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Department of Mathematics, Unï ersity of Western Australia, Perth,
Western Australia 6907, Australia

Communicated by Alexander Lubotzky

Received July 23, 1997

1. THE THEOREM

w xIn 1 the second-named author defined the movement of a permutation
Ž .group G, V by the formula

g< <m [ move G [ sup G _ G G : V , g g G� 4Ž .

and proved that if G has no fixed points and m is finite then n F 5m y 2,
< < w xwhere n is the degree of G, that is, n [ V . In 2 it is shown that equality

holds if and only if n s 3 and G is transitive. In this note we aim to
improve the bound:

Ž . Ž .THEOREM. 1 If G has no fixed points and move G s m then
1 Ž .n F 9m y 3 ;2

Ž .2 equality holds infinitely often;
1Ž . Ž . Ž .3 moreo¨er, if n s 9m y 3 then either n s 3 and G s Sym V2

or G is an elementary abelian 3-group and all its orbits ha¨e length 3.

Ž . Ž . Ž .Part 2 is proved by examples; 1 and 3 will be proved using a
sequence of lemmas.
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2. THE PROOF

1d dŽ .EXAMPLES. Let d be a positive integer, let G [ Z , let t [ 3 y 1 ,3 2

and let H , . . . , H be an enumeration of the subgroups of index 3 in G.1 t
Define V to be the coset space of H in G and V [ V j ??? j V . Ifi i 1 t

1 dy1� 4 Ž .g g G _ 1 then g lies in 3 y 1 of the groups H and therefore actsi2
1 d dy1Ž .on V as a permutation with 3 y 3 fixed points and 3 disjoint2

3-cycles. Taking one point from each of these 3-cycles to form a set G we
Ž . dy1 Ž . dy1see that m G G 3 , and it is not hard to prove that in fact m G s 3 .

1 1dq1Ž . Ž . Ž .Thus n s 3t s 3 y 3 s 9m y 3 . This proves Part 2 of the2 2

theorem.

Ž . Ž .To prove Parts 1 and 3 we introduce the following notation:

r [ number of G-orbits of length 3 on which G acts as Alt 3 ;Ž .3

rX [ number of G-orbits of length 3 on which G acts as Sym 3 ;Ž .3

and then

r [ number of G-orbits of length 2;2

r [ number of G-orbits of length 4;4

s [ number of G-orbits of length G 5.

The orbits are labelled accordingly: thus V , . . . , V are those of length 31 r3
Ž . Xon which G acts as Alt 3 ; V , . . . , V are those of length 3 on whichr q1 r qr3 3 3

Ž . X XG acts as Sym 3 ; V , . . . , V are those of length 2, etc. Definer qr q1 r qr qr3 3 3 3 2

t [ r q rX q r q r q s, t [ r q rX q r , S [ D t0qr 4 V , and S [3 3 2 4 0 3 3 2 4 ist q1 i 50

D t V . For 1 F i F t let K be the kernel of the action of G onis t qr q1 i 0 i0 4
Ž .V and for g g G let k g be the number of i in that range for whichi

Ž .g f K . For g g G and a G-invariant set S define fix g [ the numberi S

Ž . Žof fixed points of g in S, supp g [ the size of the support of g in S soS

Ž . Ž . < <. Ž .that fix g q supp g s S , and odd g [ the number of non-trivialS S S

cycles of g in S that have odd length.

LEMMA 1. With this notation, let S [ D t V and let g g G. Thenis t q1 i0

1 1k g q supp g y odd g F m.Ž . Ž . Ž .S S2 2

Proof. For each i such that 1 F i F t and g f K choose a point of V0 i i
not fixed by g ; then let G be the set of chosen points. For each non-trivial0

Ž .cycle a a ??? a of g in S adjoin the points a , a , . . . , a to G ,1 2 k 1 3 k 9 0
where k9 is odd and k y 2 F k9 F k y 1. Let G be the resulting set. It has

g < < < <been constructed so that G l G s B. Therefore G F m. Since G s
1 1Ž . Ž . Ž .k g q supp g y odd g , we have the stated inequality.S S2 2
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2Ž . < <ŽLEMMA 2. With the notation defined abo¨e, Ý k g s G r qg g G 33
5 X 1 .r q r .3 26 2

Ž . t0 Ž . Ž .Proof. First observe that k g s Ý k g , where k g [ 1 if g f Kis1 i i i
Ž .and k g [ 0 if g g K . Nowi i

2 < <¡ G if 1 F i F r ,33
X5~ < <G if r q 1 F i F r q r ,k g sŽ .Ý 3 3 36i

ggG X1¢ < <G if r q r q 1 F i F t ,3 3 02

and so

t t0 0
X2 5 1< <k g s k g s k g s G r q r q r ,Ž . Ž . Ž . Ž .Ý Ý Ý Ý Ýi i 3 3 23 6 2

ggG ggG is1 is1 ggG

as the lemma states.
9 3 X 1 5 1Ž Ž < < ..LEMMA 3. n - m y r q r q r q Ý y 3s .3 2 4 52 4 4 4 2

Proof. We intend to exploit Lemma 1 by averaging over G and in order
Ž Ž . Ž .. � 4to do this we examine Ý supp g y odd g for j g 4, 5 , where,g g G S Sj j

recall, S is the union of the orbits of length 4 and S is the union of the4 5
orbits of length G 5. For any orbit V of length 4 we find thati

2 2V iŽ . < < Ž < <Ý odd g F G the sum is 0 if G is a 2-group, it is Gg g G V 3 3i
1V Vi iŽ . < < Ž ..if G s Alt V , and it is G if G s Sym V . Thereforei i3

