Two-sided two-cosided Hopf modules and Doi-Hopf modules for quasi-Hopf algebras **

D. Bulacu ${ }^{\mathrm{a}, 1}$ and S. Caenepeel ${ }^{\mathrm{b}, *}$
${ }^{\text {a }}$ Faculty of Mathematics, University of Bucharest, RO-70109 Bucharest 1, Romania
${ }^{\text {b }}$ Faculty of Applied Sciences, Vrije Universiteit Brussel, VUB, B-1050 Brussels, Belgium
Received 27 July 2002
Communicated by Michel van den Bergh

Abstract

Let H be a finite-dimensional quasi-Hopf algebra over a field k and \mathfrak{A} a right H-comodule algebra. We introduce the category of two-sided Hopf modules, and prove that it is isomorphic to a module category. We also show that two-sided Hopf modules are coalgebra over a certain comonad. We introduce Doi-Hopf modules, and show that they are comodules over a certain coring. If the underlying H-module coalgebra is finite-dimensional, then Doi-Hopf modules are modules over a certain smash products. A similar result holds for two-sided two-cosided Hopf modules. © 2003 Elsevier Inc. All rights reserved.

Introduction

Quasi-bialgebras and quasi-Hopf algebras were introduced by Drinfeld [15] in connection with the Knizhnik-Zamolodchikov equations [19]. Let k be a field, H an associative algebra and $\Delta: H \rightarrow H \otimes H$ and $\varepsilon: H \rightarrow k$ two algebra morphisms. Roughly speaking, H is a quasi-bialgebra if the category ${ }_{H} \mathcal{M}$ of left H-modules, equipped with the tensor product of vector spaces endowed with the diagonal H-module structure given via Δ, and with unit object k viewed as a left H-module via ε, is a monoidal category. The co-

[^0]0021-8693/\$ - see front matter © 2003 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2003.07.001
multiplication Δ is not coassociative but only quasi-coassociative, in the sense that it is coassociative up to conjugation by an invertible element $\Phi \in H \otimes H \otimes H$. Moreover, H is a quasi-Hopf algebra if and only if each finite-dimensional left H-module has a dual H-module. Note that the definition of a quasi-bialgebra is not self-dual.

From an algebraic point of view, quasi-bialgebras and quasi-Hopf algebras appear naturally. They can be obtained by twisting the comultiplication on a bialgebra H by an invertible element $F \in H \otimes H$ satisfying $(\varepsilon \otimes \mathrm{id})(F)=(\mathrm{id} \otimes \varepsilon)(F)=1$: a new comultiplication Δ_{F} making H a quasi-bialgebra is given by $\Delta_{F}(h)=F \Delta(h) F^{-1}$. Another important example is the Dijkgraaf-Pasquier-Roche quasi-Hopf algebra $D^{\omega}(G)$, where G is a finite group and ω a normalized 3-cocycle. The representations of $D^{\omega}(G)$ are important in physics (see [12]). Altschuler and Coste [3] used them to construct invariants for knots, links, and 3-manifolds. In [7], this construction was generalized to finite-dimensional cocommutative Hopf algebras, and an even more general construction is the quantum double $D(H)$ of a finite-dimensional quasi-Hopf algebra, see [16,17, 21]. Albuquerque and Majid [1] showed recently that the octonions are a twisting of the group algebra of $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ in the monoidal category of representations of a quasi-Hopf algebra associated to a group 3-cocycle. In particular, they shown that the octonions are quasi-algebras associative up to a 3-cocycle isomorphism. They provide new quasi-associative algebras beyond the octonions and also introduce a suitable quasi-Hopf algebra of "automorphisms" associated to any quasi-algebra of the type presented above. More examples of quasi-algebras, where the non-associativity constraint is induced by a \mathbb{Z}_{n}-grading and a nontrivial 3-cocycle, were given in [2].

Let H be a bialgebra, A and H-comodule algebra, and C an H-module coalgebra. We can consider several types of modules, such as modules, comodules, (relative) Hopf modules, Long dimodules, and Yetter-Drinfeld modules. Doi [14] and Koppinen [20] introduced Doi-Hopf modules, and it turned out that they generalize and unify all the types of modules mentioned above. Basically, we obtain the definition of a Doi-Hopf module, by combining the definitions of a relative (A, H)-module and its dual notion, a relative [H, C]-module: a (H, A, C)-module is a k-linear space together with an A-action and a C-coaction satisfying an appropriate compatibility relation. We recover the two types of relative Hopf modules taking respectively $C=H$ and $A=H$. At the end of last century, Takeuchi [28] observed that $A \otimes C$ is in a canonical way an A-coring, and that Doi-Hopf modules are nothing else than comodules over the coring $A \otimes C$. This observation was the reason for a revived interest in corings and comodules (see, for example, [5]); actually, corings were considered already by Sweedler in 1965 [26], but then forgotten by Hopfalgebra theorists.

The aim of this paper is to introduce the quasi-bialgebraic versions of these categories, including interpretations in terms of monoidal categories, and to give duality theorems in the finite-dimensional case. The conceptual problem that arises comes from the fact that the definition of a quasi-bialgebra H is not self-dual: an immediate consequence is that we cannot consider H-comodules, because a quasi-bialgebra is not coassociative. H-module (co)algebras can be introduced as (co)algebras in the monoidal category of H -modules, but we cannot introduce H-comodule algebras as algebras in the category of comodules. A formal definition of H-comodule algebras was given by Hausser and Nill [16]; we propose the following interpretation: if H is a bialgebra, and \mathfrak{A} is a right H-comodule
algebra, then $\mathfrak{A} \otimes H$ is an \mathfrak{A}-coring, which means that it is a coalgebra in the category of \mathfrak{A}-bimodules. The quasi-bialgebra analog of this property is the following: let H be a quasibialgebra, and \mathfrak{A} an algebra. Then the category of $(\mathfrak{A} \otimes H, \mathfrak{A})$-bimodules is monoidal. If \mathfrak{A} is a right H-comodule algebra in the sense of [16], then $\mathfrak{A} \otimes H$ is a coalgebra in the category $\mathfrak{A} \otimes H \mathcal{M}_{\mathfrak{A}}$. This coalgebra induces a comonad, and the two-sided Hopf modules that are introduced in Section 3.1 are precisely the coalgebras over this comonad. This will be discussed in detail in Section 3.3.

Given a finite-dimensional quasi-bialgebra H and a right H-comodule algebra \mathfrak{A}, we can introduce the quasi-smash product $\mathfrak{A} \overline{\#} H^{*}$, which reduces to the usual smash product in the situation where H is a bialgebra. $\mathfrak{A} \overline{\#} H^{*}$ is then a left H-module algebra, and we can consider the category $\mathcal{M}_{\mathfrak{R} \overline{\#} H^{*}}^{H^{*}}$ of relative Hopf modules (see Section 2). In Section 3, we introduce the category ${ }_{H} \mathcal{M}_{\mathfrak{A}}^{H}$ of two-sided (H, \mathfrak{A})-Hopf modules; the main result of Section 3 is Theorem 3.5, stating that these two categories are isomorphic if H is a quasiHopf algebra. This generalizes [11, Proposition 2.3]. Applying results from [6], we find that the category $\mathcal{M}_{\mathfrak{A} \# H^{*}}^{H^{*}}$ is isomorphic to the category of right modules over the smash product algebra (in the sense of [8]) of $\mathfrak{A} \# H^{*}$ and H. In the case where $\mathfrak{A}=H$, we recover a result of Nill announced in [18] stating that ${ }_{H} \mathcal{M}_{H}^{H}$ is isomorphic to the category of right modules over the two-sided crossed product $H \rtimes H^{*} \ltimes H$. In Section 4, we will prove that the two-sided crossed product constructed in [16] is in fact a generalized smash product. As a consequence, $\left(H \overline{\#} H^{*}\right) \# H$ is just the two-sided crossed product $H \rtimes H^{*} \ltimes H$ (as an algebra).

The second part of this paper is devoted to the study of the category of two-sided two-cosided Hopf modules ${ }_{H}^{C} \mathcal{M}_{\mathbb{A}}^{H}$. Here C is a coalgebra in the monoidal category of (H, H)-bimodules ${ }_{H} \mathcal{M}_{H}$ (i.e. an H-bimodule coalgebra), and \mathbb{A} is an H-bicomodule algebra in the sense of [16]. Roughly speaking, an object in ${ }_{H}^{C} \mathcal{M}_{\mathbb{A}}^{H}$ is a two-sided (H, \mathbb{A})Hopf module which is also an "almost" left C-comodule such that the left C-coaction is compatible with the other structure maps. In Section 5 we will show that if C and H are finite-dimensional then ${ }_{H}^{C} \mathcal{M}_{\mathbb{A}}^{H}$ is isomorphic to a category of right modules. To this end we will describe first ${ }_{H}^{C} \mathcal{M}_{\mathbb{A}}^{H}$ as a category of Doi-Hopf modules. If \mathfrak{B} is a left H-comodule algebra and C is a right H-module coalgebra then the category of rightleft (H, \mathfrak{B}, C)-Doi-Hopf modules ${ }^{C} \mathcal{M}(H)_{\mathfrak{B}}$ is a straightforward generalization of the category of relative Hopf modules ${ }^{C} \mathcal{M}_{H}$. When C is finite-dimensional, ${ }^{C} \mathcal{M}(H)_{\mathfrak{B}}$ is isomorphic to the category of right modules over the generalized smash product $C^{*} \ltimes \mathfrak{B}$. We also have an interpretation in terms of monoidal categories: $\mathfrak{B} \otimes C$ is a coring, and the Doi-Hopf modules are comodules over this coring. Now, returning to the category ${ }_{H}^{C} \mathcal{M}_{\mathbb{A}}^{H}$, if H is finite-dimensional then we will show that $\left(\mathbb{A} \overline{\#} H^{*}\right) \# H$ is a left $H \otimes H^{\mathrm{op}}$-comodule algebra (here "op" means the opposite multiplication on H) so, it makes sense to consider the category of Doi-Hopf modules ${ }^{C} \mathcal{M}\left(H \otimes H^{\mathrm{op}}\right)_{\left(\mathbb{A} \mathbb{\#} H^{*}\right) \# H}$. The main result states that ${ }_{H}^{C} \mathcal{M}_{\mathbb{A}}^{H}$ is isomorphic to ${ }^{C} \mathcal{M}\left(H \otimes H^{\mathrm{op}}\right)_{\left(\mathbb{A} \overline{\#} H^{*}\right) \# H}$, generalizing [4, Proposition 2.3]. In particular, if C is finite-dimensional, then ${ }_{H}^{C} \mathcal{M}_{\mathbb{A}}^{H}$ is isomorphic to the category of right modules over the generalized smash product $\mathcal{A}=C^{*} \kappa\left(\left(\mathbb{A} \overline{\#} H^{*}\right) \# H\right)$. In the Hopf case, the left-handed version of this result was first obtained by Cibils and Rosso [10]. More precisely, they define an algebra X having the property that the category ${ }_{H^{*}}^{H^{*}} \mathcal{M}_{H^{*}}^{H^{*}}$ is isomorphic to the category of left X-modules. Recently, Panaite [23] introduced two
other algebras Y and Z with the same property as $X ; Y$ is the two-sided crossed product $H^{*} \#\left(H \otimes H^{\mathrm{op}}\right) \# H^{* \mathrm{op}}$ and Z is the diagonal crossed product (in the sense of [16]) $\left(H^{*} \otimes H^{* \mathrm{op}}\right) \bowtie\left(H \otimes H^{\mathrm{op}}\right)$.

1. Preliminary results

1.1. Quasi-Hopf algebras

We work over a field k. All algebras, linear spaces, etc., will be over k; unadorned \otimes means \otimes_{k}. Following Drinfeld [15], a quasi-bialgebra is a four-tuple $(H, \Delta, \varepsilon, \Phi)$ where H is an associative algebra with unit, Φ is an invertible element in $H \otimes H \otimes H$, and $\Delta: H \rightarrow H \otimes H$ and $\varepsilon: H \rightarrow k$ are algebra homomorphisms satisfying the identities

$$
\begin{gather*}
(\mathrm{id} \otimes \Delta)(\Delta(h))=\Phi(\Delta \otimes \mathrm{id})(\Delta(h)) \Phi^{-1} \tag{1.1}\\
(\mathrm{id} \otimes \varepsilon)(\Delta(h))=h, \quad(\varepsilon \otimes \mathrm{id})(\Delta(h))=h, \tag{1.2}
\end{gather*}
$$

for all $h \in H$, and Φ has to be a normalized 3-cocycle, in the sense that

$$
\begin{align*}
(1 \otimes \Phi)(\mathrm{id} \otimes \Delta \otimes \mathrm{id})(\Phi)(\Phi \otimes 1) & =(\mathrm{id} \otimes \mathrm{id} \otimes \Delta)(\Phi)(\Delta \otimes \mathrm{id} \otimes \mathrm{id})(\Phi) \tag{1.3}\\
(\mathrm{id} \otimes \varepsilon \otimes \mathrm{id})(\Phi) & =1 \otimes 1 . \tag{1.4}
\end{align*}
$$

The map Δ is called the coproduct or the comultiplication, ε the counit and Φ the reassociator. We use the Sweedler-Heyneman notation $\Delta(h)=\sum h_{1} \otimes h_{2}$. Since Δ is only quasi-coassociative, we will write

$$
\begin{aligned}
& (\Delta \otimes \mathrm{id})(\Delta(h))=\sum h_{(1,1)} \otimes h_{(1,2)} \otimes h_{2}, \\
& (\mathrm{id} \otimes \Delta)(\Delta(h))=\sum h_{1} \otimes h_{(2,1)} \otimes h_{(2,2)},
\end{aligned}
$$

for all $h \in H$. We will denote the tensor components of Φ by capital letters, and the ones of Φ^{-1} by small letters, namely:

$$
\begin{gathered}
\Phi=\sum X^{1} \otimes X^{2} \otimes X^{3}=\sum T^{1} \otimes T^{2} \otimes T^{3}=\sum V^{1} \otimes V^{2} \otimes V^{3}=\cdots \\
\Phi^{-1}=\sum x^{1} \otimes x^{2} \otimes x^{3}=\sum t^{1} \otimes t^{2} \otimes t^{3}=\sum v^{1} \otimes v^{2} \otimes v^{3}=\cdots
\end{gathered}
$$

H is called a quasi-Hopf algebra if, moreover, there exists an anti-automorphism S of the algebra H and elements $\alpha, \beta \in H$ such that, for all $h \in H$, we have:

$$
\begin{gather*}
\sum S\left(h_{1}\right) \alpha h_{2}=\varepsilon(h) \alpha \quad \text { and } \quad \sum h_{1} \beta S\left(h_{2}\right)=\varepsilon(h) \beta, \tag{1.5}\\
\sum X^{1} \beta S\left(X^{2}\right) \alpha X^{3}=1 \quad \text { and } \quad \sum S\left(x^{1}\right) \alpha x^{2} \beta S\left(x^{3}\right)=1 . \tag{1.6}
\end{gather*}
$$

For a quasi-Hopf algebra, the antipode is determined uniquely up to a transformation $\alpha \mapsto U \alpha, \beta \mapsto \beta U^{-1}, S(h) \mapsto U S(h) U^{-1}$, where $U \in H$ is invertible. The axioms for a quasi-Hopf algebra imply that $\varepsilon \circ S=\varepsilon$ and $\varepsilon(\alpha) \varepsilon(\beta)=1$, so, by rescaling α and β, we may assume without loss of generality that $\varepsilon(\alpha)=\varepsilon(\beta)=1$. The identities (1.2)-(1.4) also imply that

$$
\begin{equation*}
(\varepsilon \otimes \mathrm{id} \otimes \mathrm{id})(\Phi)=(\mathrm{id} \otimes \mathrm{id} \otimes \varepsilon)(\Phi)=1 \otimes 1 \tag{1.7}
\end{equation*}
$$

Recall that the definition of a quasi-Hopf algebra is "twist coinvariant" in the following sense. An invertible element $F \in H \otimes H$ is called a gauge transformation or twist if $(\varepsilon \otimes \mathrm{id})(F)=(\mathrm{id} \otimes \varepsilon)(F)=1$. If H is a quasi-Hopf algebra and $F=\sum F^{1} \otimes F^{2} \in H \otimes H$ is a gauge transformation with inverse $F^{-1}=\sum G^{1} \otimes G^{2}$, then we can define a new quasi-Hopf algebra H_{F} by keeping the multiplication, unit, counit, and antipode of H and replacing the comultiplication, reassociator, and the elements α and β by

$$
\begin{gather*}
\Delta_{F}(h)=F \Delta(h) F^{-1}, \tag{1.8}\\
\Phi_{F}=(1 \otimes F)(\mathrm{id} \otimes \Delta)(F) \Phi(\Delta \otimes \mathrm{id})\left(F^{-1}\right)\left(F^{-1} \otimes 1\right), \tag{1.9}\\
\alpha_{F}=\sum S\left(G^{1}\right) \alpha G^{2}, \quad \beta_{F}=\sum F^{1} \beta S\left(F^{2}\right) . \tag{1.10}
\end{gather*}
$$

It is well known that the antipode of a Hopf algebra is an anti-coalgebra morphism. For a quasi-Hopf algebra, we have the following statement: there exists a gauge transformation $f \in H \otimes H$ such that

$$
\begin{equation*}
f \Delta(S(h)) f^{-1}=(S \otimes S)\left(\Delta^{\mathrm{op}}(h)\right), \quad \text { for all } h \in H \tag{1.11}
\end{equation*}
$$

where $\Delta^{\mathrm{op}}(h)=\sum h_{2} \otimes h_{1} . f$ can be computed explicitly. First set

$$
\begin{align*}
& \sum A^{1} \otimes A^{2} \otimes A^{3} \otimes A^{4}=\left(1 \otimes \Phi^{-1}\right)(\mathrm{id} \otimes \mathrm{id} \otimes \Delta)(\Phi) \tag{1.12}\\
& \sum B^{1} \otimes B^{2} \otimes B^{3} \otimes B^{4}=(\Delta \otimes \mathrm{id} \otimes \mathrm{id})(\Phi)\left(\Phi^{-1} \otimes 1\right) \tag{1.13}
\end{align*}
$$

and then define $\gamma, \delta \in H \otimes H$ by

$$
\begin{equation*}
\gamma=\sum S\left(A^{2}\right) \alpha A^{3} \otimes S\left(A^{1}\right) \alpha A^{4} \quad \text { and } \quad \delta=\sum B^{1} \beta S\left(B^{4}\right) \otimes B^{2} \beta S\left(B^{3}\right) \tag{1.14}
\end{equation*}
$$

f and f^{-1} are then given by the formulas

$$
\begin{align*}
f & =\sum(S \otimes S)\left(\Delta^{\mathrm{op}}\left(x^{1}\right)\right) \gamma \Delta\left(x^{2} \beta S\left(x^{3}\right)\right), \tag{1.15}\\
f^{-1} & =\sum \Delta\left(S\left(x^{1}\right) \alpha x^{2}\right) \delta(S \otimes S)\left(\Delta^{\mathrm{op}}\left(x^{3}\right)\right) . \tag{1.16}
\end{align*}
$$

f satisfies the following relations:

$$
\begin{equation*}
f \Delta(\alpha)=\gamma, \quad \Delta(\beta) f^{-1}=\delta . \tag{1.17}
\end{equation*}
$$

Furthermore, the corresponding twisted reassociator (see (1.9)) is given by

$$
\begin{equation*}
\Phi_{f}=\sum(S \otimes S \otimes S)\left(X^{3} \otimes X^{2} \otimes X^{1}\right) \tag{1.18}
\end{equation*}
$$

In a Hopf algebra H, we obviously have the identity

$$
\sum h_{1} \otimes h_{2} S\left(h_{3}\right)=h \otimes 1, \quad \text { for all } h \in H
$$

We will need the generalization of this formula to the quasi-Hopf algebra setting. Following [16,17], we define:

$$
\begin{gather*}
p_{R}=\sum p_{R}^{1} \otimes p_{R}^{2}=\sum x^{1} \otimes x^{2} \beta S\left(x^{3}\right), \\
q_{R}=\sum q_{R}^{1} \otimes q_{R}^{2}=\sum X^{1} \otimes S^{-1}\left(\alpha X^{3}\right) X^{2}, \tag{1.19}\\
p_{L}=\sum p_{L}^{1} \otimes p_{L}^{2}=\sum X^{2} S^{-1}\left(X^{1} \beta\right) \otimes X^{3}, \\
q_{L}=\sum q_{L}^{1} \otimes q_{L}^{2}=\sum S\left(x^{1}\right) \alpha x^{2} \otimes x^{3} . \tag{1.20}
\end{gather*}
$$

For all $h \in H$, we then have:

$$
\begin{gather*}
\sum \Delta\left(h_{1}\right) p_{R}\left[1 \otimes S\left(h_{2}\right)\right]=p_{R}[h \otimes 1] \\
\sum\left[1 \otimes S^{-1}\left(h_{2}\right)\right] q_{R} \Delta\left(h_{1}\right)=(h \otimes 1) q_{R} \tag{1.21}\\
\sum \Delta\left(h_{2}\right) p_{L}\left[S^{-1}\left(h_{1}\right) \otimes 1\right]=p_{L}(1 \otimes h) \\
\sum\left[S\left(h_{1}\right) \otimes 1\right] q_{L} \Delta\left(h_{2}\right)=(1 \otimes h) q_{L} \tag{1.22}
\end{gather*}
$$

and

$$
\begin{gather*}
\sum \Delta\left(q_{R}^{1}\right) p_{R}\left[1 \otimes S\left(q_{R}^{2}\right)\right]=1 \otimes 1, \quad \sum\left[1 \otimes S^{-1}\left(p_{R}^{2}\right)\right] q_{R} \Delta\left(p_{R}^{1}\right)=1 \otimes 1, \tag{1.23}\\
\sum\left[S\left(p_{L}^{1}\right) \otimes 1\right] q_{L} \Delta\left(p_{L}^{2}\right)=1 \otimes 1, \quad \sum \Delta\left(q_{L}^{2}\right) p_{L}\left[S^{-1}\left(q_{L}^{1}\right) \otimes 1\right]=1 \otimes 1, \tag{1.24}\\
\left(q_{R} \otimes 1\right)(\Delta \otimes \mathrm{id})\left(q_{R}\right) \Phi^{-1} \\
=\sum\left[1 \otimes S^{-1}\left(X^{3}\right) \otimes S^{-1}\left(X^{2}\right)\right]\left[1 \otimes S^{-1}\left(f^{2}\right) \otimes S^{-1}\left(f^{1}\right)\right](\mathrm{id} \otimes \Delta)\left(q_{R} \Delta\left(X^{1}\right)\right) \tag{1.25}\\
\Phi(\Delta \otimes \mathrm{id})\left(p_{R}\right)\left(p_{R} \otimes \mathrm{id}\right) \\
=\sum(\mathrm{id} \otimes \Delta)\left(\Delta\left(x^{1}\right) p_{R}\right)\left(1 \otimes f^{-1}\right)\left(1 \otimes S\left(x^{3}\right) \otimes S\left(x^{2}\right)\right), \tag{1.26}
\end{gather*}
$$

where $f=\sum f^{1} \otimes f^{2}$ is the twist defined in (1.15).

1.2. The smash product

Suppose that $(H, \Delta, \varepsilon, \Phi)$ is a quasi-bialgebra. If U, V, W are left (right) H-modules, define $a_{U, V, W}, \mathbf{a}_{U, V, W}:(U \otimes V) \otimes W \rightarrow U \otimes(V \otimes W)$ by

$$
\begin{aligned}
& a_{U, V, W}((u \otimes v) \otimes w)=\Phi \cdot(u \otimes(v \otimes w)), \\
& \mathbf{a}_{U, V, W}((u \otimes v) \otimes w)=(u \otimes(v \otimes w)) \cdot \Phi^{-1} .
\end{aligned}
$$

Then the category ${ }_{H} \mathcal{M}\left(\mathcal{M}_{H}\right)$ of left (right) H-modules becomes a monoidal category (see [19,22] for the terminology) with tensor product \otimes given via Δ, associativity constraints $a_{U, V, W}\left(\mathbf{a}_{U, V, W}\right)$, unit k as a trivial H-module and the usual left and right unit constraints.

