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Abstract

Let H be a finite-dimensional quasi-Hopf algebra over a fieldnd 20 a right H#-comodule
algebra. We introduce the category of two-sided Hopf modules, and prove that it is isomorphic to a
module category. We also show that two-sided Hopf modules are coalgebra over a certain comonad.
We introduce Doi-Hopf modules, and show that they are comodules over a certain coring. If the
underlying H-module coalgebra is finite-dimensional, then Doi—-Hopf modules are modules over
a certain smash products. A similar result holds for two-sided two-cosided Hopf modules.

0 2003 Elsevier Inc. All rights reserved.

Introduction

Quasi-bialgebras and quasi-Hopf algebras were introduced by Drinfeld [15] in connec-
tion with the Knizhnik—Zamolodchikov equations [19]. Liebe a field,H an associative
algebraandd: H — H ® H ande: H — k two algebra morphisms. Roughly speaking,

H is a quasi-bialgebra if the categopyM of left H-modules, equipped with the ten-
sor product of vector spaces endowed with the diagéhahodule structure given via,
and with unit objeck viewed as a leftd -module viag, is a monoidal category. The co-
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multiplication A is not coassociative but only quasi-coassociative, in the sense that it is
coassociative up to conjugation by an invertible elemert H @ H ® H. Moreover,H

is a quasi-Hopf algebra if and only if each finite-dimensional lEfmodule has a dual
H-module. Note that the definition of a quasi-bialgebra is not self-dual.

From an algebraic point of view, quasi-bialgebras and quasi-Hopf algebras appear
naturally. They can be obtained by twisting the comultiplication on a bialgébtay
an invertible elementt € H ® H satisfying (¢ ® id)(F) = (id ® ¢)(F) = 1: a new
comultiplication A making H a quasi-bialgebra is given byr(h) = FA(h)F~1.
Another important example is the Dijkgraaf—Pasquier—Roche quasi-Hopf alféti@),
whereG is a finite group and» a normalized 3-cocycle. The representationDéf(G)
are important in physics (see [12]). Altschuler and Coste [3] used them to construct
invariants for knots, links, and 3-manifolds. In [7], this construction was generalized to
finite-dimensional cocommutative Hopf algebras, and an even more general construction
is the quantum doublé®(H) of a finite-dimensional quasi-Hopf algebra, see [16,17,
21]. Albuquerque and Majid [1] showed recently that the octonions are a twisting of
the group algebra o¥,; x Z, x Zy in the monoidal category of representations of a
quasi-Hopf algebra associated to a group 3-cocycle. In particular, they shown that the
octonions are quasi-algebras associative up to a 3-cocycle isomorphism. They provide new
guasi-associative algebras beyond the octonions and also introduce a suitable quasi-Hopf
algebra of “automorphisms” associated to any quasi-algebra of the type presented above.
More examples of quasi-algebras, where the non-associativity constraint is induced by
aZy,-grading and a nontrivial 3-cocycle, were given in [2].

Let H be a bialgebraAd and H-comodule algebra, and an H-module coalgebra.

We can consider several types of modules, such as modules, comodules, (relative) Hopf
modules, Long dimodules, and Yetter—Drinfeld modules. Doi [14] and Koppinen [20]
introduced Doi—Hopf modules, and it turned out that they generalize and unify all the types
of modules mentioned above. Basically, we obtain the definition of a Doi-Hopf module,
by combining the definitions of a relativel, H)-module and its dual notion, a relative

[H, C]-module: a(H, A, C)-module is ak-linear space together with afi-action and a
C-coaction satisfying an appropriate compatibility relation. We recover the two types of
relative Hopf modules taking respectivaly= H andA = H. At the end of last century,
Takeuchi [28] observed that ® C is in a canonical way aA-coring, and that Doi—Hopf
modules are nothing else than comodules over the cotigyC. This observation was

the reason for a revived interest in corings and comodules (see, for example, [5]); actually,
corings were considered already by Sweedler in 1965 [26], but then forgotten by Hopf-
algebra theorists.

The aim of this paper is to introduce the quasi-bialgebraic versions of these categories,
including interpretations in terms of monoidal categories, and to give duality theorems in
the finite-dimensional case. The conceptual problem that arises comes from the fact that
the definition of a quasi-bialgeb#a is not self-dual: an immediate consequence is that we
cannot consideH -comodules, because a quasi-bialgebra is not coassociatimeodule
(co)algebras can be introduced as (co)algebras in the monoidal categbryrafdules,
but we cannot introduc& -comodule algebras as algebras in the category of comodules.
A formal definition of H-comodule algebras was given by Hausser and Nill [16]; we
propose the following interpretation: # is a bialgebra, andl is a right H-comodule
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algebra, thefl ® H is an®l-coring, which means that it is a coalgebra in the category of
2A-bimodules. The quasi-bialgebra analog of this property is the followingl le¢ a quasi-
bialgebra, an®l an algebra. Then the category @ ® H, 2)-bimodules is monoidal. If
21 is a right H-comodule algebra in the sense of [16], ti¢® H is a coalgebra in the
categoryy e Mg . This coalgebra induces a comonad, and the two-sided Hopf modules
that are introduced in Section 3.1 are precisely the coalgebras over this comonad. This will
be discussed in detail in Section 3.3.

Given a finite-dimensional quasi-bialgebfaand a rightH -comodule algebral, we
can introduce the quasi-smash prodgt H*, which reduces to the usual smash product
in the situation wheref is a bialgebra2l # H* is then a leftH -module algebra, and we
can consider the categoMggH* of relative Hopf modules (see Section 2). In Section 3,

we introduce the categor,y/\/lg of two-sided(H, l)-Hopf modules; the main result of
Section 3 is Theorem 3.5, stating that these two categories are isomorphis # quasi-

Hopf algebra. This generalizes [11, Proposition 2.3]. Applying results from [6], we find
that the category\/lg;H* is isomorphic to the category of right modules over the smash
product algebra (in the sense of [8])®# H* andH . In the case wher# = H, we recover

a result of Nill announced in [18] stating that\M?# is isomorphic to the category of right
modules over the two-sided crossed proddct H* x H. In Section 4, we will prove that

the two-sided crossed product constructed in [16] is in fact a generalized smash product.
As a consequencéH # H*) # H is just the two-sided crossed produétx H* x H (as

an algebra).

The second part of this paper is devoted to the study of the category of two-sided
two-cosided Hopf modulegMg. HereC is a coalgebra in the monoidal category of
(H, H)-bimodulesy Mg (i.e. an H-bimodule coalgebra), and is an H-bicomodule
algebra in the sense of [16]. Roughly speaking, an objeﬁt/mg’ is a two-sided H, A)-
Hopf module which is also an “almost” leff-comodule such that the leff-coaction
is compatible with the other structure maps. In Section 5 we will show thét &nd
H are finite-dimensional theﬁ,/\/lg’ is isomorphic to a category of right modules. To
this end we will describe firsﬁ/\/lg’ as a category of Doi—-Hopf modules.*B is a left
H-comodule algebra and is a right H-module coalgebra then the category of right—
left (H, B, C)-Doi-Hopf modules M (H)s is a straightforward generalization of the
category of relative Hopf modulésM . When C is finite-dimensional® M(H)s is
isomorphic to the category of right modules over the generalized smash p@tiucs.

We also have an interpretation in terms of monoidal categdBe®s:C is a coring, and the
Doi—Hopf modules are comodules over this coring. Now, returning to the catggmﬂ,

if H is finite-dimensional then we will show thet # H*)# H is a left H ® H°P-comodule
algebra (here “op” means the opposite multiplicationfbnso, it makes sense to consider
the category of Doi-Hopf modulésM (H ® HP)(,zp+)4- The main result states that
¢ M is isomorphic to° M(H ® HOP) pzp+un, generalizing [4, Proposition 2.3]. In
particular, if C is finite-dimensional, the@Mg is isomorphic to the category of right
modules over the generalized smash proddct C* x ((A # H*) # H). In the Hopf
case, the left-handed version of this result was first obtained by Cibils and Rosso [10].
More precisely, they define an algebxahaving the property that the categ#)*(MH:

is isomorphic to the category of leff-modules. Recently, Panaite [23] introduced two
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other algebrag and Z with the same property a%; Y is the two-sided crossed product
H* #(H ® H°P) # H*°P and Z is the diagonal crossed product (in the sense of [16])
(H*® H*P)x (H ® HOP).

1. Preliminary results
1.1. Quasi-Hopf algebras

We work over a fieldk. All algebras, linear spaces, etc., will be okerunadorned
meansyy. Following Drinfeld [15], a quasi-bialgebra is a four-tuggld, A, ¢, @) where

H is an associative algebra with un@, is an invertible element itH ® H ® H, and
A:'H — H ® H ande: H — k are algebra homomorphisms satisfying the identities

(id® A)(AR) = d(ARid)(AMR)D, (1.1)
(id®e)(AM) =h, (e @id)(Ah)) =h, (1.2)

forall h € H, and® has to be a normalized 3-cocycle, in the sense that
1P MMdRIARQIN(P) (PR =>{[dRId® A)(P)(ARid®id) (D), (1.3)
(dReid)(@)=1®1. (1.4)
The map A is called the coproduct or the comultiplication,the counit and® the

reassociator. We use the Sweedler—Heyneman notatign = > /1 ® hp. Since A is
only quasi-coassociative, we will write

(A®id)(AM) =) hay®haz & ha,
(d® A)(Ah) = Zhl ®he1)®hw22),

for all h € H. We will denote the tensor componentsdfby capital letters, and the ones
of @1 by small letters, namely:

¢=) X'ox'ex’=) T'er'er’=) vievievi=-
¢_1=2x1®x2®x3=zt1®t2®t3=Zv1®v2®v3=..._

H is called a quasi-Hopf algebra if, moreover, there exists an anti-automorghigitine
algebraH and elemente, 8 € H such that, for alk € H, we have:

Y S(hahz=e(ma and Y h1BS(h) =e(h)B, (1.5)
D OxBS(X%)ex?=1 and > S(xMax?S(x%) =1 (1.6)
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For a quasi-Hopf algebra, the antipode is determined uniquely up to a transformation
o+ Ua, B> BU™L, S(h) — US(h)U™L, whereU € H is invertible. The axioms for

a quasi-Hopf algebra imply thato S = ¢ ande(x)e(8) = 1, so, by rescaling andg, we

may assume without loss of generality thét) = ¢(8) = 1. The identities (1.2)—(1.4) also
imply that

(tdEid)(®)=(dRIdRe)(P) =1 1. 1.7)

Recall that the definition of a quasi-Hopf algebra is “twist coinvariant” in the following
sense. An invertible elemerit € H ® H is called a gauge transformation or twist if
(e®id)(F) = (ld®e¢)(F) = 1. If H is aquasi-Hopfalgebraamd= Y F1® F e H® H

is a gauge transformation with inverge! = 3" G ® G?, then we can define a new
guasi-Hopf algebradf by keeping the multiplication, unit, counit, and antipodegbtnd
replacing the comultiplication, reassociator, and the elementsd 8 by

Ap(h)=FAh)F™1, (1.8)
or=(1® F)([id® A)(F)®(ARid)(F ) (Fe1), (1.9)
ar =Y S(GYaG?  Br=> F'BS(F?. (1.10)

It is well known that the antipode of a Hopf algebra is an anti-coalgebra morphism. For a
guasi-Hopf algebra, we have the following statement: there exists a gauge transformation
f € H® H such that
FASM) 1= (S®$)(A%h)), forallheH, (1.11)
whereA®P(h) =Y hy ® hy. f can be computed explicitly. First set
ZA1®A2®A3®A4:(1® 271 (d®id® 24)(®), (1.12)
Y B'eB’®B}@B'=(A®ideid) (@) (¢ e1) (1.13)
and then defing, § € H ® H by
y =Y 85(4%)aa®® S(A)aa® and §=) B'S(B*)® B°BS(B’). (1.14)
f and f 1 are then given by the formulas
£=)_(5®8)(A%(x1))y A(x*BS(x?)). (1.15)
FE=D"A(S(xhax?)s(S ® $)(A%P(x%)). (1.16)
f satisfies the following relations:

fA@=y, AP 1=s. (1.17)
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Furthermore, the corresponding twisted reassociator (see (1.9)) is given by
D= (SR®SRH(X* X’ ®X'). (1.18)
In a Hopf algebrad , we obviously have the identity
Zhl ®haS(ha)=h®1, forallheH.