2Ž . < <Ý odd g F G ? r . Also,g g G S 434

< < < < < <supp g s S y fix g s G Ý y r ,Ž . Ž . Ž .Ž .Ý ÝS 4 S 4 44 4
ggG ggG

by Not Burnside’s Lemma, and therefore

2 7< < < < < <supp g y odd g G G S y r y r s G ? r .Ž . Ž . Ž .Ž .Ý S S 4 4 4 43 34 4
ggG

1Ž . Ž .Similarly, since odd g F supp g ,S S35 5

supp g y odd gŽ . Ž .Ž .Ý S S5 5
ggG

2 2 2< < < < < <G supp g s S y fix g s G S y s .Ž . Ž . Ž .Ž .Ý ÝS 5 S 53 3 35 5
ggG ggG
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1 1Ž . Ž . Ž .Now take the inequality k g q supp g y odd g F m from LemmaS S2 2

1 and sum over G. Using Lemma 2 and the above inequalities we find that

1< <m G ) k g q supp g y odd gŽ . Ž . Ž .Ž .Ý Ý S S2 4 4
ggG ggG

1q supp g y odd gŽ . Ž .Ž .Ý S S2 5 5
ggG

2 5 X 1 7 1 1< < < <G G r q r q r q r q S y s ,Ž .3 3 2 4 53 6 2 6 3 3

where the strict inequality recognizes the fact that the inequality of
Lemma 1 is strict for the identity element of G. Now n s 3r q 3rX q 2 r3 3 2

< <q 4 r q S and so4 5

2 5 X 1 7 1 1< <m ) r q r q r q r q S y s3 3 2 4 53 6 2 6 3 3

2 1 X 1 5 1 1< <s n q r q r q r q S y s.3 2 4 59 6 18 18 9 3

9Multiplication by and rearrangement yields the inequality of the lemma.2

Now define h [ 9m y 2n. Clearly h is an integer and from Lemma 3
we have that

X < <2h ) 3r q r q 5r q 2 S y 3s G 0.Ž .3 2 4 5

Since h ) 0, in fact h G 1. To prove the theorem we suppose that h F 3
and seek to discover what configurations may occur. Then 2h F 6 and so,

< <since certainly S G 5s there are only the following possibilities:5

Ž . X < <I r s r s 0, r is 0 or 1, s s 1, and S s 5;3 4 2 5

Ž . X < <II r s r s 0, r s 1, S s s s 0;3 2 4 5

Ž . X < <III 3r q r F 5, r s S s s s 0.3 2 4 5

Ž . Ž .Cases I and II cannot arise for arithmetical reasons: in these cases we
Ž .would have h s 3 given the assumption that h F 3 , so that, since

2n s 9m y h, the degree n would be a multiple of 3, in contradiction to
Ž .the fact that n is 3r q 5 or 3r q 7 or 3r q 4 in these cases. Case III3 3 3

falls to the following lemmas.
1 Ž .LEMMA 4. If r s r s s s 0 then n F 4m y 1 F 9m y 3 . The3 4 2

1 XŽ .equality n s 9m y 3 holds only when m s 1, r s 0, r s 1, so that2 32
Ž .G s Sym 3 .
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Proof. Suppose that r s r s s s 0. It follows from Lemmas 1 and 23 4
1 5 X X< < < <Ž .that then G m ) G r q r . But also n s 2 r q 3r and therefore2 3 2 32 6

1 1 Xm ) n q r . Thus n - 4m, and so n F 4m y 1. Since 4m y 1 s34 12
1 1 1Ž . Ž . Ž .9m y 3 y m y 1 , if n s 9m y 3 then m s 1, n s 3, and G s2 2 2

Ž .Sym 3 .
X 1 Ž .LEMMA 5. If r s r s r s s s 0 then n F 9m y 3 .3 2 4 2

Proof. In this case our inequalities merely say that 2n - 9m. On the
other hand, n s 3r , so that n is a multiple of 3. Therefore 2n F 9m y 3,3
as required.

Ž .To complete the proof of the theorem we need to deal with Case III .
< <Suppose therefore that r s S s s s 0. Suppose also that r ) 0 and4 5 3

rX q r ) 0. Define S [ D r3 V , the union of the orbits of length 3 on3 2 1 is1 i
Ž . t0which G acts as Alt 3 , and S [ D V , the union of those orbits of2 isr q1 i3

Ž .length 3 on which G acts as Sym 3 and those of length 2. Then define K1
to be the kernel of the action of G on S and K the kernel of its action1 2

� 4on S . Clearly, K l K s 1 since G acts faithfully on V. Now let H be2 1 2
the subgroup of G generated by its 2-elements. Then GS 2 s H S 2 , that is,
G s HK . But H F K and therefore G s K K , that is, G s K = K . It2 1 1 2 1 2

Ž S1. Ž S 2 .follows easily that if m [ move G and m [ move G then m s1 2
< < < <m q m . Defining n [ S and n [ S , we have from Lemma 5 that1 2 1 1 2 2

1 Ž . Ž .n F 9m y 3 , and from Lemma 4 that n F 4m y 1 , and so n s1 1 2 22
1 1Ž . Ž .n q n F 9m y m y 5 - 9m y 3 .1 2 22 2

Ž .What this has shown is that in Case III , if h F 3, that is, if n G
1 XŽ .9m y 3 , then either r s 0 or r q r s 0. If r s 0 then we have the3 2 3 32

1 Ž .situation of Lemma 4, so that n F 9m y 3 with equality if and only if2
Ž . X XG s Sym 3 . If r q r s 0 then of course r s r s 0 and we have the2 3 2 3

1 Ž .situation of Lemma 5. In this case n F 9m y 3 by that lemma, and,2
Ž .since G is a subdirect product of copies of Alt 3 , it is an elementary

abelian 3-group. Thus the proof of the theorem is complete.
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