Now, let H be a quasi-bialgebra. We say that a k-vector space A is a left H-module algebra if it is an algebra in the monoidal category ${ }_{H} \mathcal{M}$, that is, A has a multiplication and a usual unit 1_{A} satisfying the following conditions:

$$
\begin{gather*}
\left(a a^{\prime}\right) a^{\prime \prime}=\sum\left(X^{1} \cdot a\right)\left[\left(X^{2} \cdot a^{\prime}\right)\left(X^{3} \cdot a^{\prime \prime}\right)\right], \tag{1.27}\\
h \cdot\left(a a^{\prime}\right)=\sum\left(h_{1} \cdot a\right)\left(h_{2} \cdot a^{\prime}\right), \tag{1.28}\\
h \cdot 1_{A}=\varepsilon(h) 1_{A}, \tag{1.29}
\end{gather*}
$$

for all $a, a^{\prime}, a^{\prime \prime} \in A$ and $h \in H$, where $h \otimes a \mapsto h \cdot a$ is the H-module structure of A. Following [8], we define the smash product $A \# H$ as follows: as a vector space $A \# H$ is $A \otimes H(a \otimes h$ viewed as an element of $A \# H$ will be written $a \# h)$ with multiplication given by

$$
\begin{equation*}
(a \# h)\left(a^{\prime} \# h^{\prime}\right)=\sum\left(x^{1} \cdot a\right)\left(x^{2} h_{1} \cdot a^{\prime}\right) \# x^{3} h_{2} h^{\prime} \tag{1.30}
\end{equation*}
$$

for all $a, a^{\prime} \in A, h, h^{\prime} \in H . A \# H$ is an associative algebra and it is defined by a universal property (as Heyneman and Sweedler did for Hopf algebras, see [8]). It is easy to see that H is a subalgebra of $A \# H$ via $h \mapsto 1 \# h, A$ is a k-subspace of $A \# H$ via $a \mapsto a \# 1$ and the following relations hold:

$$
\begin{equation*}
(a \# h)\left(1 \# h^{\prime}\right)=a \# h h^{\prime}, \quad(1 \# h)\left(a \# h^{\prime}\right)=\sum h_{1} \cdot a \# h_{2} h^{\prime} \tag{1.31}
\end{equation*}
$$

for all $a \in A, h, h^{\prime} \in H$.
We will also need the notion right H-module coalgebra. This is a coalgebra C in the monoidal category of right modules over a quasi-bialgebra H. This means that C is a right H-module together with a comultiplication $\underline{\Delta}: C \rightarrow C \otimes C$ and a counit $\underline{\varepsilon}: C \rightarrow k$, satisfying the following relations:

$$
\begin{gather*}
\left(\underline{\Delta} \otimes \operatorname{id}_{C}\right)(\underline{\Delta}(c)) \Phi^{-1}=\left(\operatorname{id}_{C} \otimes \underline{\Delta}\right)(\underline{\Delta}(c)) \quad \forall c \in C, \tag{1.32}\\
\underline{\Delta}(c \cdot h)=\sum c_{1} \cdot h_{1} \otimes c_{\underline{2}} \cdot h_{2} \quad \forall c \in C, h \in H, \tag{1.33}\\
\underline{\varepsilon}(c \cdot h)=\underline{\varepsilon}(c) \varepsilon(h) \quad \forall c \in C, h \in H, \tag{1.34}
\end{gather*}
$$

where we used the Sweedler-type notation

$$
\underline{\Delta}(c)=c_{\underline{1}} \otimes c_{\underline{2}}, \quad\left(\underline{\Delta} \otimes \operatorname{id}_{C}\right)(\underline{\Delta}(c))=\sum c_{(\underline{1}, \underline{1})} \otimes c_{(\underline{1}, 2)} \otimes c_{\underline{2}}, \quad \text { etc. }
$$

2. The quasi-smash product

The category of H-modules is monoidal, and an H-module (co)algebra is a (co)algebra in this category. This categorical definition cannot be used to introduce H-comodule algebras, since we do not have H-comodules. Hausser and Nill [16] gave a purely algebraic definition of an H-comodule algebra. We will show in Section 3.3 how their definition can be justified from a categorical point of view.

Definition 2.1 [16]. Let H be a quasi-bialgebra. A unital associative algebra \mathfrak{A} is called a right H-comodule algebra if there exists an algebra morphism $\rho: \mathfrak{A} \rightarrow \mathfrak{A} \otimes H$ and an invertible element $\Phi_{\rho} \in \mathfrak{A} \otimes H \otimes H$ such that

$$
\begin{gather*}
\Phi_{\rho}(\rho \otimes \mathrm{id})(\rho(\mathfrak{a}))=(\mathrm{id} \otimes \Delta)(\rho(\mathfrak{a})) \Phi_{\rho}, \quad \text { for all } \mathfrak{a} \in \mathfrak{A} \tag{2.1}\\
\left(1_{\mathfrak{A}} \otimes \Phi\right)(\mathrm{id} \otimes \Delta \otimes \mathrm{id})\left(\Phi_{\rho}\right)\left(\Phi_{\rho} \otimes 1_{H}\right)=(\mathrm{id} \otimes \mathrm{id} \otimes \Delta)\left(\Phi_{\rho}\right)(\rho \otimes \mathrm{id} \otimes \mathrm{id})\left(\Phi_{\rho}\right) \tag{2.2}\\
(\mathrm{id} \otimes \varepsilon) \circ \rho=\mathrm{id} \tag{2.3}\\
(\mathrm{id} \otimes \varepsilon \otimes \mathrm{id})\left(\Phi_{\rho}\right)=1_{\mathfrak{A}} \otimes 1_{H} \tag{2.4}
\end{gather*}
$$

Similarly, a unital associative algebra \mathfrak{B} is called a left H-comodule algebra if there exists an algebra morphism $\lambda: \mathfrak{B} \rightarrow H \otimes \mathfrak{B}$ and an invertible element $\Phi_{\lambda} \in H \otimes H \otimes \mathfrak{B}$ such that the following relations hold:

$$
\begin{gather*}
(\mathrm{id} \otimes \lambda)(\lambda(\mathfrak{b})) \Phi_{\lambda}=\Phi_{\lambda}(\Delta \otimes \mathrm{id})(\lambda(\mathfrak{b})), \quad \text { for all } \mathfrak{b} \in \mathfrak{B}, \tag{2.5}\\
\left(1_{H} \otimes \Phi_{\lambda}\right)(\mathrm{id} \otimes \Delta \otimes \mathrm{id})\left(\Phi_{\lambda}\right)\left(\Phi \otimes 1_{\mathfrak{B}}\right)=(\mathrm{id} \otimes \mathrm{id} \otimes \lambda)\left(\Phi_{\lambda}\right)(\Delta \otimes \mathrm{id} \otimes \mathrm{id})\left(\Phi_{\lambda}\right), \tag{2.6}\\
(\varepsilon \otimes \mathrm{id}) \circ \lambda=\mathrm{id}, \tag{2.7}\\
(\mathrm{id} \otimes \varepsilon \otimes \mathrm{id})\left(\Phi_{\lambda}\right)=1_{H} \otimes 1_{\mathfrak{B}} . \tag{2.8}
\end{gather*}
$$

We notice that, when $\left(\mathfrak{A}, \rho, \Phi_{\rho}\right)$ is a right H-comodule algebra we also have

$$
(\mathrm{id} \otimes \mathrm{id} \otimes \varepsilon)\left(\Phi_{\rho}\right)=1_{\mathfrak{A}} \otimes 1_{H}
$$

Similarly, if $\left(\mathfrak{B}, \lambda, \Phi_{\lambda}\right)$ is a left H-comodule algebra then

$$
(\varepsilon \otimes \mathrm{id} \otimes \mathrm{id})\left(\Phi_{\lambda}\right)=1_{H} \otimes 1_{\mathfrak{B}}
$$

When H is a quasi-bialgebra, particular examples of left and right H-comodule algebras are given by $\mathfrak{A}=\mathfrak{B}=H$ and $\rho=\lambda=\Delta, \Phi_{\rho}=\Phi_{\lambda}=\Phi$.

For a right H-comodule algebra ($\mathfrak{A}, \rho, \Phi_{\rho}$), we will denote

$$
\rho(\mathfrak{a})=\sum \mathfrak{a}_{\langle 0\rangle} \otimes \mathfrak{a}_{\langle 1\rangle}, \quad(\rho \otimes \mathrm{id})(\rho(\mathfrak{a}))=\sum \mathfrak{a}_{\langle 0,0\rangle} \otimes \mathfrak{a}_{\langle 0,1\rangle} \otimes \mathfrak{a}_{\langle 1\rangle}, \quad \text { etc. }
$$

for any $\mathfrak{a} \in \mathfrak{A}$. Similarly, for a left H-comodule algebra $\left(\mathfrak{B}, \lambda, \Phi_{\lambda}\right.$), if $\mathfrak{b} \in \mathfrak{B}$ then we will denote

$$
\lambda(\mathfrak{b})=\sum \mathfrak{b}_{[-1]} \otimes \mathfrak{b}_{[0]}, \quad(\mathrm{id} \otimes \lambda)(\lambda(\mathfrak{b}))=\sum \mathfrak{b}_{[-1]} \otimes \mathfrak{b}_{[0,-1]} \otimes \mathfrak{b}_{[0,0]}, \quad \text { etc. }
$$

In analogy with the notation for the reassociator Φ of H, we will write

$$
\begin{gathered}
\Phi_{\rho}=\sum \widetilde{X}_{\rho}^{1} \otimes \widetilde{X}_{\rho}^{2} \otimes \tilde{X}_{\rho}^{3}=\sum \tilde{Y}_{\rho}^{1} \otimes \widetilde{Y}_{\rho}^{2} \otimes \tilde{Y}_{\rho}^{3}=\cdots \quad \text { and } \\
\Phi_{\rho}^{-1}=\sum \tilde{x}_{\rho}^{1} \otimes \tilde{x}_{\rho}^{2} \otimes \tilde{x}_{\rho}^{3}=\sum \tilde{y}_{\rho}^{1} \otimes \tilde{y}_{\rho}^{2} \otimes \tilde{y}_{\rho}^{3}=\cdots .
\end{gathered}
$$

A similar notation is used for the element Φ_{λ} of a left H-comodule algebra \mathfrak{B}. If no confusion is possible, we will omit the subscripts ρ or λ in the tensor components of the $\Phi_{\rho}, \Phi_{\lambda}, \Phi_{\rho}^{-1}$ and Φ_{λ}^{-1}.

Recall that, if H is an algebra, then H^{*} is an (H, H)-bimodule, with left and right action given by $\left\langle h \rightharpoonup \varphi \leftharpoonup h^{\prime}, h^{\prime \prime}\right\rangle=\left\langle\varphi, h^{\prime} h^{\prime \prime} h\right\rangle$, for all $h, h^{\prime}, h^{\prime \prime} \in H$ and $\varphi \in H^{*}$. If H is finite-dimensional, then H^{*} is a coalgebra.

Now let H be a bialgebra and \mathfrak{A} be a right H-comodule algebra. Then we can consider the smash product $\mathfrak{A} \# H^{*}$, with multiplication

$$
(a \# \varphi)\left(a^{\prime} \# \psi\right)=\sum a a_{\langle 0\rangle}^{\prime} \#\left(\varphi \leftharpoonup a_{\langle 1\rangle}^{\prime}\right) \psi .
$$

We will now generalize this construction to quasi-bialgebras. In this situation, the convolution product on H^{*} is not associative, but only quasi-associative, namely

$$
\begin{equation*}
[\varphi \psi] \xi=\sum\left(X^{1} \rightharpoonup \varphi \leftharpoonup x^{1}\right)\left[\left(X^{2} \rightharpoonup \psi \leftharpoonup x^{2}\right)\left(X^{3} \rightharpoonup \xi \leftharpoonup x^{3}\right)\right], \quad \text { for all } \varphi, \psi, \xi \in H^{*} \tag{2.9}
\end{equation*}
$$

In addition, for all $h \in H$ and $\varphi, \psi \in H^{*}$ we have that

$$
\begin{equation*}
h \rightharpoonup(\varphi \psi)=\sum\left(h_{1} \rightharpoonup \varphi\right)\left(h_{2} \rightharpoonup \psi\right) \quad \text { and } \quad(\varphi \psi) \leftharpoonup h=\sum\left(\varphi \leftharpoonup h_{1}\right)\left(\psi \leftharpoonup h_{2}\right) . \tag{2.10}
\end{equation*}
$$

In other words, H^{*} is an algebra in the monoidal category of (H, H)-bimodules ${ }_{H} \mathcal{M}_{H}$. Let ($\mathfrak{A}, \rho, \Phi_{\rho}$) be a right H-comodule algebra. We define a multiplication on $\mathfrak{A} \otimes H^{*}$ by

$$
\begin{equation*}
(\mathfrak{a} \overline{\#} \varphi)\left(\mathfrak{a}^{\prime} \overline{\#} \psi\right)=\sum \mathfrak{a}_{\langle 0\rangle}^{\prime} \tilde{x}^{1} \overline{\#}\left(\varphi \leftharpoonup \mathfrak{a}_{\langle 1\rangle}^{\prime} \tilde{x}^{2}\right)\left(\psi \leftharpoonup \tilde{x}^{3}\right) \tag{2.11}
\end{equation*}
$$

for all $\mathfrak{a}, \mathfrak{a}^{\prime} \in \mathfrak{A}$ and $\varphi, \psi \in H^{*}$, where we write $\mathfrak{a} \overline{\#} \varphi$ for $\mathfrak{a} \otimes \varphi, \rho(\mathfrak{a})=\sum \mathfrak{a}_{\langle 0\rangle} \otimes \mathfrak{a}_{\langle 1\rangle}$, and $\Phi_{\rho}^{-1}=\sum \tilde{x}^{1} \otimes \tilde{x}^{2} \otimes \tilde{x}^{3}$. We denote this structure on $\mathfrak{A} \otimes H^{*}$ by $\mathfrak{A} \overline{\#} H^{*}$. In the next
proposition, we prove that $\mathfrak{A} \overline{\#} H^{*}$ is an algebra in the category of left H-modules, and this is why we call $\mathfrak{A} \overline{\#} H^{*}$ the quasi-smash product.

Proposition 2.2. Let H be a quasi-bialgebra and $\left(\mathfrak{A}, \rho, \Phi_{\rho}\right)$ a right H-comodule algebra. Then $\mathfrak{A} \overline{\#} H^{*}$ is an H-module algebra with unit $1_{\mathfrak{A}} \overline{\#} \varepsilon$ and with left H-action given by

$$
\begin{equation*}
h \cdot(\mathfrak{a} \overline{\#} \varphi)=\mathfrak{a} \overline{\#} h \rightharpoonup \varphi \quad \text { for all } h \in H, \mathfrak{a} \in \mathfrak{A}, \text { and } \varphi \in H^{*} \tag{2.12}
\end{equation*}
$$

Proof. Since H^{*} is a left H-module via the action \rightharpoonup, it is easy to see that $\mathfrak{A} \overline{\#} H^{*}$ is a left H-module via the action (2.12). Now, we will prove that $\mathfrak{A} \overline{\#} H^{*}$ is an algebra in ${ }_{H} \mathcal{M}$ with unit $1_{\mathfrak{A}} \overline{\#} \varepsilon$. Indeed, for all $\mathfrak{a}, \mathfrak{a}^{\prime}, \mathfrak{a}^{\prime \prime} \in \mathfrak{A}$ and $\varphi, \psi, \chi \in H^{*}$

$$
\begin{aligned}
& {\left[X^{1} \cdot(\mathfrak{a} \overline{\#} \varphi)\right]\left\{\left[X^{2} \cdot\left(\mathfrak{a}^{\prime} \overline{\#} \psi\right)\right]\left[X^{3} \cdot\left(\mathfrak{a}^{\prime \prime} \overline{\#} \chi\right)\right]\right\}} \\
& =\sum\left(\mathfrak{a} \# X^{1} \rightharpoonup \varphi\right)\left[\left(\mathfrak{a}^{\prime} \overline{\#} X^{2} \rightharpoonup \psi\right)\left(\mathfrak{a}^{\prime \prime} \# X^{3} \rightharpoonup \chi\right)\right] \\
& =\sum\left(\mathfrak{a} \overline{\#} X^{1} \rightharpoonup \varphi\right)\left[\mathfrak{a}^{\prime} \mathfrak{a}_{\langle 0\rangle}^{\prime \prime} \tilde{x}^{1} \overline{\#}\left(X^{2} \rightharpoonup \psi \leftharpoonup \mathfrak{a}_{\langle 1\rangle}^{\prime \prime} \tilde{x}^{2}\right)\left(X^{3} \rightharpoonup \chi \leftharpoonup \tilde{x}^{3}\right)\right] \\
& \text { (2.10) }=\sum \mathfrak{a d}_{\langle 0\rangle}^{\prime} \mathfrak{a}_{\langle 0,0\rangle}^{\prime \prime} \tilde{x}_{\langle 0\rangle}^{1} \tilde{y}^{1} \#\left(X^{1} \rightharpoonup \varphi \leftharpoonup \mathfrak{a}_{\langle 1\rangle}^{\prime} \mathfrak{a}_{\langle 0,1\rangle}^{\prime \prime} \tilde{x}_{\langle 1\rangle}^{1} \tilde{y}^{2}\right) \\
& {\left[\left(X^{2} \rightharpoonup \psi \leftharpoonup \mathfrak{a}_{\langle 1\rangle}^{\prime \prime} \tilde{x}^{2} \tilde{y}_{1}^{3}\right)\left(X^{3} \rightharpoonup \chi \leftharpoonup \tilde{x}^{3} \tilde{y}_{2}^{3}\right)\right]} \\
& { }_{(2.2)}^{(2.9)}=\sum \mathfrak{a} \mathfrak{a}_{\langle 0\rangle}^{\prime} \mathfrak{a}_{\langle 0,0\rangle}^{\prime \prime} \tilde{x}^{1} \tilde{y}^{1} \overline{\#}\left[\left(\varphi \leftharpoonup \mathfrak{a}_{\langle 1\rangle}^{\prime} \mathfrak{a}_{\langle 0,1\rangle}^{\prime \prime} \tilde{x}^{2} \tilde{y}_{1}^{2}\right)\left(\psi \leftharpoonup \mathfrak{a}_{\langle 1\rangle}^{\prime \prime} \tilde{x}^{3} \tilde{y}_{2}^{2}\right)\right]\left(\chi \leftharpoonup \tilde{y}^{3}\right) \\
& { }_{(2.10)}^{(2.1)}=\sum \mathfrak{a}^{\prime}{ }_{\langle 0\rangle} \tilde{x}^{1} \mathfrak{a}_{\langle 0\rangle}^{\prime \prime} \tilde{y}^{1} \overline{\#}\left\{\left[\left(\varphi \leftharpoonup \mathfrak{a}_{\langle 1\rangle}^{\prime} \tilde{x}^{2}\right)\left(\psi \leftharpoonup \tilde{x}^{3}\right)\right] \leftharpoonup \mathfrak{a}_{\langle 1\rangle}^{\prime \prime} \tilde{y}^{2}\right\}\left(\chi \leftharpoonup \tilde{y}^{3}\right) \\
& =\sum\left[\mathfrak{a} \mathfrak{a}_{\langle 0\rangle}^{\prime} \tilde{x}^{1} \overline{\#} x\left(\varphi \leftharpoonup \mathfrak{a}_{\langle 1\rangle}^{\prime} \tilde{x}^{2}\right)\left(\psi \leftharpoonup \tilde{x}^{3}\right)\right]\left(\mathfrak{a}^{\prime \prime} \overline{\#} \chi\right) \\
& =\left[(\mathfrak{a} \overline{\#} \varphi)\left(\mathfrak{a}^{\prime} \# \psi\right)\right]\left(\mathfrak{a}^{\prime \prime} \# \chi\right) \text {. }
\end{aligned}
$$

It is not hard to see that $1_{\mathfrak{A}} \overline{\#} \varepsilon$ is the unit of $\mathfrak{A} \# H^{*}$ and that $h \cdot\left(1_{\mathfrak{A}} \# \varepsilon\right)=\varepsilon(h) 1_{\mathfrak{A}} \# \varepsilon$ for all $h \in H$. Finally, for all $h \in H, \mathfrak{a}, \mathfrak{a}^{\prime} \in \mathfrak{A}$, and $\varphi, \psi \in H^{*}$, we calculate:

$$
\begin{aligned}
\sum & {\left[h_{1} \cdot(\mathfrak{a} \overline{\#} \varphi)\right]\left[h_{2} \cdot\left(\mathfrak{a}^{\prime} \# \psi\right)\right] } \\
& =\sum\left(\mathfrak{a} \overline{\#} h_{1} \rightharpoonup \varphi\right)\left(\mathfrak{a}^{\prime} \overline{\#} h_{2} \rightharpoonup \psi\right) \\
& =\sum \mathfrak{a}_{\langle 0\rangle}^{\prime} \tilde{x}^{1} \overline{\#}\left(h_{1} \rightharpoonup \varphi \leftharpoonup \mathfrak{a}_{\langle 1\rangle}^{\prime} \tilde{x}^{2}\right)\left(h_{2} \rightharpoonup \psi \leftharpoonup \tilde{x}^{3}\right) \\
(2.10) & =\sum \mathfrak{a} \mathfrak{a}_{\langle 0\rangle}^{\prime} \tilde{x}^{1} \# h \rightharpoonup\left[\left(\varphi \leftharpoonup \mathfrak{a}_{\langle 1\rangle}^{\prime} \tilde{x}^{2}\right)\left(\psi \leftharpoonup \tilde{x}^{3}\right)\right] \\
(2.12) & =h \cdot\left[(\mathfrak{a} \overline{\#} \varphi)\left(\mathfrak{a}^{\prime} \overline{\#} \psi\right)\right] . \quad
\end{aligned}
$$

(H, Δ, Φ) is a right H-comodule algebra, so it makes sense to consider the quasismash product $H \overline{\#} H^{*}$. In this case where H is a Hopf algebra, $H \overline{\#} H^{*}$ is called the Heisenberg double of H, and we will keep the same terminology for quasi-Hopf algebras. $\mathcal{H}(H)=H \overline{\#} H^{*}$ is not an associative algebra but it is an algebra in the monoidal
category ${ }_{H} \mathcal{M}$. If H is a finite-dimensional Hopf algebra then $\mathcal{H}(H)$ is isomorphic to the algebra $\operatorname{End}_{k}(H)$. In order to prove a similar result for a finite-dimensional quasi-Hopf algebra, we first have to deform the algebra structure of $\operatorname{End}_{k}(H)$.