We will need the generalization of this formula to the quasi-Hopf algebra setting. Following
[16,17], we define:

PR=Y. PR ® pi =Y x'®x2B5(x3),

1.19
GR=Y qr®q3=Y X'® S HaX?)X2 (1:49)
pL=Y.pL®p; =Y X?5H(X'B) ® X3, (1.20)

qL:Zq%®q§=ZS(xl)ax2®x3. .

For allh € H, we then have:

> A(h1)prI1® S(h2)]= prlh ®1], (1.21)

Y[1® S Hh2)]grAGh) = (h ® Lgr, '

Ah Sy @1l =pL. AN,

Y Ah2)pL[STHh) ® 1] = pL(1®h) 1.22)

2 [S(h1) ® 1lgrA(h2) = (1® h)qL,

and

> Algr)pr[1®S(gR)] =101, Y 1@ 5 (pk)]ara(pr) =1®1, (1.23)
Y[srhetaap) =1l Y a@)nls e el]=101 (.24
(qr® D(A®id)(gr) @

=) [tesH(x)) e s (x?)|1es (s @ s7H(Y)](d® 4)(grA(XY)).
(1.25)

2(A®id)(pr)(pr ®id)
=Y (d® A)(A(xY)pr)(1® 1) (10 5(x°) ® 5(x?)). (1.26)

wheref =3 f1® f2is the twist defined in (1.15).
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1.2. The smash product

Suppose thatH, A, ¢, @) is a quasi-bialgebra. I/, V, W are left (right) H-modules,
defineay, v.w,avv.w: (UQ V)@ W - U ® (V® W) by

aU,V,W((M V) w) =¢. (u QM w)),
avyw(u®v)@w)=@u®vew) o %

Then the category M (M g) of left (right) H-modules becomes a monoidal category (see

[19,22] for the terminology) with tensor produgt given via A, associativity constraints

ay.v.w (&uy,v.w), unitk as a trivialH-module and the usual left and right unit constraints.
Now, let H be a quasi-bialgebra. We say that-aector space is a left H-module

algebraifitis an algebrain the monoidal categgti1, that is,A has a multiplication and

a usual unit } satisfying the following conditions:

(aa’)a”:Z(Xl-a)[(Xz-a/)(X?’-a”)], (1.27)
h-(ad) = Z(hl-a)(hz-a'), (1.28)
h-1s=e(h)1a, (1.29)

forall a,a’,a” € A andh € H, whereh ® a — h - a is the H-module structure ofd.
Following [8], we define the smash produtt# H as follows: as a vector space# H is
A ® H (a ® h viewed as an element of # H will be written a # h) with multiplication
given by

(a#hy(a #h')=> " (x' a)(x®h1-a’) #x3hal’, (1.30)

foralla,a’ € A,h, k' € H. A# H is an associative algebra and it is defined by a universal
property (as Heyneman and Sweedler did for Hopf algebras, see [8]). It is easy to see that
H is asubalgebraol # H viah +— 1#h, A is ak-subspace oA # H viaa — a #1 and

the following relations hold:

(a#h)(L#h)y=a#hh',  (L#h)a#h') =) hi-a#hoh’, (1.31)

foralac A, h,h € H.

We will also need the notion rightf-module coalgebra. This is a coalgelgfan the
monoidal category of right modules over a quasi-bialgeliraThis means thaC is a
right H-module together with a comultiplicatian: C — C ® C and a counig:C — k,
satisfying the following relations:

(A®ide)(A()@ ™ = (idc ® 4)(A(e)) VeeC, (1.32)
4(c-h)=2cl-h1®c2-h2 VceC, heH, (1.33)
e(c-h)y=¢(c)eth) VYceC, he H, (1.34)



62 D. Bulacu, S. Caenepeel / Journal of Algebra 270 (2003) 55-95

where we used the Sweedler-type notation

Al©)=c1®c2, (AQidc)(A(0) = Z ca ®cr2 ®cp, et

2. Thequasi-smash product

The category off -modules is monoidal, and ati-module (co)algebrais a (co)algebra
in this category. This categorical definition cannot be used to introdia@module
algebras, since we do not ha#decomodules. Hausser and Nill [16] gave a purely algebraic
definition of anH -comodule algebra. We will show in Section 3.3 how their definition can
be justified from a categorical point of view.

Definition 2.1 [16]. Let H be a quasi-bialgebra. A unital associative algelria called
a right H-comodule algebra if there exists an algebra morphis®l — 2l ® H and an
invertible element, e A ® H ® H such that

D,(p®id)(p(a)) = (d® A)(p(a))®,, forallaec, (2.1)

(1o ® )(id ® A Qid)(P,)(@) ® 1) = (i ®@id ® A) (D) (p ®id @id) (D)), (2.2)
(i[d®e)op=id, (2.3)

((d®e®id)(P,) =1y ® 1p. (2.4)

Similarly, a unital associative algebais called a leftH -comodule algebra if there exists
an algebra morphism: 8 — H ® % and an invertible elemer®, € H ® H ® % such
that the following relations hold:

(i[d®@21)(A(b)) Py = Pr(A®id)(A(b)), forallbeB, (2.5)

1y ®@ $)(d® A®id)(9)(P ®1lp) = ([dRid®1)(P))(ARid®Iid)(P,), (2.6)
(e ®id)ox =id, (2.7)

([d®e®id)(Py) =1y ® 1. (2.8)

We notice that, wheigl, p, @,) is a right H-comodule algebra we also have
([d®id®e)(P)p) =1y ® 1y.
Similarly, if (B, A, ®;) is a left H-comodule algebra then
(¢ ®id®id)(P)) =1y ® 1.

When H is a quasi-bialgebra, particular examples of left and rigdhtomodule algebras
aregivenbYA=B=Handp=1=A, P, =D, =P.
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For a rightH -comodule algebr&, p, ®,), we will denote

p(a) = Z a(0) ® (1), (p®id)(p(a) = Z a0,00 ® a0,1) ® agy, etc,

for anya € 2(. Similarly, for a left H-comodule algebr&3, i, @,), if b € 5 then we will
denote

A(b) = Z bi—1) ® byoy, (id® 1) (A(b)) = Z b—1 ® bjo,—11 ® bjo,0), etc.
In analogy with the notation for the reassociadoof H, we will write
?,=Y XloX2eXi=) Vler?@V =-- and

1= ileileii=) teilej="
A similar notation is used for the elemed, of a left H-comodule algebr&s. If no
confusion is possible, we will omit the subscriptor A in the tensor components of the
®,, &, @, ando; .

Recall that, if H is an algebra, thel{* is an (H, H)-bimodule, with left and right

action given by(th — ¢ — ', h"y = (¢, W'h"h), forall h, ', h”" € H andp € H*. If H is
finite-dimensional, thei/ * is a coalgebra.

Now let H be a bialgebra an?l be a rightH -comodule algebra. Then we can consider
the smash produ® # H*, with multiplication

(a#)d #9) =) aajg #(p < ajy)y.

We will now generalize this construction to quasi-bialgebras. In this situation, the
convolution product o * is not associative, but only quasi-associative, namely

[pple =Y (X' =g —x)[(X2 =~y —x?) (X3~ —x%)], forallg,y.&eH*
(2.9)

In addition, for allh € H andg, ¢ € H* we have that
h— (@)=Y (h1i—=¢)ha—y) and (py) —h=Y (p < h1)(¥ < hy). (2.10)

In other words,H* is an algebra in the monoidal category(@f, H)-bimodulesy M g.
Let (A, p, @,) be a rightH-comodule algebra. We define a multiplication®® H* by

(@)@ BY) =) aaj ¥ #(p < )y ¥%) (v — ) (2.11)

forall a,a’ € 2 andg, ¥ € H*, where we writea # ¢ for a ® ¢, p(a) =Y ag ® a1y,
and®, =3 ' ® ¥?® 3. We denote this structure @@ H* by A# H*. In the next
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proposition, we prove th& # H* is an algebra in the category of I¢it-modules, and this
is why we call?l # H* the quasi-smash product.

Proposition 2.2. Let H be a quasi-bialgebraand, p, ®,) a right H-comodule algebra.
ThenA # H* is an H-module algebra with unity # ¢ and with leftH -action given by

h-(a#tp)=a#th—¢ forallhe H, ac®, andp € H*. (2.12)

Proof. SinceH* is a left H-module via the actior~, it is easy to see th&t # H* is a left
H-module via the action (2.12). Now, we will prove tia# H* is an algebra in; M with
unit 1y #e¢. Indeed, for alla, @', a” € A andg, ¥, x € H*

(X' @B {[X*- @ #W][X°- @ #0)]}
=) (a#X'—g)[(aBX>—y)(a" & X3~ )]
= Z(aﬁxl — o) [afp # # (X2 = ¢ — a,7%) (X3 = x — )]
210 =Y " aalg aly o, %0, # (X = ¢ — agal 1,55, 5%)
[(X2 =y —afyi yl)(X3 - x = %))
52 =D agaj " 15‘[(‘” — alyyal 1 ¥°57) (¥ =y 2%55) [ (x = 5°)
Sity =y aag a7 B {[(¢ < aiyy #) (¥ < )] < aly 7} (x < 7°)
=D [adlp #X(w < 0y 7%) (¥ = 5°)]@" & x)
=[(a#o)(a #v)]@" #x).

