
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Fig. 2 Relationships among mean maximum and minimum air
temperatures during grain filling, and yield, quality, d13C, and d18O
of Koshihikari rice (Oryza sativa L.). a Yield versus mean
maximum air temperature, b quality versus mean maximum air
temperature, c d13C versus mean maximum air temperature, d d18O

versus mean maximum air temperature, e yield versus mean
minimum air temperature, f quality versus mean minimum air
temperature, g d13C versus mean minimum air temperature, h d18O
versus mean minimum air temperature. Data are represented as
mean ± SD
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climate gradients in air temperature, rainfall, sunshine
hours, and water availability during the growing season
(Libby and Pandolfi 1974; Cernusak et al. 2003; Li et al.
2011), the d18Orice may reflect temperature-induced
changes in the d18Owater. However, the d18O of irrigation
water may not fully reflect precipitation d18O in some
locations, because irrigation water is obtained from
various sources—not only rivers, but also ground water
and springs far away from the paddy fields. For in-
stance, water used in paddy fields may be derived from
precipitation in the mountains either directly or via
ground water or springs. As a result, sources of water
used in different paddy field regions need to be examined
in order to reflect temperature-induced changes.

We found negative effects of mean minimum air
temperature during grain filling on the d18Orice (Fig. 2h),
but no significant effects of mean maximum air tem-
perature (Fig. 2d). Throughout many parts of Japan,
global warming is predicted to lead to a greater increase
in minimum air temperatures than in maximum air
temperatures (Japan Meteorological Agency 2005).
Therefore, the d18Orice is potentially a good indicator for
climate-change-induced variations in minimum air tem-
perature. The mean enrichment of d18Orice relative to
source water was +31 ± 2 &, it is 4 & higher than the
global mean 18O enrichment of carbohydrate relative to
source water of +27 ± 4 & (Sternberg 1989). The
oxygen isotope enrichment of rice grain decreased as the
minimum air temperature increased and the difference
between measured and global mean 18O enrichments
decreased with increase in the minimum temperature
(Fig. 4). A rise in minimum air temperature forecast to
cause increase in respiration and translocation (Morita
2008), having the potential for increase in d18O of the
rice grain with degradation of starch. Additionally, the
increase of minimum air temperature may induce an
increase in soil and metabolic water temperatures, and
may act to promote of smaller isotope enrichment dur-
ing transpiration and photosynthesis compared to low

water temperatures, because high water temperature
increases stomatal conductance and leaf photosynthesis
(Shimono et al. 2004). In this study, although we did not
accumulate data for other environmental factors such as
humidity, altitudes, and nutrients, they may help to
demonstrate the effects of minimum temperature on
d18Orice. The d18O of rice carbohydrate is also dependent
on the actual metabolic status of plants as reported by
Saurer et al. (1997).

Many physiological studies have indicated that de-
creases in grain size and quality, such as transparency,
roundness, and cracking, are caused by abnormal
growth of the endosperm under high temperatures (e.g.,
Morita 2008; Hasegawa et al. 2011). For example, rice
grain size was shown to decrease when night air tem-
peratures exceeded 21 �C during grain filling (Matsu-
shima and Tsunoda 1957; Aimi et al. 1959). In the
present study, we detected stronger negative effects from
mean minimum air temperature during grain filling on
rice yield and quality than from mean maximum air
temperature (Fig. 2). Yamakawa et al. (2007) reported
that several starch synthesis–related genes, such as
granule-bound starch synthase I (GBSSI), branching
enzymes (especially BEIIb), and a cytosolic pyruvate
orthophosphate dikinase, are downregulated by high
temperatures, whereas genes for starch-consuming a-
amylases and heat shock proteins are upregulated.
Therefore, an increase in minimum air temperature
during grain filling can cause changes in the processes
involved in amylose composition and translocation, and
might lead to changes in the d18Orice. Minimum air
temperature could therefore be useful for predicting the
yield and quality of rice, with changes in the d18Orice

reflecting the physiological conditions during grain
filling.

In contrast to the d18Orice, the d13Crice was not cor-
related with minimum or maximum air temperatures,

y = 0.48x + 12.63
r = 0.87, P < 0.001

y = 1.12x - 5.95
r = 0.91, P < 0.001
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suggesting that the d13Crice might not be a direct indi-
cator of changes in air temperature. The d13C of rice is
known to be a good indicator of WUE (Kondo et al.
2004; Xu et al. 2009). In the present study, we observed a
relatively small difference in rice d13C among the pre-
fectures surveyed (1.6 &), suggesting nearly constant
water-use efficiency. The d13Crice might reflect the nearly
constant wet soil conditions maintained under the uni-
fied irrigation and fertilization practices of conventional
rice farming in Japan, irrespective of the differences in
plant-experienced atmospheric vapor demand, namely
the leaf-to-air vapor pressure difference caused by dif-
ferent atmospheric temperatures, hours of sunshine, and
precipitation. We determined no effects of precipitation
on the yield and quality of rice; this finding could also be
derived from cultivation under constantly wet soil con-
ditions.
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