Proposition 2.3. Let H be a finite-dimensional quasi-Hopf algebra. Define

$$
\mu: H \overline{\#} H^{*} \rightarrow \operatorname{End}_{k}(H), \quad \mu(h \overline{\#} \varphi)\left(h^{\prime}\right)=\sum \varphi\left(h_{2}^{\prime} p_{L}^{2}\right) h h_{1}^{\prime} p_{L}^{1}
$$

for all $h, h^{\prime} \in H$ and $\varphi \in H^{*}$, where $p_{L}=\sum p_{L}^{1} \otimes p_{L}^{2}$ is the element defined by (1.20). Then μ is a bijection, and therefore there exists a unique H-module algebra structure on $\operatorname{End}_{k}(H)$ such that μ becomes an H-module algebra isomorphism. The multiplication, the unit, and the H-module structure of $\operatorname{End}_{k}(H)$ are given by

$$
\begin{align*}
& (u \bar{\sigma} v)(h)=\sum u\left(v\left(h x^{3} X_{2}^{3}\right) S^{-1}\left(S\left(x^{1} X^{2}\right) \alpha x^{2} X_{1}^{3}\right)\right) S^{-1}\left(X^{1}\right), \tag{2.13}\\
& \mathbf{1}_{\operatorname{End}_{k}(H)}(h)=h S^{-1}(\beta), \quad(h \cdot u)\left(h^{\prime}\right)=\sum u\left(h^{\prime} h_{2}\right) S^{-1}\left(h_{1}\right) \tag{2.14}
\end{align*}
$$

for all $u, v \in \operatorname{End}_{k}(H)$ and $h, h^{\prime} \in H$.
Proof. Let $\left\{e_{i}\right\}_{i=\overline{1, n}}$ be a basis of H and $\left\{e^{i}\right\}_{i=\overline{1, n}}$ the corresponding dual basis of H^{*}. We claim that the inverse of μ is $\mu^{-1}: \operatorname{End}_{k}(H) \rightarrow H \overline{\#} H^{*}$ given by

$$
\mu^{-1}(u)=\sum u\left(q_{L}^{2}\left(e_{i}\right)_{2}\right) S^{-1}\left(q_{L}^{1}\left(e_{i}\right)_{1}\right) \overline{\#} e^{i} \quad \text { for all } u \in \operatorname{End}_{k}(H)
$$

where $q_{L}=\sum q_{L}^{1} \otimes q_{L}^{2}$ is the element defined by (1.20). Indeed, for any $h \in H$ and $\varphi \in H^{*}$ we have:

$$
\begin{aligned}
\left(\mu^{-1} \circ \mu\right)(h \overline{\#} \varphi) & =\sum_{i=1}^{n} \mu(h \overline{\#} \varphi)\left(q_{L}^{2}\left(e_{i}\right)_{2}\right) S^{-1}\left(q_{L}^{1}\left(e_{i}\right)_{1}\right) \overline{\#} e^{i} \\
& =\sum_{i=1}^{n} \varphi\left(\left(q_{L}^{2}\right)_{2}\left(e_{i}\right)_{(2,2)} p_{L}^{2}\right) h\left(q_{L}^{2}\right)_{1}\left(e_{i}\right)_{(2,1)} p_{L}^{1} S^{-1}\left(q_{L}^{1}\left(e_{i}\right)_{1}\right) \overline{\#} e^{i} \\
(1.22) & =\sum_{i=1}^{n} \varphi\left(\left(q_{L}^{2}\right)_{2} p_{L}^{2} e_{i}\right) h\left(q_{L}^{2}\right)_{1} p_{L}^{1} S^{-1}\left(q_{L}^{1}\right) \overline{\#} e^{i} \\
(1.24) & =\sum_{i=1}^{n} \varphi\left(e_{i}\right) h \overline{\#} e^{i}=h \overline{\#} \varphi
\end{aligned}
$$

and, in a similar way, for $u \in \operatorname{End}_{k}(H)$ and $h \in H$ we have that $\left(\mu \circ \mu^{-1}\right)(u)(h)=u(h)$. Using the bijection μ, we transport the H-module algebra structure from $H \overline{\#} H^{*}$ to $\operatorname{End}_{k}(H)$. First we compute the transported multiplication $\bar{\sigma}$: for all $u, v \in \operatorname{End}_{k}(H)$, we find

$$
\begin{aligned}
& u \bar{o} v=\sum \mu\left(\mu^{-1}(u) \mu^{-1}(v)\right) \\
&=\sum_{i, j=1}^{n} \mu\left(\left(u\left(q_{L}^{2}\left(e_{i}\right)_{2}\right) S^{-1}\left(q_{L}^{1}\left(e_{i}\right)_{1}\right) \overline{\#} e^{i}\right)\left(v\left(Q_{L}^{2}\left(e_{j}\right)_{2}\right) S^{-1}\left(Q_{L}^{1}\left(e_{j}\right)_{1}\right) \overline{\#} e^{j}\right)\right) \\
&(2.11)= \sum_{i, j=1}^{n} \mu\left(u\left(q_{L}^{2}\left(e_{i}\right)_{2}\right) S^{-1}\left(q_{L}^{1}\left(e_{i}\right)_{1}\right)\left[v\left(Q_{L}^{2}\left(e_{j}\right)_{2}\right) S^{-1}\left(Q_{L}^{1}\left(e_{j}\right)_{1}\right)\right]_{1} x^{1}\right. \\
&\left.\quad \#\left(e^{i} \leftharpoonup\left[v\left(Q_{L}^{2}\left(e_{j}\right)_{2}\right) S^{-1}\left(Q_{L}^{1}\left(e_{j}\right)_{1}\right)\right]_{2} x^{2}\right)\left(e^{j} \leftharpoonup x^{3}\right)\right)
\end{aligned}
$$

where $\sum Q_{L}^{1} \otimes Q_{L}^{2}$ is another copy of q_{L}. Note that (1.3) and (1.20) imply

$$
\begin{equation*}
\sum S\left(x^{1}\right) q_{L}^{1} x_{1}^{2} \otimes q_{L}^{2} x_{2}^{2} \otimes x^{3}=\sum q_{L}^{1} X^{1} \otimes\left(q_{L}^{2}\right)_{1} X^{2} \otimes\left(q_{L}^{2}\right)_{2} X^{3} \tag{2.15}
\end{equation*}
$$

Using the above arguments, a long but straightforward computation shows that

$$
(u \bar{\circ} v)(h)=\sum u\left(v\left(h x^{3} X_{2}^{3}\right) S^{-1}\left(S\left(x^{1} X^{2}\right) \alpha x^{2} X_{1}^{3}\right)\right) S^{-1}\left(X^{1}\right)
$$

for all $h \in H$. Thus, we have obtained (2.13). Similar computations show that the transported unit and the H-action on $\operatorname{End}_{k}(H)$ are given by (2.14).

Remarks 2.4. Let H be a finite-dimensional quasi-Hopf algebra, $\left\{e_{i}\right\}_{i=\overline{1, n}}$ a basis of H, and $\left\{e^{i}\right\}_{i=\overline{1, n}}$ the corresponding dual basis of H^{*}.
(1) The bijection μ defined in Proposition 2.3 induces an associative algebra structure on the k-vector space $H \otimes H^{*}$: it suffices to transport the composition on $\operatorname{End}_{k}(H)$ to $H \otimes H^{*}$.
(2) Let $\left(\mathfrak{A}, \rho, \Phi_{\rho}\right)$ be a right H-comodule algebra. As in the Hopf case, it is possible to associate different (quasi)smash products to \mathfrak{A}. Observe first that the map $v: \mathfrak{A} \overline{\#} H^{*} \rightarrow$ $\operatorname{Hom}_{k}(H, \mathfrak{A})$ given by $\nu(\mathfrak{a} \overline{\#} \varphi)(h)=\varphi(h) \mathfrak{a}$, for all $\mathfrak{a} \in \mathfrak{A}, \varphi \in H^{*}$, and $h \in H$, is a k-linear isomorphism. The inverse of v is given by the formula

$$
v^{-1}(w)=\sum_{i=1}^{n} w\left(e_{i}\right) \overline{\#} e^{i}
$$

for $w \in \operatorname{Hom}_{k}(H, \mathfrak{A})$. Secondly, by transporting the quasi-smash algebra structure from $\mathfrak{A} \overline{\#} H^{*}$ to $\operatorname{Hom}_{k}(H, \mathfrak{A})$ via the isomorphism v, we obtain that $\operatorname{Hom}_{k}(H, \mathfrak{A})$ is an H-module algebra. So, if H is an arbitrary quasi-Hopf algebra and ($\mathfrak{A}, \rho, \Phi_{\rho}$) is a right H-comodule algebra, then we can define the quasi-smash product $\overline{\#}(H, \mathfrak{A})$ as follows: $\overline{\#}(H, \mathfrak{A})$ is the k-vector space $\operatorname{Hom}_{k}(H, \mathfrak{A})$ with multiplication given by

$$
\begin{equation*}
(v * w)(h)=\sum v\left(w\left(\tilde{x}^{3} h_{2}\right)_{\langle 1\rangle} \tilde{x}^{2} h_{1}\right) w\left(\tilde{x}^{3} h_{2}\right)_{\langle 0\rangle} \tilde{x}^{1} \tag{2.16}
\end{equation*}
$$

for $v, w \in \overline{\#}(H, \mathfrak{A})$ and $h \in H$. The unit is $1_{\overline{\#}(H, \mathfrak{A})}(h)=\varepsilon(h) 1_{\mathfrak{A}}$ and the H-module structure is given by $(h \cdot v)\left(h^{\prime}\right)=v\left(h^{\prime} h\right), h, h^{\prime} \in H, v \in \operatorname{Hom}_{k}(H, \mathfrak{A})$. Of course, if H is finite-dimensional then $\mathfrak{A} \overline{\#} H^{*} \simeq \overline{\#}(H, \mathfrak{A})$ as H-module algebras.

3. Two-sided Hopf modules and relative Hopf modules

3.1. Two-sided Hopf modules

The fact that a quasi-bialgebra is not coassociative entails that it makes no sense to consider comodules over quasi-bialgebras. Nevertheless, we can associate monoidal categories to quasi-bialgebras, in which we can consider coalgebras, and comodules over these coalgebras. This point of view has been used in $[6,18,24]$ in order to define relative Hopf modules, quasi-Hopf bimodules, and two-sided two-cosided Hopf modules. In the sequel, we will study all these categories in a more general context. The categorical background will be presented in Section 3.3.

Definition 3.1. Let H be a quasi-bialgebra and $\left(\mathfrak{A}, \rho, \Phi_{\rho}\right)$ a right H-comodule algebra. A two-sided (H, \mathfrak{A})-Hopf module is an (H, \mathfrak{A})-bimodule M together with a k-linear map

$$
\rho_{M}: M \rightarrow M \otimes H, \quad \rho_{M}(m)=\sum m_{(0)} \otimes m_{(1)}
$$

satisfying the following relations, for all $m \in M, h \in H$, and $\mathfrak{a} \in \mathfrak{A}$ (the actions of $h \in H$ and $\mathfrak{a} \in \mathfrak{A}$ on $m \in M$ are denoted by $h \succ m$ and $m \prec \mathfrak{a}$):

$$
\begin{gather*}
\left(\mathrm{id}_{M} \otimes \varepsilon\right) \circ \rho_{M}=\mathrm{id}_{M}, \tag{3.1}\\
\Phi \cdot\left(\rho_{M} \otimes \operatorname{id}_{H}\right)\left(\rho_{M}(m)\right)=\left(\operatorname{id}_{M} \otimes \Delta\right)\left(\rho_{M}(m)\right) \cdot \Phi_{\rho}, \tag{3.2}\\
\rho_{M}(h \succ m)=\sum h_{1} \succ m_{(0)} \otimes h_{2} m_{(1)}, \tag{3.3}\\
\rho_{M}(m \prec \mathfrak{a})=\sum m_{(0)} \prec \mathfrak{a}_{\langle 0\rangle} \otimes m_{(1)} \mathfrak{a}_{\langle 1\rangle} . \tag{3.4}
\end{gather*}
$$

The category of two-sided (H, \mathfrak{A})-Hopf modules and left H-linear, right \mathfrak{A}-linear, and right H-colinear maps is denoted by ${ }_{H} \mathcal{M}_{\mathfrak{A}}^{H}$.

Observe that the category of two-sided (H, H)-Hopf bimodules is nothing else then the category of right quasi-Hopf H-bimodules introduced in [18].

We will use the following notation, similar to the notation for the comultiplication on a quasi-bialgebra:

$$
\begin{aligned}
\left(\rho_{M} \otimes \operatorname{id}_{H}\right)\left(\rho_{M}(m)\right) & =\sum m_{(0,0)} \otimes m_{(0,1)} \otimes m_{(1)} \\
\left(\operatorname{id}_{M} \otimes \Delta_{H}\right)\left(\rho_{M}(m)\right) & =\sum m_{(0)} \otimes m_{(1)_{1}} \otimes m_{(1)_{2}}
\end{aligned}
$$

Examples 3.2. Let H be a quasi-Hopf algebra and $\left(\mathfrak{A}, \rho, \Phi_{\rho}\right)$ a right H-comodule algebra. (1) $\mathcal{V}=\mathfrak{A} \otimes H \in{ }_{H} \mathcal{M}_{\mathfrak{A}}^{H}$. The structure maps are as follows:

$$
\begin{gathered}
h \succ\left(\mathfrak{a} \otimes h^{\prime}\right)=\mathfrak{a} \otimes h h^{\prime}, \quad(\mathfrak{a} \otimes h) \prec \mathfrak{a}^{\prime}=\sum \mathfrak{a} \mathfrak{a}_{\langle 0\rangle}^{\prime} \otimes h \mathfrak{a}_{\langle 1\rangle}^{\prime}, \quad \text { and } \\
\rho_{\mathcal{V}}(\mathfrak{a} \otimes h)=\sum \mathfrak{a} \widetilde{X}^{1} \otimes h_{1} \widetilde{X}^{2} \otimes h_{2} \widetilde{X}^{3}
\end{gathered}
$$

for all $h, h^{\prime} \in H$ and $\mathfrak{a}, \mathfrak{a}^{\prime} \in \mathfrak{A}$. Verification of the details is left to the reader.
(2) $\mathcal{U}=H \otimes \mathfrak{A} \in{ }_{H} \mathcal{M}_{\mathfrak{A}}^{H}$. Now the structure maps are given by the following formulas, for all $h, h^{\prime} \in H$ and $\mathfrak{a}, \mathfrak{a}^{\prime} \in \mathfrak{A}$:

$$
\begin{gather*}
h \succ\left(h^{\prime} \otimes \mathfrak{a}\right)=h h^{\prime} \otimes \mathfrak{a}, \quad(h \otimes \mathfrak{a}) \prec \mathfrak{a}^{\prime}=h \otimes \mathfrak{a} \mathfrak{a}^{\prime}, \quad \text { and } \\
\rho_{\mathcal{U}}(h \otimes \mathfrak{a})=\sum h_{1} S^{-1}\left(q_{L}^{2} \widetilde{X}_{2}^{3} g^{2}\right) \otimes \widetilde{X}^{1} \mathfrak{a}_{\langle 0\rangle} \otimes h_{2} S^{-1}\left(q_{L}^{1} \widetilde{X}_{1}^{3} g^{1}\right) \widetilde{X}^{2} \mathfrak{a}_{\langle 1\rangle} . \tag{3.5}
\end{gather*}
$$

Here $q_{L}=\sum q_{L}^{1} \otimes q_{L}^{2}$ and $f^{-1}=\sum g^{1} \otimes g^{2}$ are the elements defined by the formulas (1.20) and (1.16).

To this end, consider $\theta: \mathcal{V} \rightarrow \mathcal{U}$ given by

$$
\theta(\mathfrak{a} \otimes h)=\sum h S^{-1}\left(\mathfrak{a}_{\langle 1\rangle} \tilde{p}_{\rho}^{2}\right) \otimes \mathfrak{a}_{\langle 0\rangle} \tilde{p}_{\rho}^{1}
$$

for all $h \in H$ and $\mathfrak{a} \in \mathfrak{A}$, where we use the notation

$$
\begin{equation*}
\tilde{p}_{\rho}=\sum \tilde{p}_{\rho}^{1} \otimes \tilde{p}_{\rho}^{2}=\sum \tilde{x}^{1} \otimes \tilde{x}^{2} \beta S\left(\tilde{x}^{3}\right) \in \mathfrak{A} \otimes H \tag{3.6}
\end{equation*}
$$

We claim that θ is bijective; its inverse $\theta^{-1}: \mathcal{U} \rightarrow \mathcal{V}$ is defined as follows:

$$
\theta^{-1}(h \otimes \mathfrak{a})=\sum \tilde{q}_{\rho}^{1} \mathfrak{a}_{\langle 0\rangle} \otimes h \tilde{q}_{\rho}^{2} \mathfrak{a}_{\langle 1\rangle}
$$

with the notation

$$
\begin{equation*}
\tilde{q}_{\rho}=\sum \tilde{q}_{\rho}^{1} \otimes \tilde{q}_{\rho}^{2}=\sum \tilde{X}^{1} \otimes S^{-1}\left(\alpha \tilde{X}^{3}\right) \tilde{X}^{2} \in \mathfrak{A} \otimes H \tag{3.7}
\end{equation*}
$$

Furthermore, θ is a morphism of two-sided (H, \mathfrak{A})-Hopf bimodules, and we conclude that $\mathcal{U}=H \otimes \mathfrak{A}$ and $\mathfrak{A} \otimes H=\mathcal{V}$ are isomorphic in ${ }_{H} \mathcal{M}_{\mathfrak{A}}^{H}$.

To prove this, we proceed as follows. First, by [16], we have the following relations, for all $\mathfrak{a} \in \mathfrak{A}$:

$$
\begin{gather*}
\sum \rho\left(\mathfrak{a}_{\langle 0\rangle}\right) \tilde{p}_{\rho}\left[1_{\mathfrak{A}} \otimes S\left(\mathfrak{a}_{\langle 1\rangle}\right)\right]=\tilde{p}_{\rho}\left[\mathfrak{a} \otimes 1_{H}\right], \tag{3.8}\\
\sum\left[1_{\mathfrak{A}} \otimes S^{-1}\left(\mathfrak{a}_{\langle 1\rangle}\right)\right] \tilde{q}_{\rho} \rho\left(\mathfrak{a}_{(0\rangle}\right)=\left[\mathfrak{a} \otimes 1_{H}\right] \tilde{q}_{\rho}, \tag{3.9}\\
\sum \rho\left(\tilde{q}_{\rho}^{1}\right) \tilde{p}_{\rho}\left[1_{\mathfrak{A}} \otimes S\left(\tilde{q}_{\rho}^{2}\right)\right]=1_{\mathfrak{A}} \otimes 1_{H}, \tag{3.10}\\
\sum\left[1_{\mathfrak{A}} \otimes S^{-1}\left(\tilde{p}_{\rho}^{2}\right)\right] \tilde{q}_{\rho} \rho\left(\tilde{p}_{\rho}^{1}\right)=1_{\mathfrak{A}} \otimes 1_{H}, \tag{3.11}\\
\Phi_{\rho}\left(\rho \otimes \operatorname{id}_{H}\right)\left(\tilde{p}_{\rho}\right) \tilde{p}_{\rho}=\sum(\operatorname{id} \otimes \Delta)\left(\rho\left(\tilde{x}^{1}\right) \tilde{p}_{\rho}\right)\left(1_{\mathfrak{A}} \otimes g^{1} S\left(\tilde{x}^{3}\right) \otimes g^{2} S\left(\tilde{x}^{2}\right)\right), \tag{3.12}\\
\left(\tilde{q}_{\rho} \otimes 1_{H}\right)\left(\rho \otimes \operatorname{id}_{H}\right)\left(\tilde{q}_{\rho}\right) \Phi_{\rho}^{-1} \\
=\sum\left[1_{\mathfrak{A}} \otimes S^{-1}\left(f^{2} \widetilde{X}^{3}\right) \otimes S^{-1}\left(f^{1} \widetilde{X}^{2}\right)\right]\left(\mathrm{id}_{\mathfrak{A}} \otimes \Delta\right)\left(\tilde{q}_{\rho} \rho\left(\widetilde{X}^{1}\right)\right) \tag{3.13}
\end{gather*}
$$

Here $f=\sum f^{1} \otimes f^{2}$ is the element defined in (1.15) and $f^{-1}=\sum g^{1} \otimes g^{2}$. Using (3.8)(3.11), we can show easily that θ and θ^{-1} are inverses, and that \mathcal{U} is an (H, \mathfrak{A})-bimodule via the actions \succ and \prec. One can finally compute the right H-coaction on \mathcal{U} transported from the coaction on \mathcal{V} using θ, and then see that it coincides with (3.5). For, observe that (3.6)-(2.2) and (2.4) imply

$$
\begin{equation*}
\sum \widetilde{X}_{\langle 1\rangle}^{1} \tilde{p}_{\rho}^{2} S\left(\tilde{X}^{2}\right) \otimes \widetilde{X}_{\langle 0\rangle}^{1} \tilde{p}_{\rho}^{1} \otimes \widetilde{X}^{3}=\sum \tilde{x}^{2} S\left(\tilde{x}_{1}^{3} p_{L}^{1}\right) \otimes \tilde{x}^{1} \otimes \tilde{x}_{2}^{3} p_{L}^{2} \tag{3.14}
\end{equation*}
$$

where $p_{L}=\sum p_{L}^{1} \otimes p_{L}^{2}$ is the element defined in (1.20). We also mention that the computation uses the formula (3.13); the details are left to the reader.

3.2. Two-sided Hopf modules and relative Hopf modules

Our aim is to prove a duality theorem for two-sided Hopf modules: if H is a finitedimensional quasi-Hopf algebra, then the category ${ }_{H} \mathcal{M}_{\mathfrak{A}}^{H}$ is isomorphic to a category of relative Hopf modules as introduced in [6]. Recall that a right (H^{*}, A)-Hopf module M is a k-vector space M which is also a right H^{*}-comodule and a right A-module in the monoidal category of right H^{*}-comodules $\mathcal{M}^{H^{*}}$. In terms of H this means:

- M is a left H-module; denote the action of $h \in H$ on $m \in M$ by $h \bullet m$;
- A acts on M from the right; denote the action of $a \in A$ on $m \in M$ by $m \bullet a$;
- for all $m \in M, h \in H$, and $a, a^{\prime} \in A$, we have

$$
\begin{align*}
m \bullet 1_{A} & =m, \\
(m \bullet a) \bullet a^{\prime} & =\sum\left(X^{1} \bullet m\right) \bullet\left[\left(X^{2} \cdot a\right)\left(X^{3} \cdot a^{\prime}\right)\right], \tag{3.15}\\
h \bullet(m \bullet a) & =\sum\left(h_{1} \bullet m\right) \bullet\left(h_{2} \cdot a\right) . \tag{3.16}
\end{align*}
$$

$\mathcal{M}_{A}^{H^{*}}$ will be the category of right $\left(H^{*}, A\right)$-Hopf modules and A-linear H^{*}-colinear maps. Before we can establish the claimed isomorphism of categories, we need some lemmas.

Lemma 3.3. Let H be a finite-dimensional quasi-Hopf algebra and $\left(\mathfrak{A}, \rho, \Phi_{\rho}\right)$ a right H-comodule algebra. We have a functor

$$
F:{ }_{H} \mathcal{M}_{\mathfrak{A}}^{H} \rightarrow \mathcal{M}_{\mathfrak{A} \# H^{*}}^{H^{*}}
$$

For $M \in{ }_{H} \mathcal{M}_{\mathfrak{A}}^{H}, F(M)=M$, with structure maps

- M is a left H-module via $h \bullet m=S^{2}(h) \succ m, m \in M, h \in H$;
$-\mathfrak{A} \overline{\#} H^{*}$ acts on M from the right by

$$
\begin{align*}
m \bullet(\mathfrak{a} \overline{\#} \varphi) & =\sum\left\langle\varphi, S^{-1}\left(S\left(U^{1}\right) f^{2} m_{(1)} \mathfrak{a}_{(1\rangle} \tilde{p}_{\rho}^{2}\right)\right\rangle S\left(U^{2}\right) f^{1} \succ m_{(0)} \prec \mathfrak{a}_{\langle 0\rangle} \tilde{p}_{\rho}^{1}, \tag{3.17}\\
\text { where } & U=\sum U^{1} \otimes U^{2}=\sum g^{1} S\left(q_{R}^{2}\right) \otimes g^{2} S\left(q_{R}^{1}\right) . \tag{3.18}
\end{align*}
$$

Proof. The most difficult part of the proof is to show that $F(M)$ satisfies the relations (3.15) and (3.16). It is then straightforward to show that a map in $H_{H} \mathcal{M}_{\mathfrak{A}}^{H}$ is also a map in $\mathcal{M}_{\mathfrak{A} \not \mathbb{A}^{*}}^{H^{*}}$ and that F is a functor.