Itis not hard to see thatyl# ¢ is the unit ofd # H* and thath - (1y #¢) = e(h) 1y #¢ for
allh e H.Finally, forallh € H, a,d’ €, andg, ¥ € H*, we calculate:

> [h1- @#)][h2- (@' # )]
=) (@#h1— )@ #ho— )
=Y adlg i #(h1— ¢ < ajyy¥%) (ha = ¢ — &)
210 = "aajg ¥ #h — [(p < ajyy#7) (¥ < 5°)]
@12 =h-[(a#e)(@ #Y)]. O

(H, A, @) is a right H-comodule algebra, so it makes sense to consider the quasi-
smash product # H*. In this case whered is a Hopf algebraH # H* is called
the Heisenberg double off, and we will keep the same terminology for quasi-Hopf
algebrasH(H) = H # H* is not an associative algebra but it is an algebra in the monoidal



D. Bulacu, S. Caenepeel / Journal of Algebra 270 (2003) 55-95 65

categoryy M. If H is a finite-dimensional Hopf algebra théfn(H) is isomorphic to the
algebra Eng(H). In order to prove a similar result for a finite-dimensional quasi-Hopf
algebra, we first have to deform the algebra structure of, &gl

Proposition 2.3. Let H be a finite-dimensional quasi-Hopf algebra. Define
wiHEH* > End(H), uh#e)(h)=>o(hyp?)hhip]

forall h,h" € H andg € H*, wherep, = Y p1 ® p? is the element defined Ifg.20)
Thenp is a bijection, and therefore there exists a unigdemodule algebra structure on
End, (H) such thatu becomes aif/ -module algebra isomorphism. The multiplication, the
unit, and theH -module structure oEnd, (H) are given by

@sv)(h) =Y u(v(hx®X3)S~H(S(x'X%)ax?X3)) s (X1), (2.13)
Leng M =hS™HB),  (h-w)(t) =Y u(h'hz)S  (h1) (2.14)
forall u,v e End.(H) andh, ' € H.

Proof. Let lei},_17 be a basis o and{ei}i:ﬂ the corresponding dual basis Bf*. We
claim that the inverse qi is u~1:End.(H) — H # H* given by

wtw) = Zu(qf(ei)z)S*l(q}(e,»)l) #e' forallu € End(H),

whereg, =Y g1 ®4? is the element defined by (1.20). Indeed, for any H andy € H*
we have:

(o) (hEp) =Y nth#e)(af(e2)S (az (1) e
i=1

= Z ¢((qz)2(€i)(2,2)P%)h(qz)l(ez')(z,l)ﬁsfl(fﬁ(Ei)l) #e'
i—1

n
a2 =3 ¢((af),pte)h(af) LS (a1) Be'
i=1

n
124 = "g(eph#e =h#g
i=1

and, in a similar way, for € End,(H) andh € H we have thatu o 1) (u)(h) = u(h).
Using the bijectionu, we transport theff-module algebra structure frol # H* to
End.(H). First we compute the transported multiplicatienfor all u, v € End.(H), we
find
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~ -1 -1
uov =y u(ptwutw)
n

= D nl(u(gE(e2) S (ai(enn) #e') (v(Q] (€))2) STH(QL(ej)1) #e'))
i,j=1

ein =" u(u(af @2)S ™ (at 1)[v(QF )2) STH(QF (e)n) ]t
hi=l 2 ~1/1 2\( ] 3
B (e [0(0F (e2)STH(Ch (e1) ¥ (¢! — %))
where)” Qi ® Q% is another copy of;. Note that (1.3) and (1.20) imply
Z S(xl)q%xf ®q¢ix2@x= Zinl ® (q%)le ® (g2)2x3. (2.15)
Using the above arguments, a long but straightforward computation shows that
@svyh) =Y u(v(hx®x3)S~H(S(x'X?)ax?X3)) s H(X1),

for all h € H. Thus, we have obtained (2.13). Similar computations show that the
transported unit and th& -action on Engl(H) are given by (2.14). O

Remarks 2.4. Let H be a finite-dimensional quasi-Hopf algebfa;}, _, a basis ofH,
and{ei}i:H the corresponding dual basis Bf*.

(1) The bijectionu defined in Proposition 2.3 induces an associative algebra structure
on thek-vector spaceH ® H*: it suffices to transport the composition on EoH) to
H® H*.

(2) Let (A, p, @,) be a rightH-comodule algebra. As in the Hopf case, it is possible
to associate different (quasi)smash product.t®@bserve first that the map A # H* —
Hom, (H, 2) given byv(a#¢)(h) = ¢(h)a, foralla € A, ¢ € H*, andh € H, is ak-linear
isomorphism. The inverse ofis given by the formula

v (w) = Z w(e) #e'

i=1

for w €e Hom(H, 2l). Secondly, by transporting the quasi-smash algebra structure from
A#H* to Hom,(H, 20) viathe isomorphism, we obtain that Hop( H, 21) is an H-module
algebra. So, i is an arbitrary quasi-Hopf algebra ati, p, @,) is a right H-comodule
algebra, then we can define the quasi-smash prag{u£i2l) as follows:#(H, 2) is the
k-vector space HopiH, 2() with multiplication given by

Wsw)(h) =D v(w(F%h2) 4, F2h1)w(¥%h2) o (2.16)
for v,w € #(H,2A) andh € H. The unit is %y o, (h) = e(h)1y and the H-module

structure is given byh - v)(h') = v(h'h), h,h' € H, v € Hom,(H, ). Of course, ifH
is finite-dimensional the@( # H* ~ #(H, ) as H-module algebras.
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3. Two-sided Hopf modules and relative Hopf modules
3.1. Two-sided Hopf modules

The fact that a quasi-bialgebra is not coassociative entails that it makes no sense
to consider comodules over quasi-bialgebras. Nevertheless, we can associate monoidal
categories to quasi-bialgebras, in which we can consider coalgebras, and comodules over
these coalgebras. This point of view has been used in [6,18,24] in order to define relative
Hopf modules, quasi-Hopf bimodules, and two-sided two-cosided Hopf modules. In the
sequel, we will study all these categories in a more general context. The categorical
background will be presented in Section 3.3.

Definition 3.1. Let H be a quasi-bialgebra ar@l, p, ®,) a right H-comodule algebra.
A two-sided(H, )-Hopf module is ar(H, 2()-bimoduleM together with &-linear map

puiM—>M®@H, pu(m)=» mo®ma).

satisfying the following relations, for alh € M, h € H, anda € 2 (the actions o € H
anda € 2l onm € M are denoted b¥ > m andm < a):

(idy ® €) 0o py = idp, (3.1)

@ - (om ®idn) (om (m)) = (idy ® A) (o (m)) - Dy, (3.2)
pm(h >m)=zh1>m(o> ® ham ), (3.3)
pu(m<a)=Y m@) < ao @ maau. (3.4)

The category of two-side@H, 2)-Hopf modules and lefH -linear, right2-linear, and
right H-colinear maps is denoted hyM &

Observe that the category of two-sidgtd, H)-Hopf bimodules is nothing else then the
category of right quasi-Hopff -bimodules introduced in [18].

We will use the following notation, similar to the notation for the comultiplication on a
guasi-bialgebra:

(om ®idg) (pm(m)) = Zm<o,o> ®m,1) ® M),
(idy ® Ap)(om(m)) = Zm(m ® m(1), ® n(1),.

Examples3.2. Let H be a quasi-Hopf algebra ag, p, ¢,) a right -comodule algebra.
QD V=2AQH e HMg. The structure maps are as follows:

h>=@®h)=a®hh', (a®h)<d =) aajp ®haly, and

oy(@a®h) = Za§1®h1§2®h2§3
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forall h, k' € H anda, o’ € 2. Verification of the details is left to the reader.
RQU=H®AUAec HMﬁ. Now the structure maps are given by the following formulas,
forall h, k' € H anda, o’ € A:

h>0' ®a)=hh'Q a, h®a)<d=h®ad, and
puh®a)=> h1S (g7 X3¢%) ® X'aj) ® h2S (g1 X3g") X?ap).  (3.5)

Hereq, =Y ¢ ® ¢% and f~1 =" ¢! ® g2 are the elements defined by the formulas
(1.20) and (1.16).
To this end, considet: V — U given by

Oa®h) =Y hS~ (awp2) @ a by
forall h € H anda € 2, where we use the notation
Po=) Pr®pe=) @i’pS(F) A H. (3.6)
We claim tha® is bijective; its invers@—1:1/ — V is defined as follows:
0l h®@a) = Zc}ga(m ® hqﬁa(l)

with the notation

Gp=Y 3,0G,=) X'@S HaX’)X’cAR H. (3.7)
Furthermoreg is a morphism of two-sidedH, 2)-Hopf bimodules, and we conclude that
U=H@AandA® H =V are isomorphic iy M.

To prove this, we proceed as follows. First, by [16], we have the following relations, for
allaeA:

Y p(a) Bplla ® S(aw)] = ppla® 1ul, (3:8)
> [ ® S Hau)]doran) =a® 1ulgp. (3.9)
3 0(d) 5 [12 © $(32)] = 1a ® 1, (3.10)

Y [La®57H(52)]dor(5p) = La ® 1n, (3.11)

D, (0 ®idm)(Pp)pp =y _(id ® 2)(p(¥*) 5,) (Lo ® g'5(¥%) ® ¢28(%7)), (3.12)
(G ® 1) (p ®idm)(Gp) P,
= [1a ® S7H£2X%) @ SH(1X?)](ida ® A)(Gop(X1)). (3.13)
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Heref =Y f1® f2is the element defined in (1.15) arfid* = 3" ¢* ® g2. Using (3.8)—
(3.11), we can show easily thatandd 1 are inverses, and that is an(H, 2)-bimodule

via the actions- and <. One can finally compute the riglif-coaction ori/ transported
from the coaction oV usingé, and then see that it coincides with (3.5). For, observe that
(3.6)—(2.2) and (2.4) imply

D X p5S(X%) @ Xy pr @ X2 =) %2S5(%5p;) @ ¥ @ %3 p5. (3.14)

where p, = Y pl ® p? is the element defined in (1.20). We also mention that the
computation uses the formula (3.13); the details are left to the reader.

3.2. Two-sided Hopf modules and relative Hopf modules

Our aim is to prove a duality theorem for two-sided Hopf moduled? ifs a finite-
dimensional quasi-Hopf algebra, then the categ@!ylg is isomorphic to a category of
relative Hopf modules as introduced in [6]. Recall that a right, A)-Hopf moduleM
is a k-vector spaceV which is also a rightH*-comodule and a righ#-module in the
monoidal category of rightl *-comodulesM " . In terms ofH this means:

— M is aleft H-module; denote the action é6fe H onm € M by h e m;
— A acts onM from the right; denote the action afe A onm € M by m e a;
— forallme M, h e H,anda,a’ € A, we have

mely=m,
(moa)oa':Z(Xlom)o[(Xz-a)(Xs-a')], (3.15)
ho(moa):Z(hlom)o(hzoa). (3.16)

Mg’* will be the category of rightH*, A)-Hopf modules andi-linear H *-colinear maps.
Before we can establish the claimed isomorphism of categories, we need some lemmas.