By [18, Lemma 3.13] we have, for all $h \in H$:

$$
\begin{align*}
U[1 \otimes S(h)] & =\sum \Delta\left(S\left(h_{1}\right)\right) U\left(h_{2} \otimes 1\right) \tag{3.19}\\
\Phi^{-1}(\mathrm{id} \otimes \Delta)(U)(1 \otimes U) & =\sum(\Delta \otimes \mathrm{id})\left(\Delta\left(S\left(X^{1}\right)\right) U\right)\left(X^{2} \otimes X^{3} \otimes 1\right) \tag{3.20}
\end{align*}
$$

Write $f=\sum f^{1} \otimes f^{2}=\sum F^{1} \otimes F^{2}, f^{-1}=\sum g^{1} \otimes g^{2}, \tilde{p}_{\rho}=\sum \tilde{p}_{\rho}^{1} \otimes \tilde{p}_{\rho}^{2}=\sum \tilde{P}_{\rho}^{1} \otimes \tilde{P}_{\rho}^{1}$, and $U=\sum U^{1} \otimes U^{2}=\sum \mathbf{U}^{1} \otimes \mathbf{U}^{2}$. For all $m \in M, \mathfrak{a}, \mathfrak{a}^{\prime} \in \mathfrak{A}$, and $\varphi, \psi \in H^{*}$, we compute that

$$
\begin{aligned}
& \left(X^{1} \bullet m\right) \bullet\left\{\left[X^{2} \cdot(\mathfrak{a} \overline{\#} \varphi)\right]\left[X^{3} \cdot\left(\mathfrak{a}^{\prime} \overline{\#} \psi\right)\right]\right\} \\
& =\sum\left\{\left(X^{2}-\varphi \leftharpoonup \mathfrak{a}_{(1)}^{\prime} \tilde{x}^{2}\right)\left(X^{3} \rightharpoonup \psi \leftharpoonup \tilde{x}^{3}\right),\right. \\
& \left.S^{-1}\left(S\left(U^{1}\right) f^{2} S^{2}\left(X^{1}\right)_{2} m_{(1)}\left(\mathfrak{a a}_{\langle 0\rangle}^{\prime} \tilde{x}^{1}\right)_{\langle 1\rangle} \tilde{p}_{\rho}^{2}\right)\right\rangle \\
& S\left(U^{2}\right) f^{1} S^{2}\left(X^{1}\right)_{1} \succ m_{(0)} \prec\left(\mathfrak{a a}_{\{0}^{\prime} \tilde{x}^{1}\right)_{\langle 0\rangle} \tilde{p}_{\rho}^{1}
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle\psi, S^{-1}\left(F^{1} S\left(U^{1}\right)_{1} S\left(S\left(X^{1}\right)_{1}\right)_{1} f_{1}^{2} m_{(1)_{1}} \mathfrak{a}_{(1)_{1},} \mathfrak{a}_{\langle 0,1\rangle_{1}}^{\prime} \tilde{x}_{(1\rangle_{1}}^{1}\left(\tilde{p}_{\rho}^{2}\right)_{1} g^{1} S\left(\tilde{x}^{3}\right)\right) X^{3}\right\rangle \\
& S\left(S\left(X^{1}\right)_{2} U^{2}\right) f^{1} \succ m_{(0)}<\mathfrak{a}_{(0)} \mathfrak{a}_{\langle 0,0\rangle}^{\prime} \tilde{x}_{(0)}^{1} \tilde{p}_{\rho}^{1} \\
& \underset{\substack{(1.11) \\
(2.13)}}{(2.1)}=\sum\left\langle\varphi, S^{-1}\left(S\left(S\left(X^{1}\right)_{(1,1)} U_{1}^{1} X^{2}\right) F^{2} f_{2}^{2} m_{(1)_{2}} \mathfrak{a}_{(1)_{2}} \widetilde{X}^{3} \mathfrak{a}_{\{0,1\rangle}^{\prime} \tilde{p}_{\rho}^{2} S\left(\mathfrak{a}_{\langle 1\rangle}^{\prime}\right)\right)\right\rangle \\
& \left\langle\psi, S^{-1}\left(S\left(S\left(X^{1}\right)_{(1,2)} U_{2}^{1} X^{3}\right) F^{1} f_{1}^{2} m_{(1) 1} \mathfrak{a}_{\langle 1)_{1}} \widetilde{X}^{2}\left(\mathfrak{a}_{(0,0\rangle}^{\prime} \tilde{p}_{\rho}^{1}\right)_{\langle 1\rangle} \tilde{P}_{\rho}^{2}\right)\right\rangle \\
& S\left(S\left(X^{1}\right)_{2} U^{2}\right) f^{1} \succ m_{(0)}<\mathfrak{a}_{\{0\rangle} \widetilde{X}^{1}\left(\mathfrak{a}_{\{0,0\rangle}^{\prime} \tilde{p}_{\rho}^{1}\right)_{\langle 0\rangle} \tilde{P}_{\rho}^{1} \\
& { }_{(3.8)}^{(3.20)}=\sum\left\langle\varphi, S^{-1}\left(S\left(x^{1} U^{1}\right) F^{2} f_{2}^{2} m_{(1)_{2}} \mathfrak{a}_{(1)_{2}} \widetilde{X}^{3} \tilde{p}_{\rho}^{2}\right)\right\rangle \\
& \left\langle\psi, S^{-1}\left(S\left(x^{2} U_{1}^{2} \mathbf{U}^{1}\right) F^{1} f_{1}^{2} m_{(1) 1} \mathfrak{a}_{(1)_{1}} \widetilde{X}^{2}\left(\tilde{p}_{\rho}^{1} \mathfrak{a}^{\prime}\right)_{\langle 1\rangle} \tilde{P}_{\rho}^{2}\right)\right\rangle \\
& S\left(x^{3} U_{2}^{2} \mathbf{U}^{2}\right) f^{1} \succ m_{(0)}<\mathfrak{a}_{(0)} \tilde{X}^{1}\left(\tilde{p}_{\rho}^{1} \mathfrak{a}^{\prime}\right)_{\langle 0\rangle} \tilde{P}_{\rho}^{2} \\
& \underset{(2.1)}{\substack{1.1 .18)}}=\sum\left\langle\varphi, S^{-1}\left(S\left(U^{1}\right) F^{2} m_{(1)} \mathfrak{a}_{(1\rangle} \tilde{p}_{\rho}^{2}\right)\right\rangle \\
& \left\langle\psi, S^{-1}\left(S\left(U_{1}^{2} \mathbf{U}^{1}\right) f^{2} F_{2}^{1} m_{(0,1)} \mathfrak{a}_{(0,1\rangle}\left(\tilde{p}_{\rho}^{1} \mathfrak{a}^{\prime}\right)_{\langle 1\rangle} \tilde{P}_{\rho}^{2}\right)\right\rangle \\
& S\left(U_{2}^{2} \mathbf{U}^{2}\right) f^{1} F_{1}^{1} \succ m_{(0,0)} \prec \mathfrak{a}_{\langle 0,0\rangle}\left(\tilde{p}_{\rho}^{1} \mathfrak{a}^{\prime}\right)_{\langle 0\rangle} \tilde{P}_{\rho}^{1} \\
& { }_{(3.17)}^{(1.11)}=\sum\left\langle\varphi, S^{-1}\left(S\left(U^{1}\right) F^{2} m_{(1)} \mathfrak{a}_{(1)} \tilde{p}_{\rho}^{2}\right)\right\rangle\left(S\left(U^{2}\right) F^{1} \succ m_{(0)} \prec \mathfrak{a}_{(0\rangle} \tilde{p}_{\rho}^{1}\right) \bullet\left(\mathfrak{a}^{\prime} \overline{\#} \psi\right) \\
& (3.17)=[m \bullet(\mathfrak{a} \# \varphi)] \bullet\left(\mathfrak{a}^{\prime} \# \psi\right) \text {. }
\end{aligned}
$$

Similar computations show that

$$
\sum\left(h_{1} \bullet m\right) \bullet\left(h_{2} \cdot(\mathfrak{a} \overline{\#} \varphi)\right)=h \bullet[m \bullet(\mathfrak{a} \overline{\#} \varphi)],
$$

for all $h \in H, \mathfrak{a} \in \mathfrak{A}$, and $\varphi \in H^{*}$, so the proof is complete.
Let us next discuss the construction in the converse direction.

Lemma 3.4. Let H be a finite-dimensional quasi-Hopf algebra, ($\mathfrak{A}, \rho, \Phi_{\rho}$) a right H-comodule algebra, and M a right $\left(H^{*}, \mathfrak{A} \overline{\#} H^{*}\right)$-Hopf module. Then we have a functor

$$
G: \mathcal{M}_{\mathfrak{A} \ddot{\#} H^{*}}^{H^{*}} \rightarrow{ }_{H} \mathcal{M}_{\mathfrak{A}}^{H}
$$

For $M \in \mathcal{M}_{\mathfrak{A} \# H^{*}}^{H^{*}}, G(M)=M$, with structure maps $(h \in H, m \in M, \mathfrak{a} \in \mathfrak{A})$:
$-h \succ m=S^{-2}(h) \bullet m ;$
$-m \prec \mathfrak{a}=m \bullet(\mathfrak{a} \overline{\#} \varepsilon)$;

- $\rho_{M}: M \rightarrow M \otimes H$ given by

$$
\begin{align*}
\rho_{M}(m) & =\sum m_{\{0\}} \otimes m_{\{1\}} \\
& =\sum_{i=1}^{n}\left[S^{-1}\left(V^{2} g^{2}\right) \bullet m\right] \bullet\left(\tilde{q}_{\rho}^{1} \overline{\#} S^{-1}\left(V^{1} g^{1}\right) \rightharpoonup e^{i} S \leftharpoonup \tilde{q}_{\rho}^{2}\right) \otimes e_{i}, \tag{3.21}
\end{align*}
$$

where $\left\{e_{i}\right\}_{i=\overline{1, n}}$ and $\left\{e^{i}\right\}_{i=\overline{1, n}}$ are dual bases and

$$
\begin{equation*}
V=\sum V^{1} \otimes V^{2}=\sum S^{-1}\left(f^{2} p_{R}^{2}\right) \otimes S^{-1}\left(f^{1} p_{R}^{1}\right) \tag{3.22}
\end{equation*}
$$

Proof. As in the previous part, the main thing to show is that $G(M)$ is an object of ${ }_{H} \mathcal{M}_{\mathfrak{A}}^{H}$. It is then straightforward to show that G behaves well on the level of the morphisms (G is the identity on the morphisms).

From the fact that S^{-2} is an algebra map, it follows that M is a left H-module via the action $h \succ m=S^{-2}(h) \bullet m$. Take the map

$$
i: \mathfrak{A} \rightarrow \mathfrak{A} \# H^{*}, \quad i(\mathfrak{a})=\mathfrak{a} \overline{\#} \varepsilon
$$

for all $\mathfrak{a} \in \mathfrak{A}$. Then i is injective map, $i\left(1_{\mathfrak{A}}\right)=1_{\mathfrak{A} \# H^{*}}$, and $i\left(\mathfrak{a} \mathfrak{a}^{\prime}\right)=i(\mathfrak{a}) i\left(\mathfrak{a}^{\prime}\right)$, for all $\mathfrak{a}, \mathfrak{a}^{\prime} \in \mathfrak{A}$. Therefore, M becomes a right \mathfrak{A}-module by setting $m \prec \mathfrak{a}=m \bullet i(\mathfrak{a})=$ $m \bullet(\mathfrak{a} \overline{\#} \varepsilon), m \in M, \mathfrak{a} \in \mathfrak{A}$. Moreover, it is not hard to see that, with this structure, M is an (H, \mathfrak{A})-bimodule. In order to check the relations (3.1)-(3.3), we need some formulas due to Hausser and Nill [16, Lemma 3.13], namely:

$$
\begin{gather*}
{\left[1 \otimes S^{-1}(h)\right] V=\sum\left(h_{2} \otimes 1\right) V \Delta\left(S^{-1}\left(h_{1}\right)\right)} \tag{3.23}\\
(\Delta \otimes \mathrm{id})(V) \Phi^{-1}=\sum\left(X^{2} \otimes X^{3} \otimes 1\right)(1 \otimes V)(\mathrm{id} \otimes \Delta)\left(V \Delta\left(S^{-1}\left(X^{1}\right)\right)\right) \tag{3.24}
\end{gather*}
$$

Also, it is clear that

$$
\begin{equation*}
(\varphi \leftharpoonup h) S=S^{-1}(h) \rightharpoonup \varphi S, \quad(h \rightharpoonup \varphi) S=\varphi S \leftharpoonup S^{-1}(h) \tag{3.25}
\end{equation*}
$$

for all $h \in H$ and $\varphi \in H^{*}$. Using (1.11), it follows that

$$
\begin{equation*}
(\varphi S)(\psi S)=\sum\left[\left(g^{1} \rightharpoonup \psi \leftharpoonup f^{1}\right)\left(g^{2} \rightharpoonup \varphi \leftharpoonup f^{2}\right)\right] S \tag{3.26}
\end{equation*}
$$

for all $\varphi, \psi \in H^{*}$. Now, for any $h \in H$ and $m \in M$, we compute that

$$
\begin{aligned}
& \sum h_{1} \succ m_{\{0\}} \otimes h_{2} m_{\{1\}} \\
&= \sum_{i=1}^{n} S^{-2}\left(h_{1}\right) \bullet\left[\left(S^{-1}\left(V^{2} g^{2}\right) \bullet m\right) \bullet\left(\tilde{q}_{\rho}^{1} \overline{\#} S^{-1}\left(V^{1} g^{1}\right) \rightharpoonup e^{i} S \leftharpoonup \tilde{q}_{\rho}^{2}\right)\right] \otimes h_{2} e_{i} \\
&(3.16)= \sum_{i=1}^{n}\left[S^{-2}\left(h_{1}\right)_{1} S^{-1}\left(V^{2} g^{2}\right) \bullet m\right] \\
& \bullet\left(\tilde{q}_{\rho}^{1} \# S^{-2}\left(h_{1}\right)_{2} S^{-1}\left(V^{1} g^{1}\right) \rightharpoonup\left(e^{i} \leftharpoonup h_{2}\right) S \leftharpoonup \tilde{q}_{\rho}^{2}\right) \otimes e_{i} \\
& \begin{array}{cl}
(1.11) & = \\
(3.25) & \sum_{i=1}^{n}\left[S^{-1}\left(V^{2} S^{-1}\left(h_{1}\right)_{2} g^{2}\right) \bullet m\right] \\
(3.23)= & \sum_{i=1}^{n}\left[S_{\rho}^{1} \overline{\#} S^{-1}\left(h_{2} V^{1} S^{-1}\left(h_{1}\right)_{1} g^{1}\right) S^{-2}(h) \bullet m\right] \bullet\left(\tilde{q}_{\rho}^{1} \overline{\#} S \leftharpoonup S^{-1}\left(V^{1} g^{1}\right) \rightharpoonup e^{i} S \leftharpoonup \tilde{q}_{\rho}^{2}\right) \otimes e_{i} \\
& =\rho_{M}\left(S^{-2}(h) \bullet m\right)=\rho_{M}(h \succ m),
\end{array}
\end{aligned}
$$

and similarly, for any $m \in M$ and $\mathfrak{a} \in \mathfrak{A}$ one can show that

$$
\sum m_{\{0\}} \prec \mathfrak{a}_{\langle 0\rangle} \otimes m_{\{1\}} \mathfrak{a}_{\langle 1\rangle}=\rho_{M}(m \prec \mathfrak{a})
$$

so the relations (3.3) hold. (3.1) is obviously satisfied, thus remain to check (3.2) for our structures. This fact is left to the reader since it is a similar computation as above.

We are now able to prove the main result of this section, generalizing [11, Proposition 2.3].

Theorem 3.5. Let H be a finite-dimensional quasi-Hopf algebra and $\left(\mathfrak{A}, \rho, \Phi_{\rho}\right)$ a right H-comodule algebra. Then the category of two-sided (H, \mathfrak{A})-Hopf modules ${ }_{H} \mathcal{M}_{\mathfrak{A}}^{H}$ is isomorphic to the category of right $\left(H^{*}, \mathfrak{A} \overline{\#} H^{*}\right)$-Hopf modules $\mathcal{M}_{\mathfrak{A} \| H^{*}}^{H^{*}}$.

Proof. It suffices to show that the functors F and G from Lemmas 3.3 and 3.4 are inverses.
First, let $M \in{ }_{H} \mathcal{M}_{\mathfrak{A}}^{H}$. The structures on $G(F(M)$) (using first Lemma 3.3 and then Lemma 3.4) are denoted by $\succ^{\prime}, \prec^{\prime}$, and ρ_{M}^{\prime}. For any $m \in M, h \in H$, and $\mathfrak{a} \in \mathfrak{A}$, we have that

$$
\begin{gathered}
h \succ^{\prime} m=S^{-2}(h) \bullet m=S^{2}\left(S^{-2}(h)\right) \succ m=h \succ m, \\
m \prec^{\prime} \mathfrak{a}=m \bullet(\mathfrak{a} \overline{\#} \varepsilon)=m \prec \mathfrak{a}
\end{gathered}
$$

because $\sum \varepsilon\left(U^{1}\right) U^{2}=\sum \varepsilon\left(f^{2}\right) f^{1}=1$ and $\sum \varepsilon\left(m_{(1)}\right) m_{(0)}=m, \sum \varepsilon\left(\mathfrak{a}_{\langle 1\rangle}\right) \mathfrak{a}_{\langle 0\rangle}=\mathfrak{a}$. In order to prove that $\rho_{M}^{\prime}=\rho_{M}$, observe first that

$$
\begin{equation*}
\sum g^{1} S\left(g^{2} \alpha\right)=\beta \tag{3.27}
\end{equation*}
$$

where we write $f^{-1}=\sum g^{1} \otimes g^{2}$. The proof of (3.27) can be found in [6, Lemma 2.6(i)] (in the equivalent form $\sum g^{2} \alpha S^{-1}\left(g^{1}\right)=S^{-1}(\beta)$). (3.27) together with (3.18), (1.9), and (1.18) implies

$$
\begin{equation*}
\sum g_{2}^{2} U^{2} \otimes g^{1} S\left(g_{1}^{2} U^{1}\right)=\sum p_{L}^{2} \otimes S\left(p_{L}^{1}\right) \tag{3.28}
\end{equation*}
$$

where $p_{L}=\sum p_{L}^{1} \otimes p_{L}^{2}$ is the element defined by (1.20). Secondly, by $\sum S^{-1}\left(f^{2}\right) \beta f^{1}=$ $S^{-1}(\alpha)$, (1.9), and (1.18), we have that

$$
\begin{equation*}
\sum S\left(p_{L}^{2}\right) f^{1} F_{1}^{1} \otimes S^{-1}\left(F^{2}\right) S\left(p_{L}^{1}\right) f^{2} F_{2}^{1}=q_{R} \tag{3.29}
\end{equation*}
$$

where $\sum F^{1} \otimes F^{2}$ is another copy of f, and q_{R} is the element defined by (1.19). Finally, from (3.28), (3.29), and (1.23), it follows that

$$
\begin{equation*}
\sum S\left(g_{2}^{2} U^{2}\right) f^{1} F_{1}^{1}\left(p_{R}^{1}\right)_{1} \otimes S^{-1}\left(F^{2} p_{R}^{2}\right) g^{1} S\left(g_{1}^{2} U^{1}\right) f^{2} F_{2}^{1}\left(p_{R}^{1}\right)_{2}=1 \otimes 1 \tag{3.30}
\end{equation*}
$$

We now compute for $m \in M$ that

$$
\begin{aligned}
\rho_{M}^{\prime}(m) & =\sum_{i=1}^{n}\left[S^{-1}\left(V^{2} g^{2}\right) \bullet m\right] \bullet\left(\tilde{q}_{\rho}^{1} \# S^{-1}\left(V^{1} g^{1}\right) \rightharpoonup e^{i} S \leftharpoonup \tilde{q}_{\rho}^{2}\right) \otimes e_{i} \\
& =\sum_{i=1}^{n}\left[S\left(V^{2} g^{2}\right) \succ m\right] \bullet\left(\tilde{q}_{\rho}^{1} \# S^{-1}\left(V^{1} g^{1}\right) \rightharpoonup e^{i} S \leftharpoonup \tilde{q}_{\rho}^{2}\right) \otimes e_{i} \\
(3.17)= & \sum_{i=1}^{n}\left\langle S^{-1}\left(V^{1} g^{1}\right) \rightharpoonup e^{i} S \leftharpoonup \tilde{q}_{\rho}^{2}, S^{-1}\left(S\left(U^{1}\right) f^{2} S\left(V^{2} g^{2}\right)_{2} m_{(1)}\left(\tilde{q}_{\rho}^{1}\right)_{\langle 1\rangle} \tilde{p}_{\rho}^{2}\right)\right\rangle \\
& S\left(U^{2}\right) f^{1} S\left(V^{2} g^{2}\right)_{1} \succ m_{(0)} \prec\left(\tilde{q}_{\rho}^{1}\right)_{\langle 0\rangle} \tilde{p}_{\rho}^{1} \otimes e_{i}
\end{aligned}
$$

$$
\begin{aligned}
(1.11)= & \sum S\left(V_{2}^{2} g_{2}^{2} U^{2}\right) f^{1} \succ m_{(0)} \prec\left(\tilde{q}_{\rho}^{1}\right)_{\langle 0\rangle} \tilde{p}_{\rho}^{1} \otimes V^{1} g^{1} S\left(V_{1}^{2} g_{1}^{2} U^{1}\right) f^{2} \\
& m_{(1)}\left(\tilde{q}_{\rho}^{1}\right)_{\langle 1\rangle} \tilde{p}_{\rho}^{2} S\left(\tilde{q}_{\rho}^{2}\right) \\
(3.10)= & \sum S\left(V_{2}^{2} g_{2}^{2} U^{2}\right) f^{1} \succ m_{(0)} \otimes V^{1} g^{1} S\left(V_{1}^{2} g_{1}^{2} U^{1}\right) f^{2} m_{(1)} \\
(3.22)= & \sum S\left(g_{2}^{2} U^{2}\right) f^{1} F_{1}^{1}\left(p_{R}^{1}\right)_{1} \succ m_{(0)} \otimes S^{-1}\left(F^{2} p_{R}^{2}\right) g^{1} S\left(g_{1}^{2} U^{1}\right) f^{2} F_{2}^{1}\left(p_{R}^{1}\right)_{2} m_{(1)} \\
(3.30)= & \sum m_{(0)} \otimes m_{(1)}=\rho_{M}(m),
\end{aligned}
$$

and this finishes the proof of the fact that $G(F(M))=M$.
Conversely, take $M \in \mathcal{M}_{\mathfrak{Q} \# H^{*}}^{H^{*}}$. We want to show that $F(G(M))=M$. Denote the left H-action and the right $\mathfrak{A} \overline{\#} H^{*}$-action on $F(G(M))$ by \bullet^{\prime}. Using Lemmas 3.3 and 3.4, we find, for all $h \in H$ and $m \in M$:

$$
h \bullet^{\prime} m=S^{2}(h) \succ m=S^{-2}\left(S^{2}(h)\right) \bullet m=h \bullet m
$$

The proof of the fact that the right $\mathfrak{A} \overline{\#} H^{*}$-actions \bullet and \bullet^{\prime} on M coincide is somewhat more complicated. Since $\sum f^{2} S^{-1}\left(f^{1} \beta\right)=\alpha$, (1.9) and (1.18) imply

$$
\begin{equation*}
\sum F^{1} f_{1}^{1} p_{R}^{1} \otimes f^{2} S^{-1}\left(F^{2} f_{2}^{1} p_{R}^{2}\right)=\sum S\left(q_{L}^{2}\right) \otimes q_{L}^{1} \tag{3.31}
\end{equation*}
$$

where $q_{L}=\sum q_{L}^{1} \otimes q_{L}^{2}$ is the element defined by (1.20). Also, by (1.9), (1.18), and using $\sum S\left(g^{1}\right) \alpha g^{2}=S(\beta)$, we can prove the following relation:

$$
\begin{equation*}
\sum S\left(G^{1}\right) q_{L}^{1} G_{1}^{2} g^{1} \otimes q_{L}^{2} G_{2}^{2} g^{2}=\sum S\left(p_{R}^{2}\right) \otimes S\left(p_{R}^{1}\right) \tag{3.32}
\end{equation*}
$$

where $\sum G^{1} \otimes G^{2}$ is another copy of f^{-1}. Now, from (3.18), (1.11), (3.31), (3.32), and (1.23) it follows that

$$
\begin{equation*}
\sum S^{-1}\left(F^{1} f_{1}^{1} p_{R}^{1}\right) U_{2}^{2} g^{2} \otimes S\left(U^{1}\right) f^{2} S^{-1}\left(F^{2} f_{2}^{1} p_{R}^{2}\right) U_{1}^{2} g^{1}=1 \otimes 1 \tag{3.33}
\end{equation*}
$$