Lemma 3.3. Let H be a finite-dimensional quasi-Hopf algebra atl, o, ®,) a right
H-comodule algebra. We have a functor
FigMy — ME ..

For M € gME, F(M)= M, with structure maps

— M is aleftH-module viah e m = S2(h) > m,m € M, h € H;
— A # H* acts onM from the right by

me (afp) = Z((p, STHS(UY) fPmaya p3))S(UP) f1 = moy < a By, (3.17)

where U=) U'®@U*=>"¢'S(q%) ® g°S(q%)- (3.18)
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Proof. The most difficult part of the proof is to show that M) satisfies the relations
(3.15) and (3.16). It is then straightforward to show that a ma;p/mg is also a map in

MS#H* and thatF is a functor.

By [18, Lemma 3.13] we have, for alle H:

Ull® S(h)] = Z A(S(hp))U(h2® 1), (3.19)

“Lide H(W)AeU) =) (aeid)(A(S(X")U)(X*@ X*®1). (3.20)

write f =3 1@ f2=Y F1@F? =Y g'®¢% pp=2 py®p5=>2 Pr® P,
andU =Y Ul@U?=Y U'®U2 Forallm e M, a,a €2, andp, ¥ € H*, we compute
that

(xtem)e{[X? (aBp)][X3 («#Y)]}

—Z(XZ—\go/—a #2) (X3~ y — 39),
STHS(UY) £252(XY) ey (aa #) gy P >>
S(U?) f182(X1), > mo) < (aalg i) g, 7

@iy =Y (o, STHFZS(UY),S(S(XY) ) /5 Wl)za(l)za/(o,l)zf(ll)z(55)2825(0121))?2))’(2)
(¥, STHFS(UY) S (S(XY) )1 fEmewyaws o 1y, %1y, (55)187S () X°)
S(S(X1),U%) f1 = mo) < ai) g 0% 0) P

STHS(S(XY) . UL X?) F2 f3me ey, X3alg 1) p25(a}yy)))
S

71(S(S(X )(1 2)U21X3)F flm(l)1 (11 X? (a/(o,oﬂﬁ)(l) ~p2)>
S(S(X1),U2) 11 > moy < a0 X (al0.0,55) o) P
o =2 lo. STHS(M U P fFmay,0w,X°5)))
(v, SHS(PURUY F* ffm w000, X2 (55e) o, P7))
S(PUSW?) 1 - mo) < a0 X (5pa) o) P2

9. SH(SUY) FPmuaw 5,))
¥, SH(S(UPVY) f2Fymo e (B50) 4, PF))
S(UFU) f1FL > moo) < 00,0 (P50) 0, By
G179 =D _lo: STHS(UY FPmaaw 55))(S(UP) F* > m) < a0 55) o (@ # )

@1 =[me (a#p)]e (a/#l//)

Tiiap®
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Similar computations show that

Y (hiem)e(hz-(akg))=he[me(aty)],
forallh € H,a e %, andyp € H*, so the proof is complete.O
Let us next discuss the construction in the converse direction.

Lemma 3.4. Let H be a finite-dimensional quasi-Hopf algeb«&\, o, ¢,) a right H-co-
module algebra, and/ a right (H*, 2l # H*)-Hopf module. Then we have a functor

. H* H
G:MIE . — MY

H*
For M ¢ MMH*,

G (M) = M, with structure mapsh € H,m € M, a € 2):
— h>m=S"2(h) em;

—-m=<a=me (a#e);

- pm:M — M Q® H given by

pm(m) = Zm{O} ® myy

=Y [57H(VPe?) em]e(Gr#STH(Vigh) ~e'S — o) ®ei.  (3.21)
i=1

where{ei}i:L—n and{ei}i:ﬂ are dual bases and

v=>Y vievi=>"sf*p%) ® STHf'pk)- (3.22)

Proof. Asin the previous part, the main thing to show is tGdi\) is an object oﬁL,Mg.
It is then straightforward to show thé&t behaves well on the level of the morphisndsié
the identity on the morphisms).

From the fact thas—2 is an algebra map, it follows that is a left #-module via the
actionh = m = S~2(h) e m. Take the map

PiA—>AHFH*, i(a)=ake,

for all a € 2. Theni is injective map,i(1ly) = lyzy+, andi(aa’) = i(a)i(a’), for all

a,a’ € A. Therefore,M becomes a righRl-module by settingn < a =m e i(a) =

me (a#e), m e M,ac2. Moreover, it is not hard to see that, with this structukeis an

(H, 2A)-bimodule. In order to check the relations (3.1)—(3.3), we need some formulas due
to Hausser and Nill [16, Lemma 3.13], namely:
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[1@ 5 ]V =) (ha @ HVA(S " (h1)). (3.23)
(ARih(Ve 1= (X’ X°® 1)1 V)(d® 4)(VA(S H(x1)). (3.24)

Also, itis clear that
(¢p=mS=5"1) —~¢S,  (h—¢)S=¢S S h) (3.25)

forall h € H andy € H*. Using (1.11), it follows that

@@ =) [(g—=v < Y=o r)]s (3.26)

forall ¢, v € H*. Now, for anyh € H andm € M, we compute that
Zhl =m0} ® ham

n
=Y 572(h1) e [(STH(VZg?) em) e (Ga#STH(Vigh) = €'S < G23)| ® h2ei
i=1
n
316 =Y [S72(h1)1S H(V?g?) e m]
e (G2 #52(h2S T (VY = (¢ —h2)S — ) @i
n
G28 = Z [s7H(V2S ™ (h1)28%) @ m]
e (G2 RS N2V IS M h)1gY) — 'S — D) @ e
n
@29 =Y [STH(VZA)S 2 () em] e (GRS H(VigY) ~ 'S — G2 e
i=1

= pu (S72(h) e m) = pu (h > m),

and similarly, for anyn € M anda € 20 one can show that

Zm{O} < a0 @ myany = py(m < a),

so the relations (3.3) hold. (3.1) is obviously satisfied, thus remain to check (3.2) for our
structures. This fact is left to the reader since it is a similar computation as above.

We are now able to prove the main result of this section, generalizing [11, Proposi-
tion 2.3].

Theorem 3.5. Let H be a finite-dimensional quasi-Hopf algebra a@d, o, @,) a right
H-comodule algebra. Then the category of two-sid&H 2()-Hopf modulesHMg is

isomorphic to the category of righitd *, A # H*)-Hopf modules\/lg;H* .
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Proof. It suffices to show that the functorsandG from Lemmas 3.3 and 3.4 are inverses.

First, let M e HMg. The structures o7 (F(M)) (using first Lemma 3.3 and then
Lemma 3.4) are denoted by, <’, andp),. Foranym € M, h € H, anda € 2, we have
that

h>"m=S"2(h)em=S*(S"2(h)) = m=h>m,

m<'a=me(affe)=m<a

because) e(UHU? = Y e(f2) fL =1 and e(my)m@o =m, Y e(apg)ap = a. In
order to prove thap), = py, observe first that

> g'S(sPa) =8, (3.27)

where we writef 1 = " ¢! ® g2. The proof of (3.27) can be found in [6, Lemma 2.6(i)]
(in the equivalent fornd_ g2aS~1(gh) = S~1(B)). (3.27) together with (3.18), (1.9), and
(1.18) implies

> e5U% @ s(s2UY) =Y pZ @ S(pr) (3.28)

wherep, =3 pl ® p? is the element defined by (1.20). Secondly By~ 1(f2)pf1 =
S~(w@), (1.9), and (1.18), we have that

2. S(PE) 1@ STHF?)S(p1) £2F; = g (3.29)

whereY" F1 ® F? is another copy off, andgr is the element defined by (1.19). Finally,
from (3.28), (3.29), and (1.23), it follows that

> S(85UP) frFL(pr), ® STHF?pR)etS(eiUY) f2F(pr),=1® 1.  (3.30)
We now compute fom € M that

n
Py (m) = Z[Sil(Vzgz) ° m] o (L};#S*l(Vlgl) —els L}E) ® e;
i=1

_Z V2 2 ) = m] (qgﬁS_l(Vlgl)Ae’-Sf—ég)(@e,-

@1 = Z — 'S =g STHS(UY) £25(V28?) iy (d7) oy P)
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@1y =) S(VFg3U?) f* > m < (45) 0,5, ® V' S(VLgiUY) £
m1)(dp) 0y S (75)
@10 =) " S(VFe3U%) f > mo @ Vies(Vigiut) fPma
10 =D S(s3UP) 1 FL(pk) = moy ® STHF?p%) et S(efUN) £2F3 (pk) yny
(330 =Y " m() @ m) = pyu(m),

and this finishes the proof of the fact th@tF (M)) = M

Conversely, takeM e Mg#H* We want to show thaf' (G(M)) = M. Denote the left

H-action and the righ®l # H*-action onF (G(M)) by ¢’. Using Lemmas 3.3 and 3.4, we
find, forallh € H andm € M:
he'm=S2%(h)>m=S"(S%(h)) em=hem.

The proof of the fact that the rigX # H*-actionse ande’ on M coincide is somewhat
more complicated. Sincg 25~ 1(f18) = a, (1.9) and (1.18) imply

Y Pk ® ASTHFAf33) =Y S(q2) ®af (3.31)

whereq, = 3" g1 ® ¢? is the element defined by (1.20). Also, by (1.9), (1.18), and using
Y S(ghag? = S(B), we can prove the following relation:

Y S(GYaiGigt ® a7 Goe® =) S(rk) ® S(pk) (3.32)

whereY" G ® G2 is another copy off ~1. Now, from (3.18), (1.11), (3.31), (3.32), and
(1.23) it follows that

>ost WUzg?® S(UY) 2 H(F2f3p%)Ufgt =101, (3.33)
Therefore, for alln € M, a € 2, andp € H*, we have that
m e (a#e)

@1 =) (.5~ Y f2mumaw p3))S(U?) f1 = mioy < a0 py

(3.21)

e i“”’ SHS(UY) Pernn 7E))5 HS(D) 1) o[ (VEeD) o]

d [‘735‘(0,0) (ﬁ%)(O) #S_l(vlgl) —e's ’_‘755‘@1) (ﬁ%)m]}

- .Xn:(p(ei)SZ(S(Uz)fl) o {[Sfl(vzgz) om]e [éja<o,o> (ﬁ;)w)

BSTH(VEgY) = (amp? — 'S = S(UY) )8 < Gaon (7)) ]
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58 =30 5250 ¢ {[57HVZ) em] o [as H(s(U) 127 e") — o])

(1 =D [STHVESTH(S(UP) £1)58%) o m]
o [aBSL(S(UY) FAVEIST(S(U?) £Y) ,8%) = o]
G1n = 2 [STHSTHF A pR)US?) e m]

o [aSTY(S(UY) 2512 (3 pR) URg®) — ¢]
(333 =me (a#(),

and this finishes our proof.O

If H is a finite-dimensional quasi-Hopf algebra aads a left H-module algebra then
the category\/lf* is isomorphic to the category of right modules over the smash product
A # H [6, Proposition 2.7]. LetM be a rightA # H-module, and denote the right action
ofathe A#H onme M bym < (a #h). Following [6], M is a right(H*, A)-Hopf
module, with structure maps

hem=m <« (1#S(h)), mea= Zm <« [ng(q,%) 'a#ng(q,le)] (3.34)

forallme M,a e A, andh € H. Conversely, ifM is a right(H*, A)-Hopf module then
M is arightA # H-module, withA # H-action

m<—(a#h)y=Y S'h) e[(S 7 (q7g®) em)e (S q1s")-a)].  (3.35)

Heregr =Y gk ® 42,91 =Y qt ® g2, andf 2 =Y ¢' ® ¢? are the elements defined
by (1.19), (1.20), and (1.16). Combining this with Theorem 3.5, we obtain the following
result.