Therefore, for all $m \in M, \mathfrak{a} \in \mathfrak{A}$, and $\varphi \in H^{*}$, we have that

$$
\begin{aligned}
& m \bullet^{\prime}(\mathfrak{a} \overline{\#} \varphi) \\
& { }^{(3.17)}=\sum\left\langle\varphi, S^{-1}\left(S\left(U^{1}\right) f^{2} m_{\{1\}} \mathfrak{a}_{\langle 1\rangle} \tilde{p}_{\rho}^{2}\right)\right\rangle S\left(U^{2}\right) f^{1} \succ m_{\{0\}} \prec \mathfrak{a}_{\langle 0\rangle} \tilde{p}_{\rho}^{1} \\
& \underset{\substack{(2.11)}}{\substack{(3.21) \\
(2.15)}}=\sum_{i=1}^{n}\left\langle\varphi, S^{-1}\left(S\left(U^{1}\right) f^{2} e_{i} \mathfrak{a}_{\langle 1\rangle} \tilde{p}_{\rho}^{2}\right)\right\rangle S^{-2}\left(S\left(U^{2}\right) f^{1}\right) \bullet\left\{\left[S^{-1}\left(V^{2} g^{2}\right) \bullet m\right]\right. \\
& \text { - } \left.\left[\tilde{q}_{\rho}^{1} \mathfrak{a}_{\langle 0,0\rangle}\left(\tilde{p}_{\rho}^{1}\right)_{\langle 0\rangle} \overline{\#} S^{-1}\left(V^{1} g^{1}\right) \rightharpoonup e^{i} S \leftharpoonup \tilde{q}_{\rho}^{2} \mathfrak{a}_{\langle 0,1\rangle}\left(\tilde{p}_{\rho}^{1}\right)_{\langle 1\rangle}\right]\right\} \\
& =\sum_{i=1}^{n} \varphi\left(e_{i}\right) S^{-2}\left(S\left(U^{2}\right) f^{1}\right) \bullet\left\{[S ^ { - 1 } (V ^ { 2 } g ^ { 2 }) \bullet m] \bullet \left[\tilde{q}_{\rho}^{1} \mathfrak{a}_{\langle 0,0\rangle}\left(\tilde{p}_{\rho}^{1}\right)_{\langle 0\rangle}\right.\right. \\
& \left.\left.\# S^{-1}\left(V^{1} g^{1}\right) \rightharpoonup\left(\mathfrak{a}_{\langle 1\rangle} \tilde{p}_{\rho}^{2} \rightharpoonup e^{i} S^{-1} \leftharpoonup S\left(U^{1}\right) f^{2}\right) S \leftharpoonup \tilde{q}_{\rho}^{2} \mathfrak{a}_{\langle 0,1\rangle}\left(\tilde{p}_{\rho}^{1}\right)_{\langle 1\rangle}\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{c}
(3.25) \\
\substack{3.8) \\
(3.10)}
\end{array}\right) \sum S^{-2}\left(S\left(U^{2}\right) f^{1}\right) \bullet\left\{\left[S^{-1}\left(V^{2} g^{2}\right) \bullet m\right] \bullet\left[\mathfrak{a} \overline{\#} S^{-1}\left(S\left(U^{1}\right) f^{2} V^{1} g^{1}\right)-\varphi\right]\right\} \\
& \underset{(1.11)}{(3.16)}=\sum\left[S^{-1}\left(V^{2} S^{-1}\left(S\left(U^{2}\right) f^{1}\right)_{2} g^{2}\right) \bullet m\right] \\
& \text { - }\left[\mathfrak{a} \overline{\#} S^{-1}\left(S\left(U^{1}\right) f^{2} V^{1} S^{-1}\left(S\left(U^{2}\right) f^{1}\right)_{1} g^{1}\right) \rightarrow \varphi\right] \\
& \underset{(1.11)}{(3.22)}=\sum\left[S^{-1}\left(S^{-1}\left(F^{1} f_{1}^{1} p_{R}^{1}\right) U_{2}^{2} g^{2}\right) \bullet m\right] \\
& \text { - }\left[\mathfrak{a} \overline{\#} S^{-1}\left(S\left(U^{1}\right) f^{2} S^{-1}\left(F^{2} f_{2}^{1} p_{R}^{2}\right) U_{1}^{2} g^{1}\right) \rightarrow \varphi\right] \\
& \text { (3.33) }=m \bullet(\mathfrak{a} \overline{\#} \varphi) \text {, }
\end{aligned}
$$

and this finishes our proof.
If H is a finite-dimensional quasi-Hopf algebra and A is a left H-module algebra then the category $\mathcal{M}_{A}^{H^{*}}$ is isomorphic to the category of right modules over the smash product A \# H [6, Proposition 2.7]. Let M be a right $A \# H$-module, and denote the right action of $a \# h \in A \# H$ on $m \in M$ by $m \leftarrow(a \# h)$. Following [6], M is a right $\left(H^{*}, A\right)$-Hopf module, with structure maps

$$
\begin{equation*}
h \bullet m=m \leftarrow(1 \# S(h)), \quad m \bullet a=\sum m \leftarrow\left[g^{1} S\left(q_{R}^{2}\right) \cdot a \# g^{2} S\left(q_{R}^{1}\right)\right] \tag{3.34}
\end{equation*}
$$

for all $m \in M, a \in A$, and $h \in H$. Conversely, if M is a right $\left(H^{*}, A\right)$-Hopf module then M is a right $A \# H$-module, with $A \# H$-action

$$
\begin{equation*}
m \leftarrow(a \# h)=\sum S^{-1}(h) \bullet\left[\left(S^{-1}\left(q_{L}^{2} g^{2}\right) \bullet m\right) \bullet\left(S^{-1}\left(q_{L}^{1} g^{1}\right) \cdot a\right)\right] . \tag{3.35}
\end{equation*}
$$

Here $q_{R}=\sum q_{R}^{1} \otimes q_{R}^{2}, q_{L}=\sum q_{L}^{1} \otimes q_{L}^{2}$, and $f^{-1}=\sum g^{1} \otimes g^{2}$ are the elements defined by (1.19), (1.20), and (1.16). Combining this with Theorem 3.5, we obtain the following result.

Corollary 3.6. Let H be a finite-dimensional quasi-Hopf algebra and ($\mathfrak{A}, \rho, \Phi_{\rho}$) a right H-comodule algebra. Then the category ${ }_{H} \mathcal{M}_{\mathfrak{A}}^{H}$ is isomorphic to the category of right $\left(\mathfrak{A} \overline{\#} H^{*}\right) \# H$-modules, $\mathcal{M}_{\left(\mathfrak{A} \# H^{*}\right) \# H}$.

For later use, we describe the isomorphism of Corollary 3.6 explicitly, leaving verification of the details to the reader.

First take $M \in \mathcal{M}_{\left(\mathfrak{R} \overline{\#} H^{*}\right) \# H}$. The following structure maps make $M \in{ }_{H} \mathcal{M}_{\mathfrak{A}}^{H}$:

$$
\begin{gather*}
h \succ m=m \leftarrow\left(\left(1_{\mathfrak{A}} \overline{\#} \varepsilon\right) \# S^{-1}(h)\right), \tag{3.36}\\
m \prec \mathfrak{a}=m \leftarrow((\mathfrak{a} \overline{\#} \varepsilon) \# 1), \tag{3.37}\\
\rho_{M}(m)=\sum_{i=1}^{n} m \leftarrow\left[\left(\tilde{q}_{\rho}^{1} \overline{\#} S^{-1}\left(g^{2}\right) \rightharpoonup e^{i} S \leftharpoonup \tilde{q}_{\rho}^{2}\right) \# S^{-1}\left(g^{1}\right)\right] \otimes e_{i} \tag{3.38}
\end{gather*}
$$

for all $m \in M, h \in H$, and $\mathfrak{a} \in \mathfrak{A} ; \tilde{q}_{\rho}=\sum \tilde{q}_{\rho}^{1} \otimes \tilde{q}_{\rho}^{2}$ is the element defined in (3.7), $\left\{e_{i}\right\}$ is a basis of H and $\left\{e^{i}\right\}$ is the corresponding dual basis of H^{*}.

Now take $M \in{ }_{H} \mathcal{M}_{\mathfrak{A}}^{H}$. Then M is a right $\left(\mathfrak{A} \overline{\#} H^{*}\right) \# H$-module via the action

$$
\begin{equation*}
m \leftarrow[(\mathfrak{a} \overline{\#} \varphi) \# h]=\sum\left\langle\varphi, S^{-1}\left(f^{2} m_{(1)} \mathfrak{a}_{\langle 1\rangle} \tilde{p}_{\rho}^{2}\right)\right\rangle S(h) f^{1} \succ m_{(0)} \prec \mathfrak{a}_{\langle 0\rangle} \tilde{p}_{\rho}^{1} \tag{3.39}
\end{equation*}
$$

In [18], it is announced that, for a finite-dimensional quasi-Hopf algebra H, the category of right quasi-Hopf H-bimodules ${ }_{H} \mathcal{M}_{H}^{H}$ naturally coincides with the category of representations of the two-sided crossed product $H \rtimes H^{*} \ltimes H$ constructed in [16]. We will show in Section 4 that the algebras $H \rtimes H^{*} \ltimes H$ and $\left(H \# H^{*}\right) \# H$ are equal.

3.3. Two-sided Hopf modules and coalgebras over comonads

Now, let H be a quasi-bialgebra and \mathfrak{A} a right H-comodule algebra. We will show that the category ${ }_{H} \mathcal{M}_{\mathfrak{A}}^{H}$ is isomorphic to the category of \mathbb{U}-coalgebras, where \mathbb{U} is a suitable comonad. Recall that if \mathcal{D} is a category then a comonad on \mathcal{D} is a three-tuple $\mathbb{U}=(U, \Delta, \varepsilon)$, where $U: \mathcal{D} \rightarrow \mathcal{D}$ is a functor, and $\Delta: U \rightarrow U \circ U$ and $\varepsilon: U \rightarrow 1_{\mathcal{D}}$ are natural transformations, such that

$$
\begin{gather*}
U\left(\Delta_{M}\right) \circ \Delta_{M}=\Delta_{U(M)} \circ \Delta_{M} \tag{3.40}\\
U\left(\varepsilon_{M}\right) \circ \Delta_{M}=\varepsilon_{U(M)} \circ \Delta_{M}=\operatorname{id}_{U(M)} \tag{3.41}
\end{gather*}
$$

for all $M \in \mathcal{D}$. A morphism between two \mathcal{D}-comonads $\mathbb{U}=(U, \Delta, \varepsilon)$ and $\mathbb{U}^{\prime}=\left(U^{\prime}, \Delta^{\prime}, \varepsilon^{\prime}\right)$ is a natural transformation $\vartheta: U \rightarrow U^{\prime}$ such that

$$
\begin{equation*}
\varepsilon^{\prime} \circ \vartheta=\varepsilon \quad \text { and } \quad(\vartheta * \vartheta) \circ \Delta=\Delta^{\prime} \circ \vartheta \tag{3.42}
\end{equation*}
$$

for all $M \in \mathcal{D}$, where $*$ is the Godement product

$$
(\vartheta * \vartheta)_{M}=\vartheta_{U^{\prime}(M)} \circ U\left(\vartheta_{M}\right)
$$

We denote by $\operatorname{Comonad}(\mathcal{D})$ the category of comonads on \mathcal{D}.
For \mathbb{U} a comonad on \mathcal{D}, a \mathbb{U}-coalgebra is a pair (M, ξ) with $M \in \mathcal{D}$, and $\xi: M \rightarrow U(M)$ a morphism in \mathcal{D} such that

$$
\begin{equation*}
\varepsilon_{M} \circ \xi=\operatorname{id}_{M} \quad \text { and } \quad \Delta_{M} \circ \xi=U(\xi) \circ \xi . \tag{3.43}
\end{equation*}
$$

A morphism between two \mathbb{U}-coalgebras (M, ξ) and $\left(M^{\prime}, \xi^{\prime}\right)$ consists of a morphism $v: M \rightarrow M^{\prime}$ in \mathcal{D} such that

$$
\begin{equation*}
U(v) \circ \xi=\xi^{\prime} \circ v . \tag{3.44}
\end{equation*}
$$

The category of \mathbb{U}-coalgebras is denoted by $\mathcal{D}^{\mathbb{U}}$.

If H is a quasi-bialgebra and \mathfrak{A} an algebra then we define $\mathcal{C}:=\mathfrak{A} \otimes H \mathcal{M}_{\mathfrak{A}}$. Thus, an object of \mathcal{C} is an \mathfrak{A}-bimodule and an (H, \mathfrak{A})-bimodule such that $h(\mathfrak{a} m)=\mathfrak{a}(h m)$, for all $\mathfrak{a} \in \mathfrak{A}, h \in H$, and $m \in M$. Morphisms are left H-linear maps which are also \mathfrak{A}-bimodule maps. We claim that \mathcal{C} is a monoidal category. Indeed, it is not hard to see that \mathcal{C} becomes a monoidal category with tensor product $\otimes_{\mathfrak{A}}$ given via Δ, in the sense that

$$
(\mathfrak{a} \otimes h)\left(m \otimes_{\mathfrak{A}} n\right) \mathfrak{a}^{\prime}:=\sum \mathfrak{a} h_{1} m \otimes_{\mathfrak{A}} h_{2} n \mathfrak{a}^{\prime}
$$

for all $M, N \in \mathcal{C}, m \in M, n \in N, \mathfrak{a}, \mathfrak{a}^{\prime} \in \mathfrak{A}$, and $h \in H$, associativity constraints

$$
\begin{gathered}
\underline{a}_{M, N, P}:\left(M \otimes_{\mathfrak{A}} N\right) \otimes_{\mathfrak{A}} P \rightarrow M \otimes_{\mathfrak{A}}\left(N \otimes_{\mathfrak{A}} P\right), \\
\underline{a}_{M, N, P}\left(\left(m \otimes_{\mathfrak{A}} n\right) \otimes_{\mathfrak{A}} p\right)=\sum X^{1} m \otimes_{\mathfrak{A}}\left(X^{2} n \otimes_{\mathfrak{A}} X^{3} p\right),
\end{gathered}
$$

unit \mathfrak{A} as a trivial left H-module, and the usual left and right unit constraints. We denote by \mathcal{C}-Coalgebra the category of coalgebras in \mathcal{C}. We are able now to prove the claimed isomorphism.

Theorem 3.7. Let H be a quasi-bialgebra, \mathfrak{A} an algebra, $\mathcal{C}=\mathfrak{A} \otimes H \mathcal{M} \mathfrak{A}$, and $\mathcal{D}:={ }_{H} \mathcal{M}_{\mathfrak{A}}$. Then there exists a functor

$$
F: \mathcal{C} \text {-Coalgebra } \rightarrow \text { Comonad }(\mathcal{D})
$$

In addition, if \mathfrak{A} is a right H-comodule algebra then $\mathfrak{C}:=\mathfrak{A} \otimes H$ is a coalgebra in \mathcal{C} and, in this particular case, we have an isomorphism of categories

$$
\mathcal{D}^{F(\mathfrak{C})} \cong{ }_{H} \mathcal{M}_{\mathfrak{A}}^{H} .
$$

Proof. If \mathfrak{C} is a coalgebra in \mathcal{C} then it is an (H, \mathfrak{A})-bimodule and an \mathfrak{A}-bimodule so, we have a functor $U=(-) \otimes_{\mathfrak{A}} \mathfrak{C}: \mathcal{D} \rightarrow \mathcal{D}$ (for any $M \in \mathcal{D}$, the left H-module structure of $U(M)$ is given via Δ and the right \mathfrak{A}-action on $U(M)$ is induced by the one on $\mathfrak{C})$. For all $M \in \mathcal{D}$, we define

$$
\begin{aligned}
& \Delta_{M}: M \otimes_{\mathfrak{A}} \mathfrak{C}=U(M) \rightarrow U(U(M))=\left(M \otimes_{\mathfrak{A}} \mathfrak{C}\right) \otimes_{\mathfrak{A}} \mathfrak{C}, \\
& \Delta_{M}\left(m \otimes_{\mathfrak{A}} c\right)=\sum\left(x^{1} m \otimes_{\mathfrak{A}} x^{2} c_{\underline{1}}\right) \otimes_{\mathfrak{A}} x^{3} c_{\underline{2}}, \\
& \varepsilon_{M}:=\operatorname{id}_{M} \otimes_{\mathfrak{A}} \underline{\varepsilon}_{\mathfrak{C}}: M \otimes_{\mathfrak{A}} \mathfrak{C}=U(M) \rightarrow M \cong M \otimes_{\mathfrak{A}} A
\end{aligned}
$$

for all $m \in M$ and $c \in \mathfrak{C}$, where $\underline{\Delta}_{\mathfrak{C}}(c):=\sum c_{1} \otimes c_{\underline{2}}$ is the comultiplication of \mathfrak{C} and $\underline{\varepsilon_{\mathfrak{C}}}$ is the counit of \mathfrak{C}. It is not hard to see that $F(\mathfrak{C}):=\left(U, \Delta_{M}, \varepsilon_{M}\right)$ is a comonad on \mathcal{D}. It is also straightforward to check that a morphism κ in \mathcal{C}-Coalgebra provides a morphism $U(\kappa)$ in $\operatorname{Comonad}(\mathcal{D})$ and that F is a functor.

Suppose now that $\left(\mathfrak{A}, \rho, \Phi_{\rho}\right)$ is a right H-comodule algebra and let $\mathfrak{C}=\mathfrak{A} \otimes H$. If we define

$$
\begin{equation*}
(\mathfrak{a} \otimes h)\left(\mathfrak{a}^{\prime} \otimes h^{\prime}\right) \mathfrak{a}^{\prime \prime}:=\sum \mathfrak{a} \mathfrak{a}^{\prime} \mathfrak{a}_{\langle 0\rangle}^{\prime \prime} \otimes h h^{\prime} \mathfrak{a}_{\langle 1\rangle}^{\prime \prime} \tag{3.45}
\end{equation*}
$$

for all $\mathfrak{a}, \mathfrak{a}^{\prime}, \mathfrak{a}^{\prime \prime} \in \mathfrak{A}$, and $h, h^{\prime} \in H$, then one can easily check that with this structure $\mathfrak{C} \in \mathcal{C}$. Moreover, we claim that \mathfrak{C} with the structure given by

$$
\begin{align*}
\underline{\Delta_{C}}(\mathfrak{a} \otimes h) & :=\sum\left(\mathfrak{a} \widetilde{X}^{1} \otimes h_{1} \widetilde{X}^{2}\right) \otimes_{\mathfrak{A}}\left(1_{\mathfrak{A}} \otimes h_{2} \widetilde{X}^{3}\right), \tag{3.46}\\
\underline{\varepsilon} \mathfrak{c}(\mathfrak{a} \otimes h) & :=\varepsilon(h) \mathfrak{a} \tag{3.47}
\end{align*}
$$

for all $\mathfrak{a} \in \mathfrak{A}$ and $h \in H$, becomes a coalgebra in \mathcal{C}. Indeed, the fact that $\underline{\Delta}_{\mathfrak{C}}$ and $\underline{\varepsilon} \mathfrak{C}$ are morphisms in \mathcal{C} and that $\underline{\varepsilon}_{\mathcal{C}}$ is the counit for $\underline{\Delta}_{\mathfrak{C}}$ follow from straightforward computations (all these verifications are left to the reader). We only show that the comultiplication $\underline{\Delta}_{\mathfrak{C}}$ is coassociative up to the associativity constraints of \mathcal{C}. Indeed, we compute that

$$
\begin{aligned}
(\underline{\Delta} & \left.\mathfrak{c} \otimes_{\mathfrak{A}} \operatorname{id}\right)\left(\underline{\Delta_{\mathfrak{C}}}(\mathfrak{a} \otimes h)\right) \\
& =\sum \underline{\Delta} \mathfrak{C}\left(\mathfrak{a} \widetilde{X}^{1} \otimes h_{1} \widetilde{X}^{2}\right) \otimes_{\mathfrak{A}}\left(1_{\mathfrak{A}} \otimes h_{2} \widetilde{X}^{3}\right) \\
& =\sum\left(\mathfrak{a} \widetilde{X}^{1} \widetilde{Y}^{1} \otimes h_{(1,1)} \widetilde{X}_{1}^{2} \widetilde{Y}^{2}\right) \otimes_{\mathfrak{A}}\left(1_{\mathfrak{A}} \otimes h_{(1,2)} \widetilde{X}_{2}^{2} \widetilde{Y}^{3}\right) \otimes_{\mathfrak{A}}\left(1_{\mathfrak{A}} \otimes h_{2} \widetilde{X}^{3}\right) \\
(2.2) & =\sum\left(\mathfrak{a} \widetilde{X}^{1} \widetilde{Y}_{(0\rangle}^{1} \otimes h_{(1,1)} x^{1} \widetilde{X}^{2} \widetilde{Y}_{\langle 1\rangle}^{1}\right) \otimes_{\mathfrak{A}}\left(1_{\mathfrak{A}} \otimes h_{(1,2)} x^{2} \widetilde{X}_{1}^{3} \widetilde{Y}^{2}\right) \otimes_{\mathfrak{A}}\left(1_{\mathfrak{A}} \otimes h_{2} x^{3} \widetilde{X}_{2}^{3} \widetilde{Y}^{3}\right) \\
(1.1) & =\sum x^{1}\left(\mathfrak{a} \widetilde{X}^{1} \otimes h_{1} \widetilde{X}^{2}\right) \widetilde{Y}^{1} \otimes_{\mathfrak{A}} x^{2}\left(1_{\mathfrak{A}} \otimes h_{(2,1)} \widetilde{X}_{1}^{3} \widetilde{Y}^{2}\right) \otimes_{\mathfrak{A}} x^{3}\left(1_{\mathfrak{A}} \otimes h_{(2,2)} \widetilde{X}_{2}^{3} \widetilde{Y}^{3}\right) \\
& =\Phi^{-1} \sum\left(\mathfrak{a} \widetilde{X}^{1} \otimes h_{1} \widetilde{X}^{2}\right) \otimes_{\mathfrak{A}}\left(\widetilde{Y}^{1} \otimes h_{(2,1)} \widetilde{X}_{1}^{3} \widetilde{Y}^{2}\right) \otimes_{\mathfrak{A}}\left(1_{\mathfrak{A}} \otimes h_{(2,2)} \widetilde{X}_{2}^{3} \widetilde{Y}^{3}\right) \\
& =\Phi^{-1} \sum\left(\mathfrak{a} \widetilde{X}^{1} \otimes h_{1} \widetilde{X}^{2}\right) \otimes_{\mathfrak{A}} \underline{\Delta_{\mathfrak{C}}}\left(1_{\mathfrak{A}} \otimes h_{2} \widetilde{X}^{3}\right) \\
& =\Phi^{-1}\left(\mathrm{id} \otimes \mathfrak{A} \Delta_{\mathfrak{C}}\right)\left(\underline{\left.\Delta_{\mathfrak{C}}(\mathfrak{a} \otimes h)\right),}\right.
\end{aligned}
$$

for all $\mathfrak{a} \in \mathfrak{A}$ and $h \in H$, as needed.
Consider now the comonad $F(\mathfrak{C})=(U, \Delta, \varepsilon)$ and $(M, \xi) \in \mathcal{D}^{F(\mathfrak{C})}$. That means that $M \in \mathcal{D}={ }_{H} \mathcal{M}_{\mathfrak{A}}$ and $\xi: M \rightarrow U(M)=M \otimes_{\mathfrak{A}}(\mathfrak{A} \otimes H)$ is a morphism in \mathcal{D} such that $\Delta_{M} \circ \xi=U(\xi) \circ \xi$ and $\varepsilon_{M} \circ \xi=\mathrm{id}_{M}$, for all $M \in \mathcal{D}$. In other words, if we write

$$
\xi(m)=\sum m_{(0)} \otimes_{\mathfrak{A}}\left(m_{(1)^{\mathfrak{A}}} \otimes m_{(1)^{H}}\right) \quad \forall m \in M
$$

then $(M, \xi) \in \mathcal{D}^{F(\mathfrak{C})}$ if and only if the following relations hold:

$$
\begin{gather*}
\xi(h m)=\sum h_{1} m_{(0)} \otimes_{\mathfrak{A}}\left(m_{(1)^{\mathfrak{A}}} \otimes h_{2} m_{(1)^{H}}\right), \tag{3.48}\\
\xi(m \mathfrak{a})=\sum m_{(0)} \otimes_{\mathfrak{A}}\left(m_{(1)^{\mathfrak{A}} \mathfrak{a}_{\langle 0\rangle}} \otimes m_{(1)^{H}} \mathfrak{a}_{\langle 1\rangle}\right), \tag{3.49}\\
\sum x^{1} m_{(0)} \otimes_{\mathfrak{A}}\left(m_{(1)^{\mathfrak{A}}} \widetilde{X}^{1} \otimes x^{2} m_{(1)_{1}^{H}} \widetilde{X}^{2}\right) \otimes_{\mathfrak{A}}\left(1_{\mathfrak{A}} \otimes x^{3} m_{(1)_{2}^{H}} \widetilde{X}^{3}\right) \\
=\sum m_{(0)_{(0)}} \otimes_{\mathfrak{A}}\left(m_{(0)_{(1)^{\mathfrak{A}}}} \otimes m_{(0)_{(1) H}}\right) \otimes_{\mathfrak{A}}\left(m_{(1)^{\mathfrak{A}}} \otimes m_{\left.(1)^{H}\right)},\right. \tag{3.50}
\end{gather*}
$$

$$
\begin{equation*}
\sum \varepsilon\left(m_{(1)^{H}}\right) m_{(0)} m_{(1)^{\mathfrak{A}}}=m \tag{3.51}
\end{equation*}
$$

for all $h \in H, m \in M$, and $\mathfrak{a} \in \mathfrak{A}$. Applying the canonical isomorphisms, the first three relations are equivalent to

$$
\begin{gather*}
\sum(h m)_{(0)}(h m)_{(1)^{\mathfrak{A}}} \otimes(h m)_{(1)^{H}}=\sum h_{1} m_{(0)} m_{(1)^{\mathfrak{A}}} \otimes h_{2} m_{(1)^{H}} \tag{3.52}\\
\sum(m \mathfrak{a})_{(0)}(m \mathfrak{a})_{(1)^{\mathfrak{A}}} \otimes(m \mathfrak{a})_{(1)^{H}}=\sum m_{(0)} m_{(1)^{\mathfrak{A}} \mathfrak{a} \mathfrak{a}_{\langle 0\rangle}} \otimes m_{(1)^{H} \mathfrak{a}}^{\langle 1\rangle}, \tag{3.53}\\
\sum x^{1} m_{(0)} m_{(1)^{\mathfrak{A}}} \widetilde{X}^{1} \otimes x^{2} m_{(1)_{1}^{H}} \widetilde{X}^{2} \otimes x^{3} m_{(1)_{2}^{H}} \tilde{X}^{3} \\
=\sum m_{(0)_{(0)}} m_{(0)_{(1) \mathfrak{A}} m_{(1)_{\langle 0\rangle}^{\mathfrak{A}}} \otimes m_{(0)_{(1) H}^{H}} m_{(1)_{\langle 1\rangle}^{\mathfrak{A}}} \otimes m_{(1)^{H}}} \tag{3.54}
\end{gather*}
$$

for all $h \in H, m \in M$, and $\mathfrak{a} \in \mathfrak{A}$. Now, if define $\rho_{M}: M \rightarrow M \otimes H$,

$$
\rho_{M}(m)=\sum m_{(0)} m_{(1)^{\mathfrak{A}}} \otimes m_{(1)^{H}} \quad \forall m \in M
$$

then (3.52) implies that $\rho_{M}(h m)=\Delta(h) \rho_{M}(m)$ for all $h \in H$ and $m \in M$, and (3.53) implies that $\rho_{M}(m \mathfrak{a})=\rho_{M}(m) \rho(\mathfrak{a})$ for all $m \in M$ and $\mathfrak{a} \in \mathfrak{A}$, respectively. Moreover, for all $m \in M$ we have that

$$
\begin{aligned}
& \left(\rho_{M} \otimes \operatorname{id}_{H}\right)\left(\rho_{M}(m)\right)=\sum \rho_{M}\left(m_{(0)} m_{(1)^{\mathfrak{d}}}\right) \otimes m_{(1)^{H}} \\
& =\sum\left(m_{(0)} m_{(1)^{\mathfrak{A}}}\right)_{(0)}\left(m_{(0)} m_{(1)^{\mathfrak{A}}}\right)_{(1)^{\mathfrak{A}}} \otimes\left(m_{(0)} m_{(1)^{\mathfrak{A}}}\right)_{(1)^{H}} \otimes m_{(1)^{H}} \\
& \text { (3.53) }=\sum m_{(0)_{(0)}} m_{(0)_{(1) \mathfrak{A}}} m_{(1)_{\langle 0\rangle}^{\mathfrak{A}}} \otimes m_{(0)_{(1) H}} m_{(1)_{\langle 1\rangle}^{\mathfrak{A}}} \otimes m_{(1)^{H}} \\
& (3.54)=\sum x^{1} m_{(0)} m_{(1)^{\mathfrak{A}}} \widetilde{X}^{1} \otimes x^{2} m_{(1)_{1}^{H}} \widetilde{X}^{2} \otimes x^{3} m_{(1)_{2}^{H}} \widetilde{X}^{3} \\
& =\Phi^{-1} \cdot\left(\sum m_{(0)} m_{(1)^{\mathfrak{A}}} \otimes \Delta\left(m_{(1)^{H}}\right)\right) \cdot \Phi_{\rho} \\
& =\Phi^{-1} \cdot\left(\operatorname{id}_{M} \otimes \Delta\right)\left(\rho_{M}(m)\right) \cdot \Phi_{\rho} .
\end{aligned}
$$

By (3.51) it follows that $\left(\operatorname{id}_{M} \otimes \varepsilon\right) \circ \rho_{M}=\operatorname{id}_{M}$, so we have obtained that $M \in{ }_{H} \mathcal{M}_{\mathfrak{R}}^{H}$. In this way, we have a functor $\mathbb{F}: \mathcal{D}^{F(\mathfrak{C})} \rightarrow{ }_{H} \mathcal{M}_{\mathfrak{A}}^{H}(\mathbb{F}$ acts as identity on morphisms). We will show that \mathbb{F} provides the desired isomorphism of categories. For, we define the inverse of \mathbb{F} as follows. Let $M \in{ }_{H} \mathcal{M}_{\mathfrak{A}}^{H}$, and denote by $\rho_{M}(m)=\sum m_{(0)} \otimes m_{(1)}$ the right coaction of H on M. Then we define

$$
\xi: M \rightarrow M \otimes_{\mathfrak{A}}(\mathfrak{A} \otimes H), \quad \xi(m)=\sum m_{(0)} \otimes_{\mathfrak{A}}\left(1_{\mathfrak{A}} \otimes m_{(1)}\right) \quad \forall m \in M
$$

In the same manner as above one can prove that the axioms which define M as a two-sided (H, \mathfrak{A})-bimodule imply that ξ satisfies the relations (3.51)-(3.54). Thus $(M, \xi) \in \mathcal{D}^{F(\mathfrak{C})}$ and we have a well-defined functor $\mathbb{G}: H_{H} \mathcal{M}_{\mathfrak{A}}^{H} \rightarrow \mathcal{D}^{F(\mathfrak{C})}(\mathbb{G}$ acts as the identity on
morphisms). The fact that the functors \mathbb{F} and \mathbb{G} are inverses is obvious, and this finishes our proof.

Theorem 3.7 enables us to restate the definition of a comodule algebra in terms of monoidal categories.

Proposition 3.8. Let H be a quasi-bialgebra and \mathfrak{A} an algebra. If $\mathfrak{A} \otimes H$ is viewed in the canonical way as an object in $\mathfrak{A} \otimes H \mathcal{M}$ then $\mathfrak{A} \otimes H$ has a coalgebra structure $(\mathfrak{A} \otimes H, \underline{\Delta}, \underline{\varepsilon})$ in the monoidal category $\mathcal{C}=\mathfrak{A} \otimes H \mathcal{M} \mathcal{A}$ such that $\underline{\Delta}\left(1_{\mathfrak{A}} \otimes 1_{H}\right)$ is invertible and $\underline{\varepsilon}\left(1_{\mathfrak{A}} \otimes 1_{H}\right)=1_{\mathfrak{A}}$ if and only if \mathfrak{A} is a right H-comodule algebra.

Proof. One implication follows from the proof of Theorem 3.7. Conversely, suppose that $\mathfrak{A} \otimes H$ is an object of \mathcal{C}, and that there exists a coalgebra structure $(\mathfrak{A} \otimes H, \underline{\Delta}, \underline{\varepsilon})$ on $\mathfrak{A} \otimes H$ in the monoidal category \mathcal{C} such that $\underline{\Delta}\left(1_{\mathfrak{A}} \otimes 1_{H}\right)$ is invertible and $\underline{\varepsilon}\left(1_{\mathfrak{A}} \otimes 1_{H}\right)=1_{\mathfrak{A}}$. Then we define

$$
\mathfrak{A} \ni \mathfrak{a} \mapsto \rho(\mathfrak{a})=\sum \mathfrak{a}_{\langle 0\rangle} \otimes \mathfrak{a}_{\langle 1\rangle}:=\left(1_{\mathfrak{A}} \otimes 1_{H}\right) \mathfrak{a} \in \mathfrak{A} \otimes H
$$

and denote

$$
\underline{\Delta}\left(1_{\mathfrak{A}} \otimes 1_{H}\right):=\sum\left(\widetilde{X}^{1} \otimes \widetilde{X}^{2}\right) \otimes_{\mathfrak{A}}\left(1_{\mathfrak{A}} \otimes \widetilde{X}^{3}\right)
$$

Since $\mathfrak{A} \otimes H$ is a right \mathfrak{A}-module, it is follows that ρ is an algebra map. Also, since $\underline{\Delta}\left(1_{\mathfrak{A}} \otimes 1_{H}\right)$ is invertible, we obtain that $\Phi_{\rho}:=\sum \widetilde{X}^{1} \otimes \widetilde{X}^{2} \otimes \widetilde{X}^{3}$ is an invertible element in $\mathfrak{A} \otimes H \otimes H$. Now, using the fact that $\underline{\Delta}$ and $\underline{\varepsilon}$ are morphisms in \mathcal{C}, and that $\underline{\varepsilon}\left(1_{\mathfrak{A}} \otimes 1_{H}\right)=1_{\mathfrak{A}}$, it is not hard to see that

$$
\underline{\Delta}(\mathfrak{a} \otimes h)=\sum\left(\mathfrak{a} \widetilde{X}^{1} \otimes h_{1} \widetilde{X}^{2}\right) \otimes_{\mathfrak{A}}\left(1_{\mathfrak{A}} \otimes h_{2} \widetilde{X}^{3}\right), \quad \underline{\varepsilon}(\mathfrak{a} \otimes h)=\varepsilon(h) \mathfrak{a}
$$

for all $\mathfrak{a} \in \mathfrak{A}, h \in H$. Now, (2.1) and (2.2) follow because of equalities $\underline{\Delta}\left(\left(1_{\mathfrak{A}} \otimes 1_{H}\right) \mathfrak{a}\right)=$ $\underline{\Delta}\left(1_{\mathfrak{A}} \otimes 1_{H}\right) \mathfrak{a}$ and $\Phi(\underline{\Delta} \otimes \mathrm{id}) \underline{\Delta}(\mathfrak{a} \otimes h)=(\mathrm{id} \otimes \underline{\Delta}) \underline{\Delta}(\mathfrak{a} \otimes h)$ for all $\mathfrak{a} \in \mathfrak{A}$ and $h \in H$, respectively. Finally, it is easy to see that $\underline{\varepsilon}\left(\left(1_{\mathfrak{A}} \otimes 1_{H}\right) \mathfrak{a}\right)=\mathfrak{a}$ implies (2.3), and the fact that $\underline{\varepsilon}$ is the counit for $\underline{\Delta}$ implies (2.4), respectively. We leave all these details to the reader.

4. Two-sided crossed products are generalized smash products

Let H be a finite-dimensional quasi-bialgebra, and $\left(\mathfrak{A}, \rho, \Phi_{\rho}\right),\left(\mathfrak{B}, \lambda, \Phi_{\lambda}\right)$ respectively a right and a left H-comodule algebra. As in the case of a Hopf algebra, the right H-coaction $\left(\rho, \Phi_{\rho}\right)$ on \mathfrak{A} induces a left H^{*}-action $\triangleright: H^{*} \otimes \mathfrak{A} \rightarrow \mathfrak{A}$ given by

$$
\begin{equation*}
\varphi \triangleright \mathfrak{a}=\sum \varphi\left(\mathfrak{a}_{\langle 1\rangle}\right) \mathfrak{a}_{\langle 0\rangle} \tag{4.1}
\end{equation*}
$$

for all $\varphi \in H^{*}$ and $\mathfrak{a} \in \mathfrak{A}$, and where $\rho(\mathfrak{a})=\sum a_{\langle 0\rangle} \otimes \mathfrak{a}_{\langle 1\rangle}$ for any $\mathfrak{a} \in \mathfrak{A}$. Similarly, the left H-action $\left(\lambda, \Phi_{\lambda}\right)$ on \mathfrak{B} provides a right H^{*}-action $\triangleleft: \mathfrak{B} \otimes H^{*} \rightarrow \mathfrak{B}$ given by

$$
\begin{equation*}
\mathfrak{b} \triangleleft \varphi=\sum \varphi\left(\mathfrak{b}_{[-1]}\right) \mathfrak{b}_{[0]} \tag{4.2}
\end{equation*}
$$

for all $\varphi \in H^{*}$ and $\mathfrak{b} \in \mathfrak{B}$, where we now denote $\lambda(\mathfrak{b})=\sum \mathfrak{b}_{[-1]} \otimes \mathfrak{b}_{[0]}$ for $\mathfrak{b} \in \mathfrak{B}$. Following [16, Proposition 11.4(ii)] we can define an algebra structure on the k-vector space $\mathfrak{A} \otimes H^{*} \otimes \mathfrak{B}$. This algebra is denoted by $\mathfrak{A} \rtimes{ }_{\rho} H^{*} \ltimes \lambda \mathfrak{B}$ and its multiplication is given by

$$
\begin{align*}
& (\mathfrak{a} \rtimes \varphi \ltimes \mathfrak{b})\left(\mathfrak{a}^{\prime} \rtimes \psi \ltimes \mathfrak{b}^{\prime}\right) \\
& \quad=\sum \mathfrak{a}\left(\varphi_{1} \triangleright \mathfrak{a}^{\prime}\right) \tilde{x}_{\rho}^{1} \rtimes\left(\tilde{x}_{\lambda}^{1} \rightharpoonup \varphi_{2} \leftharpoonup \tilde{x}_{\rho}^{2}\right)\left(\tilde{x}_{\lambda}^{2} \rightharpoonup \psi_{1} \leftharpoonup \tilde{x}_{\rho}^{3}\right) \ltimes \tilde{x}_{\lambda}^{3}\left(\mathfrak{b} \triangleleft \psi_{2}\right) \mathfrak{b}^{\prime} \tag{4.3}
\end{align*}
$$

for all $\mathfrak{a}, \mathfrak{a}^{\prime} \in \mathfrak{A}, \mathfrak{b}, \mathfrak{b}^{\prime} \in \mathfrak{B}$, and $\varphi, \psi \in H^{*}$, where we write $\mathfrak{a} \rtimes \varphi \ltimes \mathfrak{b}$ for $\mathfrak{a} \otimes \varphi \otimes \mathfrak{b}$ when viewed as an element of $\mathfrak{A} \rtimes{ }_{\rho} H^{*} \ltimes \lambda \mathfrak{B}$. The comultiplication on H^{*} is denoted by $\Delta(\varphi)=\sum \varphi_{1} \otimes \varphi_{2}$. The unit of the algebra $\mathfrak{A} \rtimes{ }_{\rho} H^{*} \ltimes \lambda \mathfrak{B}$ is $1_{\mathfrak{A}} \rtimes \varepsilon \ltimes 1_{\mathfrak{B}}$. Hausser and Nill called this algebra the two-sided crossed product. In this section we will prove that this two-sided crossed product algebra is a generalized smash product between the quasi-smash product $\mathfrak{A} \overline{\#} H^{*}$ and \mathfrak{B}.

Proposition 4.1. Let H be a quasi-bialgebra, A a left H-module algebra, and \mathfrak{B} a left H comodule algebra. Let $A \times \mathfrak{B}=A \otimes \mathfrak{B}$ as a k-module, with newly defined multiplication

$$
\begin{equation*}
(a \ltimes \mathfrak{b})\left(a^{\prime} \times \mathfrak{b}^{\prime}\right)=\sum\left(\tilde{x}^{1} \cdot a\right)\left(\tilde{x}^{2} \mathfrak{b}_{[-1]} \cdot a^{\prime}\right) \ltimes \tilde{x}^{3} \mathfrak{b}_{[01} \mathfrak{b}^{\prime} \tag{4.4}
\end{equation*}
$$

for all $a, a^{\prime} \in A$ and $\mathfrak{b}, \mathfrak{b}^{\prime} \in \mathfrak{B}$. Then $A \ltimes \mathfrak{B}$ is an associative algebra with unit $1_{A} \times 1_{\mathfrak{B}}$.
Proof. For all $a, a^{\prime}, a^{\prime \prime} \in A$ and $\mathfrak{b}, \mathfrak{b}^{\prime}, \mathfrak{b}^{\prime \prime} \in \mathfrak{B}$, we have:

$$
\begin{aligned}
& {\left[(a \ltimes b)\left(a^{\prime} \ltimes \mathfrak{b}^{\prime}\right)\right]\left(a^{\prime \prime} \ltimes \mathfrak{b}^{\prime \prime}\right) } \\
&= \sum\left[\left(\tilde{x}^{1} \cdot a\right)\left(\tilde{x}^{2} \mathfrak{b}_{[-1]} \cdot a^{\prime}\right) \ltimes \tilde{x}^{3} \mathfrak{b}_{[0]} \mathfrak{b}^{\prime}\right]\left(a^{\prime \prime} \ltimes \mathfrak{b}^{\prime \prime}\right) \\
&= \sum\left[\left(\tilde{y}_{1}^{1} \tilde{x}^{1} \cdot a\right)\left(\tilde{y}_{2}^{1} \tilde{x}^{2} \mathfrak{b}_{[-1]} \cdot a^{\prime}\right)\right]\left(\tilde{y}^{2} \tilde{x}_{[-1]}^{3} \mathfrak{b}_{[0,-1]} \mathfrak{b}_{[-1]}^{\prime} \cdot a^{\prime \prime}\right) \ltimes \tilde{y}^{3} \tilde{x}_{[0]}^{3} \mathfrak{b}_{[0,0]} \mathfrak{b}_{[0]}^{\prime} \mathfrak{b}^{\prime \prime} \\
&(1.27)= \sum\left(X^{1} \tilde{y}_{1}^{1} \tilde{x}^{1} \cdot a\right)\left[\left(X^{2} \tilde{y}_{2}^{1} \tilde{x}^{2} \mathfrak{b}_{[-1]} \cdot a^{\prime}\right)\left(X^{3} \tilde{y}^{2} \tilde{x}_{[-1]}^{3} \mathfrak{b}_{[0,-1]} \mathfrak{b}_{[-1]}^{\prime} \cdot a^{\prime \prime}\right)\right] \\
& \times \tilde{y}^{3} \tilde{x}_{[0]}^{3} \mathfrak{b}_{[0,0]} \mathfrak{b}_{[0]}^{\prime} \mathfrak{b}^{\prime \prime} \\
&(2.6)= \sum\left(\tilde{x}^{1} \cdot a\right)\left[\left(\tilde{x}_{1}^{2} \tilde{y}^{1} \mathfrak{b}_{[-1]} \cdot a^{\prime}\right)\left(\tilde{x}_{2}^{2} \tilde{y}^{2} \mathfrak{b}_{[0,-1]} \mathfrak{b}_{[-1]}^{\prime} \cdot a^{\prime \prime}\right)\right] \ltimes \tilde{x}^{3} \tilde{y}^{3} \mathfrak{b}_{[0,0]} \mathfrak{b}_{[0]}^{\prime} \mathfrak{b}^{\prime \prime} \\
&(1.5)= \sum\left(\tilde{x}^{1} \cdot a\right)\left\{\left(\tilde{x}^{2} \mathfrak{b}_{[-1]} \cdot\left[\left(\tilde{y}^{1} \cdot a^{\prime}\right)\left(\tilde{y}^{2} \mathfrak{b}_{[-1]}^{\prime} \cdot a^{\prime \prime}\right)\right]\right)\right\} \ltimes \tilde{x}^{3} \mathfrak{b}_{[0]} \tilde{y}^{3} \mathfrak{b}_{[0]}^{\prime} \mathfrak{b}^{\prime \prime} \\
&= \sum(a \ltimes \mathfrak{b})\left[\left(\tilde{y}^{1} \cdot a^{\prime}\right)\left(\tilde{y}^{2} \mathfrak{b}_{[-1]}^{\prime} \cdot a^{\prime \prime}\right) \ltimes \tilde{y}^{3} \mathfrak{b}_{[0]}^{\prime} \mathfrak{b}^{\prime \prime}\right] \\
&=(a \ltimes \mathfrak{b})\left[\left(a^{\prime} \ltimes \mathfrak{b}^{\prime}\right)\left(a^{\prime \prime} \ltimes \mathfrak{b}^{\prime \prime}\right)\right] .
\end{aligned}
$$

It follows from (2.7), (2.8), and (1.29) that $1_{A} \ltimes 1_{\mathfrak{B}}$ is the unit for $A \ltimes \mathfrak{B}$.

Remark 4.2. Let H be a quasi-bialgebra and A a left H-module algebra. Then H is a left H-comodule algebra so it make sense to consider $A \ltimes H$. It is not hard to see that in this case $A \ltimes H$ is just the smash product $A \# H$. For this reason, we will call the algebra $A \ltimes \mathfrak{B}$ in Proposition 4.1 the generalized smash product of A and \mathfrak{B}. In fact, our terminology is in agreement with the terminology used over Hopf algebras, see [9,14].

Let H be a finite-dimensional quasi-bialgebra, $\left(\mathfrak{A}, \rho, \Phi_{\rho}\right)$ a right H-comodule algebra and ($\left.\mathfrak{B}, \lambda, \Phi_{\lambda}\right)$ a left H-comodule algebra. Then the quasi-smash product $\mathfrak{A} \# H^{*}$ is a left H-module algebra, so it makes sense to consider the generalized smash product $\left(\mathfrak{A} \overline{\#} H^{*}\right) \ltimes \mathfrak{B}$. The main result of this section is now the following.

Proposition 4.3. With notation as above, the algebras $\left(\mathfrak{A} \overline{\#} H^{*}\right) \ltimes \mathfrak{B}$ and $\mathfrak{A} \rtimes_{\rho} H^{*} \ltimes \lambda \mathfrak{B}$ coincide.

Proof. Using (4.4), (2.12), and (2.11), we compute that the multiplication on $\left(\mathfrak{A} \overline{\#} H^{*}\right) \ltimes \mathfrak{B}$ is given by

$$
\begin{align*}
& {[(\mathfrak{a} \overline{\#} \varphi) \ltimes \mathfrak{b}]\left[\left(\mathfrak{a}^{\prime} \# \psi\right) \ltimes \mathfrak{b}^{\prime}\right] } \\
&=\sum\left[\tilde{x}_{\lambda}^{1} \cdot(\mathfrak{a} \overline{\#} \varphi)\right]\left[\tilde{x}_{\lambda}^{2} \mathfrak{b}_{[-1]} \cdot\left(\mathfrak{a}^{\prime} \overline{\#} \psi\right)\right] \ltimes \tilde{x}_{\lambda}^{3} \mathfrak{b}_{[0]} \mathfrak{b}^{\prime} \\
&=\sum\left(\mathfrak{a} \overline{\#} \tilde{x}_{\lambda}^{1} \rightharpoonup \varphi\right)\left(\mathfrak{a}^{\prime} \overline{\#} \tilde{x}_{\lambda}^{2} \mathfrak{b}_{[-1]} \rightharpoonup \psi\right) \ltimes \tilde{x}_{\lambda}^{3} \mathfrak{b}_{[0]} \mathfrak{b}^{\prime} \\
&=\sum \mathfrak{a} \mathfrak{a}_{\langle 0\rangle}^{\prime} \tilde{x}_{\rho}^{1} \#\left(\tilde{x}_{\lambda}^{1} \rightharpoonup \varphi \leftharpoonup \mathfrak{a}_{\langle 1}^{\prime} \tilde{x}_{\rho}^{2}\right)\left(\tilde{x}_{\lambda}^{2} \mathfrak{b}_{[-1]} \rightharpoonup \psi \leftharpoonup \tilde{x}_{\rho}^{3}\right) \ltimes \tilde{x}_{\lambda}^{3} \mathfrak{b}_{[0]} \mathfrak{b}^{\prime} \tag{4.5}\\
&(4.2)=\sum \mathfrak{a}\left(\varphi_{1} \triangleright \mathfrak{a}^{\prime}\right) \tilde{x}_{\rho}^{1} \overline{\#}\left(\tilde{x}_{\lambda}^{1} \rightharpoonup \varphi_{2} \leftharpoonup \tilde{x}_{\rho}^{2}\right)\left(\tilde{x}_{\lambda}^{2} \rightharpoonup \psi_{1} \leftharpoonup \tilde{x}_{\rho}^{3}\right) \ltimes \tilde{x}_{\lambda}^{3}\left(\mathfrak{b} \triangleleft \psi_{2}\right) \mathfrak{b}^{\prime}
\end{align*}
$$

for $\mathfrak{a}, \mathfrak{a}^{\prime} \in \mathfrak{A}, \mathfrak{b}, \mathfrak{b}^{\prime} \in \mathfrak{B}$, and $\varphi, \psi \in H^{*}$. This is just the multiplication rule on the two-sided crossed product $\mathfrak{A} \rtimes_{\rho} H^{*} \ltimes \lambda \mathfrak{B}$.