Corollary 3.6. Let H be a finite-dimensional quasi-Hopf algebra a@, o, ®,) a right
H-comodule algebra. Then the categagiyM¥ is isomorphic to the category of right

For later use, we describe the isomorphism of Corollary 3.6 explicitly, leaving
verification of the details to the reader.
First takeM € M gz+)5n - The following structure maps makié € MY

h=m=m <« (o #e) #S (), (3.36)
m<a=m<« ((a#e)#1), (3.37)

pom(m) = Zm <~ [(C];#Sfl(gz) — S~ c}ﬁ) #Sil(gl)] ®e; (3.38)
i=1
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forallme M,he H,anda e ; g, = chj ® cjg is the element defined in (3.7, } is a

basis ofH and{e'} is the corresponding dual basis Ef.
Now takeM e HMg. ThenM is aright(2# H*) # H-module via the action

m<—[a#e)#h1=> (¢, S Hf?mayam p3))Sh) 1 = mo) < a pp.  (3.39)

In [18], it is announced that, for a finite-dimensional quasi-Hopf algeHrathe
category of right quasi-HopH-bimoduIesHMZ naturally coincides with the category
of representations of the two-sided crossed prodlict H* x H constructed in [16]. We
will show in Section 4 that the algebrag x H* x H and(H # H*) # H are equal.
3.3. Two-sided Hopf modules and coalgebras over comonads

Now, let H be a quasi-bialgebra arifl a right H-comodule algebra. We will show
that the category{/\/lg is isomorphic to the category df-coalgebras, wheré&J is a
suitable comonad. Recall that® is a category then a comonad @his a three-tuple

U= (U, A,¢), whereU :D — D is a functor, andA:U — U o U ands:U — 1p are
natural transformations, such that

U(Ap) o Ay = Ay © Am, (3.40)

U(em) oAy =cymyo Ay =idu(M) (3.41)

forall M € D. A morphism between tw®-comonad®) = (U, A, ¢) andU’ = (U’, A', &)
is a natural transformatiofi: U — U’ such that

dov=¢ and W x0)oA=A 00 (3.42)
for all M € D, wherex is the Godement product
@ * M m =y o UDwm).
We denote byComonad(D) the category of comonads @n

ForU a comonad o, aU-coalgebrais a paitM, &) with M € D, andé : M — U(M)
a morphism inD such that

eyoé=idy and Apyo&=U()oE. (3.43)

A morphism between twdJ-coalgebrasM, &) and (M’, &) consists of a morphism
v:M — M’ in D such that

U)ot =¢&ov. (3.44)

The category olJ-coalgebras is denoted 13V .
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If H is a quasi-bialgebra ar?l an algebra then we defin®:= ggyMg. Thus, an
object of C is an®-bimodule and arfH, 2()-bimodule such thak(am) = a(hm), for all
aef, he H,andm € M. Morphisms are lefH -linear maps which are als#-bimodule
maps. We claim that is a monoidal category. Indeed, it is not hard to seefhatcomes
a monoidal category with tensor produgs given viaA, in the sense that

(@® 1) @y n)a’ =) ahym @ hond
forall M,NeC,me M,ne N, a,d €%, andh € H, associativity constraints

am,N,p. (M @9y N) Qg P— M Qs (N Qg P),

am,n,p((m @y n) Qs p) = lem 051 (in 051 Xsp),

unit 2 as a trivial leftH-module, and the usual left and right unit constraints. We denote
by C-Coalgebra the category of coalgebras ¢th We are able now to prove the claimed
isomorphism.

Theorem 3.7. Let H be a quasi-bialgebra&ll an algebral = gy Mg, andD := gy My.
Then there exists a functor

F:C-Coalgebra> ComonadD).

In addition, if2l is a right H-comodule algebra theé :=2( ® H is a coalgebra irC and,
in this particular case, we have an isomorphism of categories

DFO =y My,

Proof. If € is a coalgebra i then it is an(H, 1)-bimodule and afl-bimodule so, we
have a functolU = (—) ®g €:D — D (for any M € D, the left H-module structure of
U (M) is given viaA and the righ®l-action onU (M) is induced by the one o#). For all
M e D, we define

Au:M @y €=UM)— U(UM))=(M @y ) @ ¢,

Ap(m ®g ) =Y _(x'm ®a x%1) @ x°cy,
ey =idy Quee MQE=UM) >M=MQy A

forall m € M andc € €, whereAg(c) := Y c1 ® ¢z is the comultiplication of andeg
is the counit of¢. It is not hard to see that (¢) := (U, Ay, ey) is a comonad omD. It
is also straightforward to check that a morphisnm C-Coalgebra provides a morphism
U (x) in Comonad(D) and thatF is a functor.

Suppose now that, p, @,) is a right H-comodule algebra and l€t=2A ® H. If we
define
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@®h)(@ @1)a" =) ad'aly ®hh'al), (3.45)

foralla,a’,a” €, andh, k' € H, then one can easily check that with this structtikeC.
Moreover, we claim that with the structure given by

Ac(a®h) = Z(c&l@hlﬁ?z) ®a (Lo ® h2X3), (3.46)
ee(a®h) :=¢e(h)a, (3.47)

forall a € 2 andh € H, becomes a coalgebra ¢h Indeed, the fact thati¢ ande¢ are
morphisms irC and that ¢ is the counit forA¢ follow from straightforward computations
(all these verifications are left to the reader). We only show that the comultiplicAtide
coassociative up to the associativity constraintS.dhdeed, we compute that

(Ae ®id)(Ac(a® )
=Y Ac(aX'® h1X?) @ (1o ® h2X?)
=) (aX'Y'®ha1)X57?%) ®u (1o ® ha,2X57°%) @a (1o ® h2X3)
@2 = (aX'¥ ® hapx'X2V])) @ (1o ® h12x?X57?) @ (1 ® hax3X377)
11 = le(afl ® hl}?z)?l R xz(lg( ® h(2,1)}?§?2) (2] x3(19l ® h(2,2)§§?3)
=01 (aX*®11X%) @ (Y ®he1X37?) @ (la ® h22)X37°)
=01 (aX'®h1X%) @ Ac(la ® h2X°)
=@ H(id ®x Ae)(Ae@®h)),

forall a e 2 andh € H, as needed.

Consider now the comonall(¢) = (U, A, ¢) and (M, &) € DO . That means that
MeD=pyMg andé:M — UM) = M Qg (A ® H) is a morphism inD such that
Apyo&=U(E)o& andey o & =idy, for all M € D. In other words, if we write

E(m) = Zm(o) Qa (m(l)m ® m(l)H) Yme M,
then(M, £) e DF® if and only if the following relations hold:
E(ma) = Zm(o) Q9 (m(l)m a ® m(l)HCL(]_)), (3.49)
lem(O) R (m(l)ﬂgl ®x2m(l)f§2) R (12( ®x3m(l)gi3)

= Zm(O)(o) 1 (m(o)(l)g( ® m(o)(l)H) Qs (m(l)m ® m(l)H)’ (3'50)
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forall h e H,m € M, anda € 2. Applying the canonical isomorphisms, the first three
relations are equivalent to

> " (hm) oy (hm) ya @ (hm) gy =D hamoym gya @ ham gy, (3.52)

D (ma) ) (ma) gy ® (ma)qyn = Y moymado, ® mynag, (3.53)
lem(o)m(l)mil ® xzm(l){/)?z & x3m(1)12q§3

= 2_MmOoMO M ® MOy uMa @M. (3.54)

forallh € H,m € M, anda € 2. Now, if definepy, .M - M Q H,

pom(m) = Zm(o)m(l)m & myn VYme M,

then (3.52) implies thapy (hm) = A(h)pp (m) for all h € H andm € M, and (3.53)
implies thatpy, (ma) = py(m)p(a) for all m € M anda € 2, respectively. Moreover, for
all m e M we have that

(oM ®idp) (ppm(m)) = Z om (moymgya) @ mgyn
= Z(mw)m(l)%)m) (mm @) gyu ® (moymaa) g @ man
(353 = Zm(o)w)m(o)(l)mm(l)?é) ® MO 1 M), @ myn
(354 = lem(o)m(l)m)?l ® xzm(l){/)?z ® x3m(1)12q§3
=0 (me)m(l)w ® A(’"(l)ﬂ)) Py
=071 (idy ® A)(om(m)) - .

By (3.51) it follows that(idy, ® €) o pyr = idys, SO we have obtained thM e HMg. In

this way, we have a functd@: D® — M (F acts as identity on morphisms). We wiill
show thatF provides the desired isomorphism of categories. For, we define the inverse of
F as follows. LetM € y ML, and denote by (m) = Y m ) ® m(1) the right coaction

of H on M. Then we define

EM—> M@y RQH), &@m) =Zm(0) R (lg ®m) YmeM.
In the same manner as above one can prove that the axioms which defis@ two-sided

(H, 2)-bimodule imply that satisfies the relations (3.51)—(3.54). Thu#, &) € DF(®
and we have a well-defined funct@: y ML — DF® (G acts as the identity on
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morphisms). The fact that the functdfsandG are inverses is obvious, and this finishes
our proof. O

Theorem 3.7 enables us to restate the definition of a comodule algebra in terms of
monoidal categories.

Proposition 3.8. Let H be a quasi-bialgebra an@l an algebra. If2 ® H is viewed
in the canonical way as an object figy M then2 ® H has a coalgebra structure
R® H, A, ¢) in the monoidal categor§ = gy Mg such thatA(1y ® 1) is invertible
ande(ly ® 1) = 1y if and only if2l is a right H-comodule algebra.