It follows from (4.5) that the two-sided crossed product can be defined in the situation where H is not finite-dimensional. Take $\mathfrak{B}=H$ in Proposition 4.3. From Remark 4.2, we obtain:

Corollary 4.4. Let H be a quasi-bialgebra and $\left(\mathfrak{A}, \rho, \Phi_{\rho}\right)$ a right H-comodule algebra. Then $\left(\mathfrak{A} \overline{\#} H^{*}\right) \# H=\mathfrak{A} \rtimes{ }_{\rho} H^{*} \ltimes{ }_{\Delta} H$ as algebras. In particular, $\left(H \overline{\#} H^{*}\right) \# H=$ $H \rtimes H^{*} \ltimes H$ as algebras.

5. The category of Doi-Hopf modules

5.1. Doi-Hopf modules

Let H be a Hopf algebra over a field k, A an H-comodule algebra, and C an H module coalgebra. A Doi-Hopf module is a k-vector space together with an A-action and a
C-coaction satisfying a certain compatibility relation. They were introduced independently by Doi [14] and Koppinen [20], and it turns out that most types of Hopf modules that had been studied before were special cases: Sweedler's Hopf modules [25], Doi’s relative Hopf modules [13], Takeuchi's relative Hopf modules [27], Yetter-Drinfeld modules, graded modules and modules graded by a G-set.

Over a quasi-Hopf algebra, the category of relative Hopf modules has been introduced and studied [6], as well as the category of Hopf H-bimodules (see [18]), and the category of Hopf modules ${ }_{H}^{H} \mathcal{M}_{H}^{H}$ (see [24]). We will introduce Doi-Hopf modules, and we will show that, at least in the case where H is finite-dimensional, all these categories are isomorphic to certain categories of Doi-Hopf modules. We will also prove that Doi-Hopf modules are special cases of comodules over a coring.

First, we recall from [6] the definition of a relative Hopf module. Let H be a quasibialgebra and C a right H-module coalgebra. Let N be a k-vector space furnished with the following additional structure:

- N is a right H-module; the right action of $h \in H$ on $n \in N$ is denoted by $n h$;
- N is a left C-comodule in the monoidal category \mathcal{M}_{H}; we use the following notation for the left C-coaction on $N: \rho_{N}: N \rightarrow C \otimes N, \rho_{N}(n)=\sum n_{[-1]} \otimes n_{[0]}$; this means that the following conditions hold, for all $n \in N$:

$$
\begin{equation*}
\sum \underline{\varepsilon}\left(n_{[-1]}\right) n_{[0]}=n, \quad\left(\underline{\Delta} \otimes \operatorname{id}_{N}\right)\left(\rho_{N}(n)\right) \Phi^{-1}=\left(\operatorname{id}_{C} \otimes \rho_{N}\right)\left(\rho_{N}(n)\right) ; \tag{5.1}
\end{equation*}
$$

- we have the following compatibility relation, for all $n \in N$ and $c \in C$:

$$
\begin{equation*}
\rho_{N}(n h)=\sum n_{[-1]} \cdot h_{1} \otimes n_{[0]} h_{2} . \tag{5.2}
\end{equation*}
$$

Then N is called a left $[C, H]$-Hopf module. ${ }^{C} \mathcal{M}_{H}$ is the category of left [$\left.C, H\right]$-Hopf modules; the morphisms are right H-linear maps which are also left C-comodule maps. We will now generalize this definition.

Definition 5.1. Let H be a quasi-bialgebra over a field k, C a right H-module coalgebra, and ($\mathfrak{B}, \lambda, \Phi_{\lambda}$) a left H-comodule algebra. A right-left (H, \mathfrak{B}, C)-Hopf module (or Doi-Hopf module) is a k-module N, with the following additional structure: N is right \mathfrak{B}-module (the right action of \mathfrak{b} on n is denoted by $n \mathfrak{b}$), and we have a k-linear map $\rho_{N}: N \rightarrow C \otimes N$, such that the following relations hold, for all $n \in N$ and $\mathfrak{b} \in \mathfrak{B}$:

$$
\begin{gather*}
\left(\underline{\Delta} \otimes \operatorname{id}_{N}\right)\left(\rho_{N}(n)\right)=\left(\operatorname{id}_{C} \otimes \rho_{N}\right)\left(\rho_{N}(n)\right) \Phi_{\lambda}, \tag{5.3}\\
\left(\underline{\varepsilon} \otimes \operatorname{id}_{N}\right)\left(\rho_{N}(n)\right)=n, \tag{5.4}\\
\rho_{N}(n \mathfrak{b})=\sum n_{[-1]} \cdot \mathfrak{b}_{[-1]} \otimes n_{[0]} \mathfrak{b}_{[0]} . \tag{5.5}
\end{gather*}
$$

As usual, we use the Sweedler-type notation $\left.\rho_{N}(n)=\sum n_{[-1]} \otimes n_{[0] .}{ }^{C} \mathcal{M}(H)\right)_{\mathfrak{B}}$ is the category of right-left (H, \mathfrak{B}, C)-Hopf modules and right \mathfrak{B}-linear, left C-colinear k-linear maps.

Obviously, if $\mathfrak{B}=H, \lambda=\Delta$, and $\Phi_{\lambda}=\Phi$, then ${ }^{C} \mathcal{M}(H)_{\mathfrak{B}}={ }^{C} \mathcal{M}_{H}$.
The main aim of Section 6 will be to define the category of two-sided two-cosided Hopf modules over a quasi-bialgebra and to prove that it is isomorphic to a module category in the finite-dimensional case. To this end, we will need our next result, stating that the category of Doi-Hopf modules is a module category in the case where the coalgebra C is finite-dimensional. In fact, for an arbitrary right H-module coalgebra C, the linear dual space of C, C^{*}, is a left H-module algebra. The multiplication of C^{*} is the convolution, that is $\left(c^{*} d^{*}\right)(c)=\sum c^{*}\left(c_{1}\right) d^{*}\left(c_{2}\right)$, the unit is $\underline{\varepsilon}$ and the left H-module structure is given by $\left(h \rightharpoonup c^{*}\right)(c)=c^{*}(c \cdot h)$, for $h \in H, c^{*}, d^{*} \in C^{*}, c \in C$. Thus C^{*} is a left H-module algebra and ($\mathfrak{B}, \lambda, \Phi_{\lambda}$) is a left H-comodule algebra. By Proposition 4.1, it makes sense to consider the generalized smash product algebra $C^{*} \ltimes \mathfrak{B}$.

Proposition 5.2. Let H be a quasi-bialgebra, C a finite-dimensional right H-module coalgebra and $\left(\mathfrak{B}, \lambda, \Phi_{\lambda}\right)$ a left H-comodule algebra. Then the category ${ }^{C} \mathcal{M}(H)_{\mathfrak{B}}$ of right-left (H, \mathfrak{B}, C)-Hopf modules is isomorphic to the category $\mathcal{M}_{C^{*} \mathfrak{B}}$ of right modules over $C^{*} \ltimes \mathfrak{B}$.

Proof. We restrict ourselves to defining the functors that demonstrate the isomorphism of categories, leaving all other details to the reader. Let $\left\{c_{i}\right\}_{i=\overline{1, n}}$ and $\left\{c^{i}\right\}_{i=\overline{1, n}}$ be dual bases in C and C^{*}.

Let N be a right $C^{*} \ltimes \mathfrak{B}$-module. Since $\mathbf{i}: \mathfrak{B} \rightarrow C^{*} \ltimes \mathfrak{B}, \mathbf{i}(\mathfrak{b})=\underline{\varepsilon} \ltimes \mathfrak{b}$ for $\mathfrak{b} \in \mathfrak{B}$, is an algebra map, it follows that N is a right \mathfrak{B}-module via the action $n \mathfrak{b}=n \mathbf{i}(\mathfrak{b})=n(\underline{\varepsilon}<\mathfrak{b})$, $n \in N, \mathfrak{b} \in \mathfrak{B}$. The map $j: C^{*} \rightarrow C^{*} \ltimes \mathfrak{B}, j\left(c^{*}\right)=c^{*} \ltimes 1_{\mathfrak{B}}, c^{*} \in C^{*}$, is not an algebra map (it is not multiplicative) but it can be used to define a left C-coaction on N :

$$
\begin{equation*}
\rho_{N}(n)=\sum n_{[-1]} \otimes n_{[0]}=\sum_{i=1}^{n} c_{i} \otimes n j\left(c^{i}\right)=\sum_{i=1}^{n} c_{i} \otimes n\left(c^{i} \ltimes 1_{\mathfrak{B}}\right) . \tag{5.6}
\end{equation*}
$$

We can easily check that N becomes an object in ${ }^{C} \mathcal{M}(H)_{\mathfrak{B}}$.
Conversely, take $N \in{ }^{C} \mathcal{M}(H)_{\mathfrak{B}}$. Then N is a right \mathfrak{B}-module and C^{*} acts on M from the right as follows: let $n c^{*}=\sum c^{*}\left(n_{[-1]}\right) n_{[0]}, n \in N, c^{*} \in C^{*}$. Now define

$$
\begin{equation*}
n\left(c^{*} \ltimes \mathfrak{b}\right)=\left(n c^{*}\right) \mathfrak{b}=\sum c^{*}\left(n_{[-1]}\right) n_{[0]} \mathfrak{b} \tag{5.7}
\end{equation*}
$$

Then N becomes a right $C^{*} \ltimes \mathfrak{B}$-module.

5.2. Doi-Hopf modules and comodules over a coring

Now, we will show that the category of right-left Doi-Hopf modules is isomorphic to a category of right comodules over a certain coring. Let us first recall the definition of a coring.

Let R be a ring (with unit). An R-coring \mathcal{C} is an R-bimodule together with two R-bimodule maps

$$
\Delta_{\mathcal{C}}: \mathcal{C} \rightarrow \mathcal{C} \otimes_{R} \mathcal{C} \quad \text { and } \quad \varepsilon_{\mathcal{C}}: \mathcal{C} \rightarrow R
$$

such that the usual coassociativity and counit properties hold; that means:

$$
\begin{gathered}
\left(\Delta_{\mathcal{C}} \otimes_{R} \mathrm{id}_{\mathcal{C}}\right) \circ \Delta_{\mathcal{C}}=\left(\operatorname{id}_{\mathcal{C}} \otimes_{R} \Delta_{\mathcal{C}}\right) \circ \Delta_{\mathcal{C}} \\
\left(\varepsilon_{\mathcal{C}} \otimes_{R} \mathrm{id}_{\mathcal{C}}\right) \circ \Delta_{\mathcal{C}}=\left(\operatorname{id}_{\mathcal{C}} \otimes_{R} \varepsilon_{\mathcal{C}}\right) \circ \Delta_{\mathcal{C}}=\operatorname{id}_{C}
\end{gathered}
$$

A right \mathcal{C}-comodule is a right R-module M together with a right R-linear map $\rho^{r}: M \rightarrow$ $M \otimes{ }_{R} \mathcal{C}$ such that

$$
\begin{gather*}
\left(\rho^{r} \otimes_{R} \operatorname{id}_{\mathcal{C}}\right) \circ \rho^{r}=\left(\mathrm{id}_{M} \otimes_{R} \Delta_{\mathcal{C}}\right) \circ \rho^{r}, \tag{5.8}\\
\left(\mathrm{id}_{M} \otimes_{R} \varepsilon_{\mathcal{C}}\right) \circ \rho^{r}=\operatorname{id}_{M} . \tag{5.9}
\end{gather*}
$$

A map $\mathfrak{h}: M \rightarrow N$ between two right \mathcal{C}-comodules is called a \mathcal{C}-comodule map if \mathfrak{h} is a right R-module map and $\rho^{r} \circ \mathfrak{h}=\left(\mathfrak{h} \otimes_{R} \mathrm{id}_{\mathcal{C}}\right) \circ \rho^{r}$. We denote by $\mathcal{M}^{\mathcal{C}}$ the category of right \mathcal{C}-comodules and \mathcal{C}-comodule maps. We will use the Sweedler notation for corings and comodules over corings:

$$
\Delta_{\mathcal{C}}(c)=\sum c_{(1)} \otimes_{R} c_{(2)}, \quad \rho^{r}(m)=\sum m_{(0)} \otimes_{R} m_{(1)}
$$

Lemma 5.3. Let H be a quasi-bialgebra, $\left(\mathfrak{B}, \lambda, \Phi_{\lambda}\right)$ a left H-comodule algebra, and C a right H-module coalgebra. Then $\mathcal{C}:=\mathfrak{B} \otimes C$ is a \mathfrak{B}-coring. First, \mathcal{C} is a \mathfrak{B}-bimodule via

$$
\begin{equation*}
\mathfrak{b}\left(\mathfrak{b}^{\prime} \otimes c\right)=\mathfrak{b b}^{\prime} \otimes c \quad \text { and } \quad(\mathfrak{b} \otimes c) \mathfrak{b}^{\prime}=\sum \mathfrak{b b}_{[0]}^{\prime} \otimes c \cdot \mathfrak{b}_{[-1]}^{\prime} \tag{5.10}
\end{equation*}
$$

for all $\mathfrak{b}, \mathfrak{b}^{\prime} \in \mathfrak{B}$ and $c \in C$. Secondly, for all $\mathfrak{b} \in \mathfrak{B}$ and $c \in C$, the two \mathfrak{B}-bimodule maps are defined by

$$
\begin{gather*}
\Delta_{\mathcal{C}}(\mathfrak{b} \otimes c)=\sum\left(\mathfrak{b} \tilde{x}^{3} \otimes c_{\underline{2}} \cdot \tilde{x}^{2}\right) \otimes_{\mathfrak{B}}\left(1_{\mathfrak{B}} \otimes c_{\underline{1}} \cdot \tilde{x}^{1}\right), \tag{5.11}\\
\varepsilon_{\mathcal{C}}(\mathfrak{b} \otimes c)=\underline{\varepsilon}(c) \mathfrak{b} . \tag{5.12}
\end{gather*}
$$

Proof. Since \mathfrak{B} is an associative unital algebra and $\lambda: \mathfrak{B} \rightarrow H \otimes \mathfrak{B}$ is an algebra map, it follows that $\mathfrak{B} \otimes C$ is a \mathfrak{B}-bimodule via the actions defined in (5.10). Also, it is not hard to see that $\varepsilon_{\mathcal{C}}$ is a \mathfrak{B}-bimodule map. The fact that $\Delta_{\mathcal{C}}$ is left \mathfrak{B}-linear is straightforward. It is also right \mathfrak{B}-linear since

$$
\begin{aligned}
\Delta_{\mathcal{C}}\left((\mathfrak{b} \otimes c) \mathfrak{b}^{\prime}\right) & =\sum \Delta_{\mathcal{C}}\left(\mathfrak{b} \mathfrak{b}_{[0]}^{\prime} \otimes c \cdot \mathfrak{b}_{[-1]}^{\prime}\right) \\
(1.33) & =\sum\left(\mathfrak{b} \mathfrak{b}_{[0]}^{\prime} \tilde{x}^{3} \otimes c_{\underline{2}} \cdot \mathfrak{b}_{[-1]_{2}}^{\prime} \tilde{x}^{2}\right) \otimes_{\mathfrak{B}}\left(1_{\mathfrak{B}} \otimes c_{\underline{1}} \cdot \mathfrak{b}_{[-1]_{1}}^{\prime} \tilde{x}^{1}\right) \\
{ }_{(5.10)}^{(2.5)}= & \sum\left(\tilde{b}^{3} \otimes c_{\underline{2}} \cdot \tilde{x}^{2}\right) \mathfrak{b}_{[0]}^{\prime} \otimes_{\mathfrak{B}}\left(1_{\mathfrak{B}} \otimes c_{\underline{1}} \cdot \tilde{x}^{1} \mathfrak{b}_{[-1]}^{\prime}\right) \\
& =\sum\left(\mathfrak{b} \tilde{x}^{3} \otimes c_{\underline{2}} \cdot \tilde{x}^{2}\right) \otimes_{\mathfrak{B}}\left(\mathfrak{b}_{[0]}^{\prime} \otimes c_{\underline{1}} \cdot \tilde{x}^{1} \mathfrak{b}_{[-1]}^{\prime}\right) \\
(5.10)= & \sum\left(\mathfrak{b} \tilde{x}^{3} \otimes c_{\underline{2}} \cdot \tilde{x}^{2}\right) \otimes_{\mathfrak{B}}\left(1_{\mathfrak{B}} \otimes c_{\underline{1}} \cdot \tilde{x}^{1}\right) \mathfrak{b}^{\prime}=\Delta_{\mathcal{C}}(\mathfrak{b} \otimes c) \mathfrak{b}^{\prime}
\end{aligned}
$$

for all $\mathfrak{b}, \mathfrak{b}^{\prime} \in \mathfrak{B}$ and $c \in C$. Now, for all $\mathfrak{b} \in \mathfrak{B}$ and $c \in C$, we have that

$$
\begin{aligned}
& \left(\Delta_{\mathcal{C}} \otimes_{\mathfrak{B}} \operatorname{id}_{\mathcal{C}}\right)\left(\Delta_{\mathcal{C}}(\mathfrak{b} \otimes c)\right) \\
& =\sum \Delta_{\mathcal{C}}\left(\mathfrak{b} \tilde{x}^{3} \otimes c_{\underline{2}} \cdot \tilde{x}^{2}\right) \otimes_{\mathfrak{B}}\left(1_{\mathfrak{B}} \otimes c_{\underline{1}} \cdot \tilde{x}^{1}\right) \\
& { }_{(1.33)}=\sum\left(\mathfrak{b} \tilde{x}^{3} \tilde{y}^{3} \otimes c_{(\underline{2}, 2)} \cdot \tilde{x}_{2}^{2} \tilde{y}^{2}\right) \otimes_{\mathfrak{B}}\left(1_{\mathfrak{B}} \otimes c_{(\underline{2}, 1)} \cdot \tilde{x}_{1}^{2} \tilde{y}^{1}\right) \otimes_{\mathfrak{B}}\left(1_{\mathfrak{B}} \otimes c_{\underline{1}} \cdot \tilde{x}^{1}\right) \\
& { }^{(1.32)}=\sum\left(\mathfrak{b} \tilde{x}^{3} \tilde{y}^{3} \otimes c_{\underline{2}} \cdot x^{3} \tilde{x}_{2}^{2} \tilde{y}^{2}\right) \otimes_{\mathfrak{B}}\left(1_{\mathfrak{B}} \otimes c_{(\underline{1,2)}} \cdot x^{2} \tilde{x}_{1}^{2} \tilde{y}^{1}\right) \otimes_{\mathfrak{B}}\left(1_{\mathfrak{B}} \otimes c_{(1,1)} \cdot x^{1} \tilde{x}^{1}\right) \\
& { }^{(2.6)}=\sum\left(\mathfrak{b} \tilde{x}^{3} \tilde{y}_{[0]}^{3} \otimes c_{\underline{2}} \cdot \tilde{x}^{2} \tilde{y}_{[-1]}^{3}\right) \otimes_{\mathfrak{B}}\left(1_{\mathfrak{B}} \otimes c_{(\underline{1}, 2)} \cdot \tilde{x}_{2}^{1} \tilde{y}^{2}\right) \otimes_{\mathfrak{B}}\left(1_{\mathfrak{B}} \otimes c_{(1,1)} \cdot \tilde{x}_{1}^{1} \tilde{y}^{1}\right) \\
& { }^{(5.10)}=\sum\left(\mathfrak{b} \tilde{x}^{3} \otimes c_{\underline{2}} \cdot \tilde{x}^{2}\right) \otimes_{\mathfrak{B}}\left(\tilde{y}^{3} \otimes c_{(\underline{1}, 2)} \cdot \tilde{x}_{2}^{1} \tilde{y}^{2}\right) \otimes_{\mathfrak{B}}\left(1_{\mathfrak{B}} \otimes c_{(1,1)} \cdot \tilde{x}_{1}^{1} \tilde{y}^{1}\right) \\
& { }_{(5.11)}^{(1.33)}=\sum\left(\mathfrak{b} \tilde{x}^{3} \otimes c_{\underline{2}} \cdot \tilde{x}^{2}\right) \otimes_{\mathfrak{B}} \Delta_{\mathcal{C}}\left(1_{\mathfrak{B}} \otimes c_{\underline{1}} \cdot \tilde{x}^{1}\right)=\left(\mathrm{id}_{\mathcal{C}} \otimes_{\mathfrak{B}} \Delta_{\mathcal{C}}\right)\left(\Delta_{\mathcal{C}}(\mathfrak{b} \otimes c)\right),
\end{aligned}
$$

as needed. It is easy to see that $\varepsilon_{\mathcal{C}}$ is the counit for $\Delta_{\mathcal{C}}$, so the proof is finished.
We can now prove the following theorem.
Theorem 5.4. Let H be a quasi-bialgebra, $\left(\mathfrak{B}, \lambda, \Phi_{\lambda}\right)$ a left H-comodule algebra, and C a right H-module coalgebra. If $\mathcal{C}=\mathfrak{B} \otimes C$ is the \mathfrak{B}-coring defined in Lemma 5.3, then the category of right-left Doi-Hopf modules ${ }^{C} \mathcal{M}(H)_{\mathfrak{B}}$ is isomorphic to the category of right \mathcal{C}-comodules, $\mathcal{M}^{\mathcal{C}}$.