Proof. One implication follows from the proof of Theorem 3.7. Conversely, suppose that
2A® H is an object of’, and that there exists a coalgebra struct@re® H, A, ¢) onARQ H

in the monoidal categony such thatA (1y ® 1) is invertible andt (1y ® 1) = 1g. Then

we define

Asar p@)=) ap®am =1a®1ly)acAR H,
and denote
Alg ®1p) =Y (X' ® X?) @2 (12 ® X°).
Since2l ® H is a right2(-module, it is follows thatp is an algebra map. Also, since
A(ly ® 1p) is invertible, we obtain that, := 3" X! ® X2 ® X3 is an invertible

element in2l ® H ® H. Now, using the fact thatt ande are morphisms i€, and that
e(lg ® 1) = 1y, itis not hard to see that

A@®h) =) (aX'®h1X%) @ (la ®h2X?),  ea®h)=z(h)a

forallae 2, h € H. Now, (2.1) and (2.2) follow because of equaliti@é(ly ® 1p)a) =
Allg ® 1g)a and @ (A @ i) A(a ® h) = (i[d ® A)A(a® h) forall ae A andh € H,
respectively. Finally, it is easy to see th&{ly ® 15)a) = a implies (2.3), and the fact that
¢ is the counit fora implies (2.4), respectively. We leave all these details to the reader.

4. Two-sided crossed products are gener alized smash products
Let H be a finite-dimensional quasi-bialgebra, &@d p, ®,), (%8, 1, @,) respectively

a right and a leftH-comodule algebra. As in the case of a Hopf algebra, the right
H-coaction(p, ¢,) on2 induces a leftd *-actions>: H* @ 2 — 2 given by

pra=_g(am)ao (4.1)

forall ¢ € H* anda € A, and wherep(a) = ) a(0) ® a1y for anya € 2. Similarly, the left
H-action(x, @;) on®B provides a rightd *-action<: 8 ® H* — B given by
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bag=>_o(br1)byo (4.2)

for all ¢ € H* and b € B, where we now denoté(b) = > bi_1] ® bjg; for b € B.

Following [16, Proposition 11.4(ii)] we can define an algebra structure ork-twector
spaced ® H* ® 9B. This algebra is denoted B x , H* x 48 and its multiplication is
given by

(ax@xb)(a xyxb)
:Za((pll>a/))?; X ()?)%—\(pzl—ii)( 2—\1,01/—)6 ) l><xA(b<1¢2)b/ (4.3)

for all a,a’ €2, b,b" € B, ande, v € H*, where we writea x o x b fora® ¢ ® b

when viewed as an element@fx , H* x ;8. The comultiplication orff* is denoted by

A(p) =) 91 ® @2. The unit of the algebrél x , H* x ;B is 1y x & x 1gs. Hausser and

Nill called this algebra the two-sided crossed product. In this section we will prove that this
two-sided crossed product algebra is a generalized smash product between the quasi-smash
productd # H* and‘B.

Proposition 4.1. Let H be a quasi-bialgebrad a left H-module algebra, anés a left H-
comodule algebra. LeA x %65 = A ® B as ak-module, with newly defined multiplication

(ax b)(@ w b') =Y (¥ -a)(¥%b_1) - a') x ¥3bjo)b’ (4.4)
forall a,a’ € A andb, b’ € B. ThenA x B is an associative algebra with uriiy x 1.
Proof. Foralla,a’,a” € A andb, b, b” € B, we have:
[(ax b)(a'K b/)](a” )
=Y [(#-a)(¥%b—1- @) x F2brojb’](@” % b”)
=Y [(F1%" a) (52%%b-11 - @') ] (%52 160, -116]_1, - @) % 5% ;bro.01b{g)b”
@2n =) (x'yiEt .a)[(xzyzlxzb[,l] -ad)(X35%%2 4 bo—11b{_y, - a”)]
K 5353, b0,01b[;b”
@6 = (¥ a)[ (335 b1 - @') (352010, -116]_y; - a”) ]« #°5%bp0,01b1g;b”
2o = 2 (F - )| (o [ ) (70(_y - a”)]) } x #0017y 0"

=D ax»)[(5*-a)(7%(_y - a") x 70i0"]
=(ax b)[(@'x b)(@" v b"].

It follows from (2.7), (2.8), and (1.29) thaty2x 1 is the unitforAx 8. O
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Remark 4.2. Let H be a quasi-bialgebra amtla left H-module algebra. TheH is a left
H-comodule algebra so it make sense to considerH. It is not hard to see that in this
caseA x H isjustthe smash produdt# H . For this reason, we will call the algebsax 95

in Proposition 4.1 the generalized smash product @ndB. In fact, our terminology is
in agreement with the terminology used over Hopf algebras, see [9,14].

Let H be a finite-dimensional quasi-bialgeb(d, p, ¢,) a right H-comodule algebra
and (B, A, @,) a left H-comodule algebra. Then the quasi-smash pro@ugtH* is
a left H-module algebra, so it makes sense to consider the generalized smash product
(A # H*) x 9B. The main result of this section is now the following.

Proposition 4.3. With notation as above, the algebré¥ # H*) x B and x ,H* x ‘B
coincide.

Proof. Using (4.4), (2.12), and (2.11), we compute that the multiplicatio(RosH *) x B
is given by

[(a#)x b][(a BY) K V]
=Y [& (a#e)][2261-1) (@ #Y)]x £bjo)b’
= (a#% — ) (' BEF0_1 —~ ¥) x Flbpopb’
=Y aalgF ) B (T — ¢ < a(yy £2) (£bj_1 — ¥ < £3) x Ebjo)b’ (4.5)
41 _

G2 =Y alprea)ip B (T — g2 < ) (£ = Y1 — F3) x F3(b < y)b/

fora,a’ €A, b, b € B, andy, ¥ € H*. Thisis just the multiplication rule on the two-sided
crossed producli x ,H* x ;B. O

It follows from (4.5) that the two-sided crossed product can be defined in the situation
whereH is not finite-dimensional. Tak® = H in Proposition 4.3. From Remark 4.2, we
obtain:

Corollary 4.4. Let H be a quasi-bialgebra an®®, p, @,) a right H-comodule algebra.
Then A #H*) #H =2A x ,H* x ,H as algebras. In particular(H # H*) # H =
H x H* x H as algebras.

5. The category of Doi—Hopf modules

5.1. Doi—Hopf modules

Let H be a Hopf algebra over a field, A an H-comodule algebra, and an H-
module coalgebra. A Doi—Hopf module igasector space together with araction and a
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C-coaction satisfying a certain compatibility relation. They were introduced independently
by Doi [14] and Koppinen [20], and it turns out that most types of Hopf modules that had
been studied before were special cases: Sweedler's Hopf modules [25], Doi’s relative Hopf
modules [13], Takeuchi’s relative Hopf modules [27], Yetter—Drinfeld modules, graded
modules and modules graded byraset.

Over a quasi-Hopf algebra, the category of relative Hopf modules has been introduced
and studied [6], as well as the category of Hépdbimodules (see [18]), and the category of
Hopf modulesHHMZ (see [24]). We will introduce Doi—-Hopf modules, and we will show
that, at least in the case whefkis finite-dimensional, all these categories are isomorphic
to certain categories of Doi—-Hopf modules. We will also prove that Doi-Hopf modules are
special cases of comodules over a coring.

First, we recall from [6] the definition of a relative Hopf module. Liétbe a quasi-
bialgebra and” a right H-module coalgebra. Le¥ be ak-vector space furnished with the
following additional structure:

— N is arightH-module; the right action of € H onn € N is denoted byix;

— N is aleftC-comodule in the monoidal categai ;7 ; we use the following notation
for the left C-coaction onN: py : N — C @ N, py(n) = Y_nj—1 ® njo}; this means
that the following conditions hold, for all € N:

Y emwno=n.  (A®idy)(on 1)@t = (idc ® pv) (on (): (5.1)

— we have the following compatibility relation, for alle N andc € C:
pN (nh) =Zn[—1] - h1 ® njoyh2. (5.2)

ThenN is called a left{C, H]-Hopf module. My is the category of leffC, H]-Hopf
modules; the morphisms are right-linear maps which are also left-comodule maps.
We will now generalize this definition.

Definition 5.1. Let H be a quasi-bialgebra over a figtdC a right H-module coalgebra,
and (B, 1, ®@,) a left H-comodule algebra. A right—leftH, %, C)-Hopf module (or
Doi—-Hopf module) is a&-module N, with the following additional structureV is right
B-module (the right action ob on n is denoted by:b), and we have &-linear map
on N — C ® N, such that the following relations hold, for alle N andb € B:

(A ®idy)(pn (n) = (ide ® pv) (o (1)) Py, (5.3)
(e ®idy)(pn(n)) =n, (5.4)
pN (nb) = " nj_1- bj_1) ® n{ojbjo. (5.5)

As usual, we use the Sweedler-type notatignn) = Y _nj—1 ® noj- CM(H)s is the
category of right—left H, 9, C)-Hopf modules and righB-linear, leftC-colineark-linear
maps.
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Obviously, if 8= H, 1 = A, and®; = &, then M(H)y = My.

The main aim of Section 6 will be to define the category of two-sided two-cosided Hopf
modules over a quasi-bialgebra and to prove that it is isomorphic to a module category
in the finite-dimensional case. To this end, we will need our next result, stating that the
category of Doi—-Hopf modules is a module category in the case where the coatgebra
is finite-dimensional. In fact, for an arbitrary right-module coalgebr&’, the linear dual
space ofC, C*, is a left H-module algebra. The multiplication @f* is the convolution,
that is(c*d*)(c) = Y c¢*(c1)d*(c2), the unit ise and the leftd -module structure is given
by (h — ¢*)(¢c) =c*(c-h),forh e H, ¢*,d* € C*, ¢c € C. ThusC* is a left H-module
algebra and®B, A, @,) is a left H-comodule algebra. By Proposition 4.1, it makes sense
to consider the generalized smash product algé€tina 8.

Proposition 5.2. Let H be a quasi-bialgebraC a finite-dimensional rightH -module
coalgebra and(8, 1, ®;) a left H-comodule algebra. Then the categdry(H )y of
right—left(H, 9B, C)-Hopf modules is isomorphic to the categdW/« s of right modules
overC*x 8.

Proof. We restrict ourselves to defining the functors that demonstrate the isomorphism of
categories, leaving all other details to the reader.{tgt_1, and{ci}i:ﬂ be dual bases
in C andC*.

Let N be a rightC* x B-module. Since: B — C*x B, i(b) =ex b forb e B, is an
algebra map, it follows tha¥ is a right%-module via the actionb = ni(b) = n(e x b),
neN,be®B. The mapj:C* - C*x B, j(c*) =c*x 1y, ¢* € C*, is not an algebra
map (it is not multiplicative) but it can be used to define a @&ftoaction onv:

n

on(n) = Zn[,l] ®n = Zci ®nj(ci) = Zci ®n(ci [ 1%). (5.6)
i=1

i=1

We can easily check thaf becomes an object NM (H)s.
Conversely, takev € € M (H)q. ThenN is a right%-module andC* acts onM from
the right as follows: letc* =) c*(nj—y)n[), n € N, c* € C*. Now define

n(c*x b) = (nc*)b = Zc*(n[_l])n[o]b. (5.7)
ThenN becomes a righf* x B-module. O
5.2. Doi—Hopf modules and comodules over a coring

Now, we will show that the category of right—left Doi—-Hopf modules is isomorphic to
a category of right comodules over a certain coring. Let us first recall the definition of a
coring.

Let R be a ring (with unit). AnR-coring C is an R-bimodule together with two
R-bimodule maps

Ac:C—>CQ®rC and ec:C— R
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such that the usual coassociativity and counit properties hold; that means:

(Ac ®ride) o Ac = (idec ®r Ac) o Ac,
(ec ®rid¢) o Ac = (id¢c ®r e¢) 0 A¢c =idc.

A right C-comodule is a righR-moduleM together with a righik-linear mapp” : M —
M ®g C such that

(" Qride) o p” = (idy ®r Ac) o p”, (5.8)

(idy ®r ec) o p” =idy. (5.9)

A maph: M — N between two righC-comodules is called &-comodule map if) is a
right R-module map ang’ o = (h Qg id¢) o p”. We denote byM€ the category of right
C-comodules an@-comodule maps. We will use the Sweedler notation for corings and
comodules over corings:

Ac(c) = Z ¢ ®R ), p"(m) = Zm(O) ®Rr m ().

Lemma 5.3. Let H be a quasi-bialgebra(®, 1, ®,) a left H-comodule algebra, and’
a right H-module coalgebra. The@i := 8 ® C is aB-coring. First, C is a %-bimodule
via

b(b'®c)=bb'®c and (b®c)b'=) bbjy®c-b[_y (5.10)

forall b,b’ € B andc € C. Secondly, for alb € 8 andc¢ € C, the twoB-bimodule maps
are defined by

Ac(b®c)=) (bF°®c2- %) @ (1 ® 1 - ¥Y), (5.11)
ec(b®c)=¢(c)b. (5.12)

Proof. Since® is an associative unital algebra andB — H ® B is an algebra map, it
follows thatB ® C is a®B-bimodule via the actions defined in (5.10). Also, it is not hard
to see thatc is aB-bimodule map. The fact that¢ is left B-linear is straightforward. It

is also rightB-linear since

Ac((b®)’) =) Ac(bbj ®c-b]_y))
133 =Y " (bbjg, > ® c2- b[_13,%°) @ (1 ® c1 - b{_y;, ¥7)
10 =2 (07 @2 i2)bjg @ (1 @ c1- F0_y))
=) (6:3®c2- #%) @ (bjg ® c1- [ _y))
(

610 =Y (b8’ ®cz- &%) @ (ly ®c1- ¥)b' = Ac(b @ )b’
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forall b, b’ € B andc € C. Now, for allb € % andc € C, we have that
(Ac ® ide)(Ac(b®¢))
=) Ac(bi’®@cz-7%) @ (In @ c1- 1Y)
a3y =3 (b5 ®cey - 55°) @ (I @ cey - i5") @ (1o ® ey 1Y)
@32 =) (b%° @ - x°i57%) @ (Ls ® cp - ¥°715Y) @ (Ly ® ey -2 'F)
@6 =) (b3%5p ® ez T30 4)) @ (1w @ cup - 257) @ (I ® ey - i157)
610 = (6i°®cz-

G1n =2 (0@ c2 ¥ @ Ac(ly ®c1- ) = (ide ®1 Ac)(Ac(b ®0)),

) @m (P ®cwy - 55°) @ (I @ cay - £157)

=

as needed. It is easy to see thatis the counit forA¢, so the proof is finished. O

We can now prove the following theorem.
Theorem 5.4. Let H be a quasi-bialgebra(B, A, @,) a left H-comodule algebra, and
aright H-module coalgebra. I€ =B ® C is theB-coring defined in Lemm&a.3, then the
category of right—left Doi-Hopf modulés\ (H)g is isomorphic to the category of right
C-comodulesMC€.

Proof. If M € M€ then we adopt a similar notation as the one used in the proof of
Theorem 3.7. Namely, i#f € M€ with p": M — M ®% (B @ C), then we set

p"(m) = Zm(O) ®sp (mqy» ®myc) Vme M.
With this notation, the fact that” is rightB-linear means
> (mb) o) @ ((mb) g» ® (mb)qyc) =Y m (o) @ (m 1)z bjo] & m gy - b_1))
for all m € M andb € B, and this is equivalent to
Y (mb) ) (mb) g ® (mb)ye = Y mymybioy @ myyc -b-y  (5.13)

for all m € M andb € ®B. Similarly, in this particular case, the relations (5.8) and (5.9)
reduce to

> M©O)0)M(0) gy M WE BMO) e M, OM1)e

:Zm(O)m(l)‘B)Es@m(l)g 'i2®m(1)§ o (5.14)
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for all b € B andm € M. Now, if we define
omMM—>CROM, PM(m)ZZm(l)C & mym s Vm e M,

then (5.13) implies thapy, (mb) = py(m)r(b) for all m € M and b € 9B, and (5.15)
implies that(e ® idy) o ppr = idyy, respectively. ThusM € € M(H)g since

(ide ® pa) (pa (m)) =~ mgye ® py (moym 1y» )
513 = Zm(l)c &m©) e - MayB B M0)0M0) 4813
614 =) mqc- T @meyc - T @mom s>
= (A®idw) (pm(m))d;

for all m € M, as needed. Therefore, we have a fun@omM€ — € M(H)x which acts

on objects as above and sends a morphism to itself (the verification of the fact that a
morphism inM€ becomes a morphism M (H)s is left to the reader). Conversely,

if M e M(H)sp with py(m) = m_1; ® mjg), m € M, then we define

o M—>MQQxp (BRC), pr(m)=2m[o]®s3 1 ®@m-1)) VmeM.

Itis not hard to see that in this way the rightmoduleM becomes a righ€-comodule, i.e.
the relations (5.13)—(5.15) hold. So we also have a furtdr M (H)yg — M (& sends
a morphism to itself). Finally, it is routine to check tigaand® are inverses; we leave the
details to the reader.

6. Two-sided two-cosided Hopf modules

Now we define the category of two-sided two-cosided Hopf modglé&g. If His
finite-dimensional, then this category is isomorphic to a certain category of right—left Doi—
Hopf modules® M (H ® HP) sz 41 - AS @ consequence,df is also finite-dimensional
then this category is isomorphic to the category of right modules over a generalized smash
product, by Proposition 5.2.

Definition 6.1 [16, Definition8.2]. Let H be a quasi-bialgebra. AH -bicomodule algebra
A is a quintuple(A, A, p, @;, @,, Py ,), Wherer and p are left and rightH -coactions
on A, and where®, e HQ H®A, ¢, c AQ HR® H,and®, , € HR®A® H are
invertible elements, such that

— (A, ), @,) is aleft H-comodule algebra,
— (A, p, ®,) is arightH-comodule algebra,
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— the following compatibility relations hold, for all € A:

@, (+ ®id)(p(@) = (id ® p) (@) D1 o, (6.1)
(1a @ D1.,p)(d @ A ®id)(Py,p)(Pr ® 1k)

=(dRId® p)(P)(A QiId®id) (P, ,), (6.2)
1y ® @) (I[d® p ®@id)(P1,p) (P, p ® Ln)

— ([d®id® A)(@;.,)( ®id @ id)(®,). 6.3)

It was pointed out in [16] that the following additional relations hold in frbico-
module algebra\:

(idy ®ids ® €)(P1,p) =1n @ 14, (e ®idy Qidp)(Pyp) =14 ®1y. (6.4)

As the first example, také = H, A = p = A, and®; = ¢, = ¥, , = . Related to the
left and right comodule algebra structuresigfwe will keep the notation of the previous
sections. We will use the following notation:
=) 2'@2°R%=) 2'eR’@2%=... and
P 1= 0'®’Re’=) B R QD ="

If H is a quasi-bialgebra, then the opposite algek® is also a quasi-bialgebra. The
reassociator off °P is @op = @1 H® His also a quasi-bialgebra with reassociator

Pugnor =Y (X'@x') @ (X?®x?) @ (X ®x%). (6.5)

If we identify H ® H°P-modules and H, H)-bimodules, then the category 6, H)-
bimodules, y My, is monoidal. The associativity constraints are givenay. v w:
URV)QW —UQ® (VR W), where

duvw(@@ew) =0 - Ue Ve w) &1 (6.6)

forall U,V,W e yMy, uelU, veV, andw € W. A coalgebra in the category
of (H, H)-bimodules will be called arfi-bimodule coalgebra. More precisely, &
bimodule coalgebré' is an(H, H)-bimodule (denote the actions by ¢ andc - &) with a
comultiplicationA: C — C ® C and a counit : C — k satisfying the following relations,
forallc e C andh € H:

@ - (A®idc)(A() - @71 =(idc ® 4)(A(0)), (6.7)

A(h-c)=Y hi-c1®hz-c2.  Alc-h)=) c1-h1®cy-ha, (6.8)
(e®idc) o A= (idc ®¢) o A=idc, (6.9)
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g(h-c)=e(h)e(c), g(c-h)=g(c)e(h), (6.10)

where we used the same Sweedler-type notation as beforél-Aimodule coalgebr&
becomes a rightY ® H°P-module coalgebra via the riglif ® H°P-action

c-(h®@h)y=Hh-c-h (6.11)

for c e C andh,h’ € H. Our next definition extends the definition of two-sided two-
cosided Hopf modules from [24].

Definition 6.2. Let H be a quasi-bialgebraA, &, p, @,, ®,, &, ,) an H-bicomodule
algebra, andC an H-bimodule coalgebra. A two-sided two-cosidé#, A, C)-Hopf
module is a-vector space with the following additional structure:
— N is an (H, A)-two-sided Hopf module, i.eN € HMX; we write = for the
left H-action, < for the right A-action, andp (n) = Y n( ) ® n(1 for the right
H-coaction om € N;

— we havek-linear mappG:N — C ® N, p§(n) = Y ni_1; ® nyg), called the left
C-coaction onV, such thad_ e(n;_1})njo =n and

P (A®idy)(p5m) = (idc ® pg) (0§ (1)) P (6.12)

foralln € N;
— Nisa(C, H)-"bicomodule,”in the sense that, for alle N,

@ (pg ®@idy)(pxf () = (idc ® piy ) (P§ (M) Ps (6.13)

— the following compatibility relations hold:

pf(h=n) =Y "h1-ni_1 ® hz > njo), (6.14)
pg(n <a)= Zn[_]_] -ar—11 @ n[oy < apo] (6.15)
forallh e H,ne N,anda € A.

¢ M will be the category of two-sided two-cosided Hopf modules and maps preserving
the actions byH andA and the coactions by andC.

Let H be a quasi-Hopf algebrd, an H-bicomodule algebra, an@ an H-bimodule
coalgebra. IfH is finite-dimensional, then the categ@y\/lg’ is isomorphic to a certain
category of Doi—-Hopf modules. In order to prove this, we first need some lemmas.
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Lemma 6.3. Let H be a quasi-Hopf algebra andA, x, p, @,, ®,, @, ,) an H-bico-
module algebra. Consider the map

o (ARHY#H —> (HRHP) @ (ABH")#H
given by
o((a#o)#h)= Za[—uwl ® S(y°h2) ® (ajgw’ #y* — ¢ — ) #y?h1 (6.16)

foranya € A, ¢ € H*, andh € H, where®; 1 =" o' ® »® ® »°. Set

Dy =Y (Xi®g'S(x%) ® (X7 ® ¢%S(x?)) ® (X; #e) #x* (6.17)

wheref 1 =Y ¢! ® g2 is the element defined {1.16) Then(A# H*) # H, p, D) is
aleft H ® H°P-comodule algebra.

Proof. We first show thatp is an algebra map. Using (1.30) and (2.11), we can easily
show that the multiplication otA # H*) # H is given by

((a#o)#h)((@ #y)#H)
=Y [aaj i} #(x' = ¢ < a(y)72) (x®ha — ¥ — 53)| #x°hoh’  (6.18)
foralla,a’ € A, ¢, € H*, andh, h’ € H. Therefore
CED) #h)((a’f#t/f) #h'))
=Y anajg_, (T) gy ® S(°x3heahs) ® [a[O] a0 (%5) 1010
# (yllxl ~ ¢ = alyy 720 FxPh — v — E0d) | #r2dhan )
63 =2 a-nap 00" @S heh) ® [a[owio>[o]67)zw<zo>f,§
#(yt— g~ a(l>a)3a)(21> )(z 2y2x hy ~ o — %% )] #23y2x%h o, 1)k
@1 = D _a-u@ai_yw' ® S(y*h2) -op S(x°h3) ® [0[0]52( ajo?) 0%
# (Zlyl -9 CT)3("{0]‘“2) (1)’2/5) (Zzyfh(Ll)xl -~y = w3f§)]
#23y2h1.2)x°h)
@10 =Y _apy@'a]_10" ® S(y°h2) -op S(xhY) ® [(a[O]cT)Z Byt — o — %)

(afqy® #22yFhayxt =¥ w3)] #2°y3h,2x°h}
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(1.30) = Za[fl]a)laffl]wl b2y S(y3h2) ‘op S(x?’h’z) ® [(a[O]cT)z Byl =g~ 5)3) #yzhl]
[(afo]wz #xl =y — o) #x%n)]
=p((aBo) #h)p((@ Fy) 1)

where-qp is the product ind °P. Obviouslyg respects the unit element and (2.7) and (2.8)
hold. (2.5) can be proved using similar computations as above and is left to the reader.
Using the notation

we can compute:

(dRid® @)(@W)(A Rid® id)(@p)
_ Y (B g5t (D), 0 61509),) @ (% @ s(2)(7), © 6As(7),)

& (R3),_y ® S(:8)) (72 G75(7) @ [(R3) ) # ][ (72 ) 7]

W Y (R, 0 Gl s(76) 8 (RE(T), © 63 (53:7)
& (R3),_y 720 G2S(253xY) & [((R2) T2 Fe) #2127

83— 3 (rtexieish) o (B2, 0:2265()
o (R, 0 Cda?s(7) o (RT3 7e) #2'y1]

a1 = Y (Frog5(7) (K @ x1) & (¥ 8 615(2)(77), @ 507 (¥ @ )
& (728 G*S(2)((72), & 8507, (& )
® [(X3#e) #M][(V #e) #yY]

65 = (1g @ Pp)(Id® Apggpyor ®id)(Pp) (PrgHr @ 1)

where}" G ® G2 is another copy off ~* and1= (1, #¢) # 1y is the unit of the algebra
(A#H"#H. O

Let H be a quasi-Hopf algebrad, A, p, ®,, ®,, ¥, ,) an H-bicomodule algebra, and
C an H-bimodule coalgebra. By Lemma 6.3, we can consider the category of Doi—Hopf
modules® M(H ® HP)(,g4+)4- We Will prove that it is isomorphic to the category of

two-sided two-cosided Hopf modulési %, in the case wher# is finite-dimensional.

Lemma 6.4. Let H be a quasi-Hopf algebrad an H-bicomodule algebra, and” an
H-bimodule coalgebra. We have a functor

.C H C
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F(N) = N as ak-module, with structure maps given by the equations

n—(@p)#h) = lo. S fPnwaw p2))Sh) 1> noy < ag pt.  (6.19)
Py =Y ny@no =) ftny® f2-np (6.20)
forallne N,ae A, ¢ € H*, andh € H. F sends a morphism to itself.

Proof. SinceN is a two-sided H, A)-Hopf module, we know by (3.39) tha is a right
(A # H*) # H-module via the action defined by (6.19). Let F* ® F? be another copy
of f. Foranyn € N, we have that

(A®idy) (55 m)o,"
©10 = n-y, - (G @ S(X°)FY) @ nioy, - (3 @ S(X?)F?) @ oy < [ (i #e) #X7]
030 =2 S(XA)FL- (f1nin), - @ S(XP)F2- (1 np-q), - ¥
® S(XY) f2 = npo < &2
©8 =Y S(X3)FLfLny, 5 @ S(X2)F2 1Y n_ay, - $2.® S(XP) f2 = njop < &5

(6.12
w9 =Y frony@F £ no -1 ® F2f > np

118)
2 2
(6.14) = Z fl -1 ® Fl . (f2 - n[O])[,l] R F° > (f > n[o])[o]
620 = "ni-1) ® F*-no)_yy ® F2 > nojq
620 = (idc ® 5§ (55 ().

We still have to show the compatibility relation (5.5). For, observe that (3.6), (6.3), and
(1.5) imply

Z ‘Ql(ﬁ/l?)[—l] ® 92(15,%)[0] ® 2°p; = Z“’l ® iy Py ® fy 5, 8(0°). (6.:21)
Now, foralln € N,a € A, ¢ € H*, andh € H one can show that
oy (n < ((aBo)#h)) = o5 )p((a#e) #h),
completing the proof. O

Lemma 6.5. Let H be a finite-dimensional quasi-Hopf algebra, an H-bicomodule
algebra, andC an H-bimodule coalgebra. We have a functor

G: MH & H®) (uzpmun = MY -

G(N) = N as ak-module, with structure maps given by
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h=n=n<[a#e)#S )], n<a=n<[@#e)#ly],  (6.22)
oNN— N®H,
Py () =fn <[(@3#SH(e?) ~e's=q))#5 (¢ @er,  (6:23)
i=1
PSIN=>CON, p§m) =) g' n_1®g%>np (6.24)
forn e N,ae A, and h € H. Here {ei};i—1n is a basis ofH and {ei}i=l,7 is the

corresponding dual basis @f*. G sends a morphism to itself.

Proof. SinceN is aright(A#H*) # H-module, we already know by (3.36) and (3.38) that
H is a two-sided H, A)-Hopf module via (6.22) and (6.23). Thus we only have to check
(6.12)—(6.15). First note thaf € M (H ® HP) s a4y iMplies
Zn[—l] ®no,-1] ® 1[0,0]
=Y S(X3) o, 5 @ S(X?) £2 nay, 2 @npo) < [(F #e) #X'], (6.25)
D fn<—[@p#h]}_y ©{n<—[@Re)#h]} g
= Z S(x3h2) “n[—1] - a[_]_]a)l Q npo] < [(a[o]wzﬁxl — w3) #xzh]_] (6.26)

forallne N,aec A, ¢ € H*, andh € H. By the above definitions and (6.26), it is
immediate that

/_)g(h >-n)= A(h)/_)g(n) and gﬁ n<a)= /_)g(n),ok(a) (6.27)

forall he H,n e N, anda € A (we leave it to the reader to verify the details). Let
Y G' ® G? be another copy of 1. We compute that

D(A®idy)(p§ )
(6.24) = ZXl : (gl : n[_l])l ® X2 (gl : n[—l])2 ® X3g% > nyo)
& =D X'gl ni 1, ® X2g3 - nj_1j, ®njo) < [(1a #e) #57(X3%)]
019 =D X'elG'S(x%) n_y - X} ® X?g3G?S(x) - njo,—11 - X}
®nio0 < [(X3 #e) #57H (X375 ()]
di =D & n-1- X ®¢fG -npo—1- X @npoo) « [(X3 #e) #57(65G7)]
622 =) g -ni_1- X; ® giG - npo—1y- X} ® g5G% ~ njo.0) < X,

628
©8) = (idc ® piy) (o} () ..
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The verification of (6.13) is based on similar computations, and we leave the details to the
reader. O

As a consequence of Lemmas 6.4 and 6.5, we have the following descripﬁthﬁ
as a category of Doi—Hopf modules; this description generalizes [4, Proposition 2.3].

Theorem 6.6. Let H be a finite-dimensional quasi-Hopf algebr&, an H-bicomodule
algebra, andC an H-bimodule coalgebra. Then the categorfes(H ® HOF’)(A#H*)#H
and$, M are isomorphic.

Proof. We have to verify that the functor® and G defined in Lemmas 6.4 and 6.5 are
inverses. For th€-coactions (6.20) and (6.24), this is obvious; for the other structures, it
has been already done in Corollary 3.62

Propositions 5.2 and 5.4, and Theorem 6.6 immediately imply the following result.

Corollary 6.7. Let H be a finite-dimensional quasi-Hopf algebr&,an H-bicomodule
algebra, andC an H-bimodule coalgebra. Theﬁ/\/lg is isomorphic to the category of
right comodules over the corinQ = (A# H*) # H) ® C. If C is finite-dimensional, then
the categorﬁ,/\/lg’ is isomorphic to the category of right modules over the generalized
smash produc€* x (A#H*)# H).

Remark 6.8. Let H be a finite-dimensional Hopf algebra. Cibils and Rosso [10] introduced
an algebraX = (H°P® H) ® (H* ® H*°") having the property that the category of two-
sided two-cosided Hopf modules ovAr* coincides with the category of leK-modules.
Moreover, it was also proved in [10] that is isomorphic to the direct tensor product of a
Heisenberg double and the opposite of a Drinfeld double. Recently, Panaite [23] introduced
two other algebrag and Z with the same property as. More preciselyY is the two-

sided crossed produdi* # (H ® H°P) # H*°P, and Z is the diagonal crossed product

in the sense of [16](H* ® H*°P) } (H ® H°P). Using different methods, we proved
that the category of two-sided two-cosided Hopf modules over a finite-dimensional quasi-
Hopf algebra is isomorphic to the category of right (respectively left) modules over the
generalized smash produdt= H* x ((H # H*) # H) (respectively.A°P). Note that, in
general, the multiplication o6* x ((A # H*) # H) is given by the formula

["x (@B)#h)|[d"w (@ #y) #1)]
=Y (F =" = S(X3) 1Y) (#a_yo! — d* — $(X°x%h2) £?)

3

=3 2/ lpoel 101 =2\ (yl 2.2 =3
. {[xxa[olw ajo ¥, # (X yyx" = ¢ — 0 a(y)35) (X 5y x1hay = ¥ < £)]

#X%y3x22h(1,2)h'}.
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