Proof. If $M \in \mathcal{M}^{\mathcal{C}}$ then we adopt a similar notation as the one used in the proof of Theorem 3.7. Namely, if $M \in \mathcal{M}^{\mathcal{C}}$ with $\rho^{r}: M \rightarrow M \otimes_{\mathfrak{B}}(\mathfrak{B} \otimes C)$, then we set

$$
\rho^{r}(m)=\sum m_{(0)} \otimes_{\mathfrak{B}}\left(m_{(1)^{\mathfrak{B}}} \otimes m_{(1)^{c}}\right) \quad \forall m \in M .
$$

With this notation, the fact that ρ^{r} is right \mathfrak{B}-linear means

$$
\sum(m \mathfrak{b})_{(0)} \otimes_{\mathfrak{B}}\left((m \mathfrak{b})_{(0)^{\mathfrak{B}}} \otimes(m \mathfrak{b})_{(1)^{c}}\right)=\sum m_{(0)} \otimes_{\mathfrak{B}}\left(m_{(1)^{\mathfrak{B}}} \mathfrak{b}_{[0]} \otimes m_{(1)^{c}} \cdot \mathfrak{b}_{[-1]}\right)
$$

for all $m \in M$ and $\mathfrak{b} \in \mathfrak{B}$, and this is equivalent to

$$
\begin{equation*}
\sum(m \mathfrak{b})_{(0)}(m \mathfrak{b})_{(0)^{\mathfrak{B}}} \otimes(m \mathfrak{b})_{(1)^{C}}=\sum m_{(0)^{\prime}} m_{(1)^{\mathfrak{B}}} \mathfrak{b}_{[0]} \otimes m_{(1)^{C}} \cdot \mathfrak{b}_{[-1]} \tag{5.13}
\end{equation*}
$$

for all $m \in M$ and $\mathfrak{b} \in \mathfrak{B}$. Similarly, in this particular case, the relations (5.8) and (5.9) reduce to

$$
\begin{gather*}
\sum m_{(0)_{(0)}} m_{(0)_{(1)^{\mathfrak{B}}} m_{(1)_{[0]}^{\mathfrak{B}}} \otimes m_{(0)_{(1)}^{C}} \cdot m_{(1)_{[-1]}^{\mathfrak{B}}} \otimes m_{(1)^{C}}}=\sum m_{(0)} m_{(1)^{\mathfrak{B}}} \tilde{x}^{3} \otimes m_{(1)_{\underline{2}}^{C}} \cdot \tilde{x}^{2} \otimes m_{(1)_{\underline{1}}^{C}} \cdot \tilde{x}^{1}, \\
\sum \underline{\varepsilon}\left(m_{\left.(1)^{C}\right)} m_{(0)} m_{(1) \mathfrak{B}}=m,\right. \tag{5.14}
\end{gather*}
$$

for all $\mathfrak{b} \in \mathfrak{B}$ and $m \in M$. Now, if we define

$$
\rho_{M}: M \rightarrow C \otimes M, \quad \rho_{M}(m)=\sum m_{(1)^{c}} \otimes m_{(0)} m_{(1)^{\mathfrak{B}}} \quad \forall m \in M,
$$

then (5.13) implies that $\rho_{M}(m \mathfrak{b})=\rho_{M}(m) \lambda(\mathfrak{b})$ for all $m \in M$ and $\mathfrak{b} \in \mathfrak{B}$, and (5.15) implies that $\left(\underline{\varepsilon} \otimes \mathrm{id}_{M}\right) \circ \rho_{M}=\mathrm{id}_{M}$, respectively. Thus, $M \in{ }^{C} \mathcal{M}(H)_{\mathfrak{B}}$ since

$$
\begin{aligned}
\left(\operatorname{id}_{C} \otimes \rho_{M}\right)\left(\rho_{M}(m)\right) & =\sum m_{(1)^{C}} \otimes \rho_{M}\left(m_{(0)} m_{(1)^{\mathfrak{B}}}\right) \\
(5.13) & =\sum m_{(1)^{c}} \otimes m_{(0)_{(1) C}^{C}} \cdot m_{(1)_{[-1]}^{\mathfrak{B}}} \otimes m_{(0)_{(0)}{ }^{(0)}{ }_{(0){ }_{(1) \mathfrak{B}}} m_{(1)_{[0]}^{\mathfrak{B}}}}^{(5.14)}=\sum m_{(1)_{\underline{1}}^{C}} \cdot \tilde{x}^{1} \otimes m_{(1)_{\underline{2}}^{C}} \cdot \tilde{x}^{2} \otimes m_{(0)} m_{(1)^{\mathfrak{B}}} \tilde{x}^{3} \\
& =\left(\underline{\Delta} \otimes \operatorname{id}_{M}\right)\left(\rho_{M}(m)\right) \Phi_{\lambda}^{-1}
\end{aligned}
$$

for all $m \in M$, as needed. Therefore, we have a functor $\mathfrak{F}: \mathcal{M}^{\mathcal{C}} \rightarrow{ }^{C} \mathcal{M}(H)_{\mathfrak{B}}$ which acts on objects as above and sends a morphism to itself (the verification of the fact that a morphism in $\mathcal{M}^{\mathcal{C}}$ becomes a morphism in ${ }^{C} \mathcal{M}(H)_{\mathfrak{B}}$ is left to the reader). Conversely, if $M \in{ }^{C} \mathcal{M}(H)_{\mathfrak{B}}$ with $\rho_{M}(m)=\sum m_{[-1]} \otimes m_{[0]}, m \in M$, then we define

$$
\rho^{r}: M \rightarrow M \otimes_{\mathfrak{B}}(\mathfrak{B} \otimes C), \quad \rho^{r}(m)=\sum m_{[0]} \otimes_{\mathfrak{B}}\left(1_{\mathfrak{B}} \otimes m_{[-1]}\right) \quad \forall m \in M .
$$

It is not hard to see that in this way the right \mathfrak{B}-module M becomes a right \mathcal{C}-comodule, i.e. the relations (5.13)-(5.15) hold. So we also have a functor $\left.\mathfrak{G}:^{C} \mathcal{M}(H)\right)_{\mathfrak{B}} \rightarrow \mathcal{M}^{\mathcal{C}}$ (\mathfrak{G} sends a morphism to itself). Finally, it is routine to check that \mathfrak{F} and \mathfrak{G} are inverses; we leave the details to the reader.

6. Two-sided two-cosided Hopf modules

Now we define the category of two-sided two-cosided Hopf modules ${ }_{H}^{C} \mathcal{M}_{\mathbb{A}}^{H}$. If H is finite-dimensional, then this category is isomorphic to a certain category of right-left DoiHopf modules, ${ }^{C} \mathcal{M}\left(H \otimes H^{\mathrm{op}}\right)_{\left(\mathbb{A} \tilde{\#} H^{*}\right) \# H}$. As a consequence, if C is also finite-dimensional then this category is isomorphic to the category of right modules over a generalized smash product, by Proposition 5.2.

Definition 6.1 [16, Definition 8.2]. Let H be a quasi-bialgebra. An H-bicomodule algebra \mathbb{A} is a quintuple ($\mathbb{A}, \lambda, \rho, \Phi_{\lambda}, \Phi_{\rho}, \Phi_{\lambda, \rho}$), where λ and ρ are left and right H-coactions on \mathbb{A}, and where $\Phi_{\lambda} \in H \otimes H \otimes \mathbb{A}, \Phi_{\rho} \in \mathbb{A} \otimes H \otimes H$, and $\Phi_{\lambda, \rho} \in H \otimes \mathbb{A} \otimes H$ are invertible elements, such that

- $\left(\mathbb{A}, \lambda, \Phi_{\lambda}\right)$ is a left H-comodule algebra,
- ($\mathbb{A}, \rho, \Phi_{\rho}$) is a right H-comodule algebra,
- the following compatibility relations hold, for all $a \in \mathbb{A}$:

$$
\begin{array}{r}
\Phi_{\lambda, \rho}(\lambda \otimes \mathrm{id})(\rho(a))=(\mathrm{id} \otimes \rho)(\lambda(a)) \Phi_{\lambda, \rho}, \\
\left(1_{H} \otimes \Phi_{\lambda, \rho}\right)(\mathrm{id} \otimes \lambda \otimes \mathrm{id})\left(\Phi_{\lambda, \rho}\right)\left(\Phi_{\lambda} \otimes 1_{H}\right) \\
=(\mathrm{id} \otimes \mathrm{id} \otimes \rho)\left(\Phi_{\lambda}\right)(\Delta \otimes \mathrm{id} \otimes \mathrm{id})\left(\Phi_{\lambda, \rho}\right), \\
\left(1_{H} \otimes \Phi_{\rho}\right)(\mathrm{id} \otimes \rho \otimes \mathrm{id})\left(\Phi_{\lambda, \rho}\right)\left(\Phi_{\lambda, \rho} \otimes 1_{H}\right) \\
=(\mathrm{id} \otimes \mathrm{id} \otimes \Delta)\left(\Phi_{\lambda, \rho}\right)(\lambda \otimes \mathrm{id} \otimes \mathrm{id})\left(\Phi_{\rho}\right) . \tag{6.3}
\end{array}
$$

It was pointed out in [16] that the following additional relations hold in an H-bicomodule algebra \mathbb{A} :

$$
\begin{equation*}
\left(\operatorname{id}_{H} \otimes \operatorname{id}_{\mathbb{A}} \otimes \varepsilon\right)\left(\Phi_{\lambda, \rho}\right)=1_{H} \otimes 1_{\mathbb{A}}, \quad\left(\varepsilon \otimes \operatorname{id}_{\mathbb{A}} \otimes \operatorname{id}_{H}\right)\left(\Phi_{\lambda, \rho}\right)=1_{\mathbb{A}} \otimes 1_{H} \tag{6.4}
\end{equation*}
$$

As the first example, take $\mathbb{A}=H, \lambda=\rho=\Delta$, and $\Phi_{\lambda}=\Phi_{\rho}=\Phi_{\lambda, \rho}=\Phi$. Related to the left and right comodule algebra structures of \mathbb{A}, we will keep the notation of the previous sections. We will use the following notation:

$$
\begin{gathered}
\Phi_{\lambda, \rho}=\sum \Omega^{1} \otimes \Omega^{2} \otimes \Omega^{3}=\sum \bar{\Omega}^{1} \otimes \bar{\Omega}^{2} \otimes \bar{\Omega}^{3}=\cdots \quad \text { and } \\
\Phi_{\lambda, \rho}^{-1}=\sum \omega^{1} \otimes \omega^{2} \otimes \omega^{3}=\sum \bar{\omega}^{1} \otimes \bar{\omega}^{2} \otimes \bar{\omega}^{3}=\cdots
\end{gathered}
$$

If H is a quasi-bialgebra, then the opposite algebra H^{op} is also a quasi-bialgebra. The reassociator of H^{op} is $\Phi_{\mathrm{op}}=\Phi^{-1} . H \otimes H^{\mathrm{op}}$ is also a quasi-bialgebra with reassociator

$$
\begin{equation*}
\Phi_{H \otimes H^{\mathrm{op}}}=\sum\left(X^{1} \otimes x^{1}\right) \otimes\left(X^{2} \otimes x^{2}\right) \otimes\left(X^{3} \otimes x^{3}\right) \tag{6.5}
\end{equation*}
$$

If we identify $H \otimes H^{\text {op }}$-modules and (H, H)-bimodules, then the category of (H, H) bimodules, $H_{H} \mathcal{M}_{H}$, is monoidal. The associativity constraints are given by $\mathbf{a}_{U, V, W}{ }^{\prime}$: $(U \otimes V) \otimes W \rightarrow U \otimes(V \otimes W)$, where

$$
\begin{equation*}
\mathbf{a}_{U, V, W}^{\prime}((u \otimes v) \otimes w)=\Phi \cdot(u \otimes(v \otimes w)) \cdot \Phi^{-1} \tag{6.6}
\end{equation*}
$$

for all $U, V, W \in{ }_{H} \mathcal{M}_{H}, u \in U, v \in V$, and $w \in W$. A coalgebra in the category of (H, H)-bimodules will be called an H-bimodule coalgebra. More precisely, an H bimodule coalgebra C is an (H, H)-bimodule (denote the actions by $h \cdot c$ and $c \cdot h$) with a comultiplication $\underline{\Delta}: C \rightarrow C \otimes C$ and a counit $\underline{\varepsilon}: C \rightarrow k$ satisfying the following relations, for all $c \in C$ and $h \in H$:

$$
\begin{gather*}
\Phi \cdot\left(\underline{\Delta} \otimes \mathrm{id}_{C}\right)(\underline{\Delta}(c)) \cdot \Phi^{-1}=\left(\mathrm{id}_{C} \otimes \underline{\Delta}\right)(\underline{\Delta}(c)), \tag{6.7}\\
\underline{\Delta}(h \cdot c)=\sum h_{1} \cdot c_{\underline{1}} \otimes h_{2} \cdot c_{\underline{2}}, \quad \underline{\Delta}(c \cdot h)=\sum c_{\underline{1}} \cdot h_{1} \otimes c_{\underline{2}} \cdot h_{2}, \tag{6.8}\\
\left(\underline{\varepsilon} \otimes \mathrm{id}_{C}\right) \circ \underline{\Delta}=\left(\operatorname{id}_{C} \otimes \underline{\varepsilon}\right) \circ \underline{\Delta}=\mathrm{id}_{C}, \tag{6.9}
\end{gather*}
$$

$$
\begin{equation*}
\underline{\varepsilon}(h \cdot c)=\varepsilon(h) \underline{\varepsilon}(c), \quad \underline{\varepsilon}(c \cdot h)=\underline{\varepsilon}(c) \varepsilon(h) \tag{6.10}
\end{equation*}
$$

where we used the same Sweedler-type notation as before. An H-bimodule coalgebra C becomes a right $H \otimes H^{\mathrm{op}}$-module coalgebra via the right $H \otimes H^{\mathrm{op}}$-action

$$
\begin{equation*}
c \cdot\left(h \otimes h^{\prime}\right)=h^{\prime} \cdot c \cdot h \tag{6.11}
\end{equation*}
$$

for $c \in C$ and $h, h^{\prime} \in H$. Our next definition extends the definition of two-sided twocosided Hopf modules from [24].

Definition 6.2. Let H be a quasi-bialgebra, ($\mathbb{A}, \lambda, \rho, \Phi_{\lambda}, \Phi_{\rho}, \Phi_{\lambda, \rho}$) an H-bicomodule algebra, and C an H-bimodule coalgebra. A two-sided two-cosided (H, \mathbb{A}, C)-Hopf module is a k-vector space with the following additional structure:

- N is an (H, \mathbb{A})-two-sided Hopf module, i.e. $N \in{ }_{H} \mathcal{M}_{\mathbb{A}}^{H}$; we write \succ for the left H-action, \prec for the right \mathbb{A}-action, and $\rho_{N}^{H}(n)=\sum n_{(0)} \otimes n_{(1)}$ for the right H-coaction on $n \in N$;
- we have k-linear map $\rho_{N}^{C}: N \rightarrow C \otimes N, \rho_{N}^{C}(n)=\sum n_{[-1]} \otimes n_{[0]}$, called the left C-coaction on N, such that $\sum \underline{\varepsilon}\left(n_{[-1]}\right) n_{[0]}=n$ and

$$
\begin{equation*}
\Phi\left(\underline{\Delta} \otimes \operatorname{id}_{N}\right)\left(\rho_{N}^{C}(n)\right)=\left(\operatorname{id}_{C} \otimes \rho_{N}^{C}\right)\left(\rho_{N}^{C}(n)\right) \Phi_{\lambda} \tag{6.12}
\end{equation*}
$$

for all $n \in N$;

- N is a (C, H)-"bicomodule," in the sense that, for all $n \in N$,

$$
\begin{equation*}
\Phi\left(\rho_{N}^{C} \otimes \operatorname{id}_{H}\right)\left(\rho_{N}^{H}(n)\right)=\left(\operatorname{id}_{C} \otimes \rho_{N}^{H}\right)\left(\rho_{N}^{C}(n)\right) \Phi_{\lambda, \rho} ; \tag{6.13}
\end{equation*}
$$

- the following compatibility relations hold:

$$
\begin{align*}
& \rho_{N}^{C}(h \succ n)=\sum h_{1} \cdot n_{[-1]} \otimes h_{2} \succ n_{[0]}, \tag{6.14}\\
& \rho_{N}^{C}(n \prec a)=\sum n_{[-1]} \cdot a_{[-1]} \otimes n_{[0]} \prec a_{[0]} \tag{6.15}
\end{align*}
$$

for all $h \in H, n \in N$, and $a \in \mathbb{A}$.
${ }_{H}^{C} \mathcal{M}_{\mathbb{A}}^{H}$ will be the category of two-sided two-cosided Hopf modules and maps preserving the actions by H and \mathbb{A} and the coactions by H and C.

Let H be a quasi-Hopf algebra, \mathbb{A} an H-bicomodule algebra, and C an H-bimodule coalgebra. If H is finite-dimensional, then the category ${ }_{H}^{C} \mathcal{M}_{\mathbb{A}}^{H}$ is isomorphic to a certain category of Doi-Hopf modules. In order to prove this, we first need some lemmas.

Lemma 6.3. Let H be a quasi-Hopf algebra and $\left(\mathbb{A}, \lambda, \rho, \Phi_{\lambda}, \Phi_{\rho}, \Phi_{\lambda, \rho}\right)$ an H-bicomodule algebra. Consider the map

$$
\wp:\left(\mathbb{A} \overline{\#} H^{*}\right) \# H \rightarrow\left(H \otimes H^{\mathrm{op}}\right) \otimes\left(\mathbb{A} \overline{\#} H^{*}\right) \# H
$$

given by

$$
\begin{equation*}
\wp((a \overline{\#} \varphi) \# h)=\sum a_{[-1]} \omega^{1} \otimes S\left(y^{3} h_{2}\right) \otimes\left(a_{[0]} \omega^{2} \overline{\#} y^{1} \rightharpoonup \varphi \leftharpoonup \omega^{3}\right) \# y^{2} h_{1} \tag{6.16}
\end{equation*}
$$

for any $a \in \mathbb{A}, \varphi \in H^{*}$, and $h \in H$, where $\Phi_{\lambda, \rho}^{-1}=\sum \omega^{1} \otimes \omega^{2} \otimes \omega^{3}$. Set

$$
\begin{equation*}
\Phi_{\wp}=\sum\left(\widetilde{X}_{\lambda}^{1} \otimes g^{1} S\left(x^{3}\right)\right) \otimes\left(\widetilde{X}_{\lambda}^{2} \otimes g^{2} S\left(x^{2}\right)\right) \otimes\left(\widetilde{X}_{\lambda}^{3} \# \varepsilon\right) \# x^{1} \tag{6.17}
\end{equation*}
$$

where $f^{-1}=\sum g^{1} \otimes g^{2}$ is the element defined in (1.16). Then $\left(\left(\mathbb{A} \overline{\#} H^{*}\right) \# H, \wp, \Phi_{\wp}\right)$ is a left $H \otimes H^{\mathrm{op}}$-comodule algebra.

Proof. We first show that \wp is an algebra map. Using (1.30) and (2.11), we can easily show that the multiplication on $\left(\mathbb{A} \overline{\#} H^{*}\right) \# H$ is given by

$$
\begin{align*}
& ((a \overline{\#} \varphi) \# h)\left(\left(a^{\prime} \overline{\#} \psi\right) \# h^{\prime}\right) \\
& \quad=\sum\left[a a_{\langle 0\rangle}^{\prime} \tilde{x}_{\rho}^{1} \overline{\#}\left(x^{1} \rightharpoonup \varphi \leftharpoonup a_{\langle 1\rangle}^{\prime} \tilde{x}_{\rho}^{2}\right)\left(x^{2} h_{1} \rightharpoonup \psi \leftharpoonup \tilde{x}_{\rho}^{3}\right)\right] \# x^{3} h_{2} h^{\prime} \tag{6.18}
\end{align*}
$$

for all $a, a^{\prime} \in \mathbb{A}, \varphi, \psi \in H^{*}$, and $h, h^{\prime} \in H$. Therefore

$$
\begin{aligned}
& \wp\left(((a \overline{\#} \varphi) \# h)\left(\left(a^{\prime} \# \psi\right) \# h^{\prime}\right)\right) \\
& =\sum a_{[-1]} a_{\langle 0\rangle_{[-1]}^{\prime}}^{\prime}\left(\tilde{x}_{\rho}^{1}\right)_{[-1]} \omega^{1} \otimes S\left(y^{3} x_{2}^{3} h_{(2,2)} h_{2}^{\prime}\right) \otimes\left[a_{[0]} a_{\langle 0\rangle}^{\prime}{ }_{[0]}\left(\tilde{x}_{\rho}^{1}\right)_{[0]} \omega^{2}\right. \\
& \left.\overline{\#}\left(y_{1}^{1} x^{1} \rightharpoonup \varphi \leftharpoonup a_{\langle 1\rangle}^{\prime} \tilde{x}_{\rho}^{2} \omega_{1}^{3}\right)\left(y_{2}^{1} x^{2} h_{1} \rightharpoonup \psi \leftharpoonup \tilde{x}_{\rho}^{3} \omega_{2}^{3}\right)\right] \# y^{2} x_{1}^{3} h_{(2,1)} h_{1}^{\prime} \\
& \underset{(1.3)}{(6.3)}=\sum a_{[-1]} a_{\langle 0\rangle_{[-1]}^{\prime}} \bar{\omega}^{1} \omega^{1} \otimes S\left(y^{3} x^{3} h_{(2,2)} h_{2}^{\prime}\right) \otimes\left[a_{[0]} a_{\langle 0\rangle}^{\prime}{ }_{[0]} \bar{\omega}^{2} \omega_{\langle 0\rangle}^{2} \tilde{x}_{\rho}^{1}\right. \\
& \left.\overline{\#}\left(z^{1} y^{1} \rightharpoonup \varphi \leftharpoonup a_{\langle 1\rangle}^{\prime} \bar{\omega}^{3} \omega_{\langle 1\rangle}^{2} \tilde{x}_{\rho}^{2}\right)\left(z^{2} y_{1}^{2} x^{1} h_{1} \rightharpoonup \psi \leftharpoonup \omega^{3} \tilde{x}_{\rho}^{3}\right)\right] \# z^{3} y_{2}^{2} x^{2} h_{(2,1)} h_{1}^{\prime} \\
& { }_{(1.1)}^{(6.1)}=\sum a_{[-1]} \bar{\omega}^{1} a_{[-1]}^{\prime} \omega^{1} \otimes S\left(y^{3} h_{2}\right) \cdot{ }_{\text {op }} S\left(x^{3} h_{2}^{\prime}\right) \otimes\left[a_{[0]} \bar{\omega}^{2}\left(a_{[0]}^{\prime} \omega^{2}\right)_{\langle 0\rangle} \tilde{x}_{\rho}^{1}\right. \\
& \left.\overline{\#}\left(z^{1} y^{1} \rightharpoonup \varphi \leftharpoonup \bar{\omega}^{3}\left(a_{[0]}^{\prime} \omega^{2}\right)_{\langle 1\rangle} \tilde{x}_{\rho}^{2}\right)\left(z^{2} y_{1}^{2} h_{(1,1)} x^{1} \rightharpoonup \psi \leftharpoonup \omega^{3} \tilde{x}_{\rho}^{3}\right)\right] \\
& \# z^{3} y_{2}^{2} h_{(1,2)} x^{2} h_{1}^{\prime} \\
& \text { (2.11) }=\sum a_{[-1]} \bar{\omega}^{1} a_{[-1]}^{\prime} \omega^{1} \otimes S\left(y^{3} h_{2}\right) \cdot \text { op } S\left(x^{3} h_{2}^{\prime}\right) \otimes\left[\left(a_{[0]} \bar{\omega}^{2} \overline{\#} z^{1} y^{1} \rightharpoonup \varphi \leftharpoonup \bar{\omega}^{3}\right)\right. \\
& \left.\left(a_{[0]}^{\prime} \omega^{2} \overline{\#} z^{2} y_{1}^{2} h_{(1,1)} x^{1} \rightharpoonup \psi \leftharpoonup \omega^{3}\right)\right] \# z^{3} y_{2}^{2} h_{(1,2)} x^{2} h_{1}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
(1.30)= & \sum a_{[-1]} \bar{\omega}^{1} a_{[-1]}^{\prime} \omega^{1} \otimes S\left(y^{3} h_{2}\right) \cdot{ }_{\mathrm{op}} S\left(x^{3} h_{2}^{\prime}\right) \otimes\left[\left(a_{[0]} \bar{\omega}^{2} \overline{\#} y^{1} \rightharpoonup \varphi \leftharpoonup \bar{\omega}^{3}\right) \# y^{2} h_{1}\right] \\
& {\left[\left(a_{[0]}^{\prime} \omega^{2} \overline{\#} x^{1} \rightharpoonup \psi \leftharpoonup \omega^{3}\right) \# x^{2} h_{1}^{\prime}\right] } \\
= & \wp((a \overline{\#} \varphi) \# h) \wp\left(\left(a^{\prime} \# \psi\right) \# h^{\prime}\right)
\end{aligned}
$$

where $\cdot_{\text {op }}$ is the product in H^{op}. Obviously \wp respects the unit element and (2.7) and (2.8) hold. (2.5) can be proved using similar computations as above and is left to the reader. Using the notation

$$
\Phi_{\wp}=\sum \widetilde{X}_{\wp}^{1} \otimes \widetilde{X}_{\wp}^{2} \otimes \widetilde{X}_{\wp}^{3}=\cdots
$$

we can compute:

$$
\begin{aligned}
& (\mathrm{id} \otimes \mathrm{id} \otimes \wp)\left(\Phi_{\wp}\right)(\Delta \otimes \mathrm{id} \otimes \mathrm{id})(\Phi \wp) \\
& =\sum\left(\widetilde{X}_{\lambda}^{1} \otimes g^{1} S\left(x^{3}\right)\right)\left(\left(\widetilde{Y}_{\lambda}^{1}\right)_{1} \otimes G_{1}^{1} S\left(y^{3}\right)_{1}\right) \otimes\left(\widetilde{X}_{\lambda}^{2} \otimes g^{2} S\left(x^{2}\right)\right)\left(\left(\tilde{Y}_{\lambda}^{1}\right)_{2} \otimes G_{2}^{1} S\left(y^{3}\right)_{2}\right) \\
& \otimes\left(\left(\widetilde{X}_{\lambda}^{3}\right)_{[-1]} \otimes S\left(x_{2}^{1}\right)\right)\left(\widetilde{Y}_{\lambda}^{2} \otimes G^{2} S\left(y^{2}\right)\right) \otimes\left[\left(\left(\widetilde{X}_{\lambda}^{3}\right)_{[0]} \# \varepsilon\right) \# x_{1}^{1}\right]\left[\left(\widetilde{Y}_{\lambda}^{3} \# \varepsilon\right) \# y^{1}\right] \\
& \underset{(1.3)}{(1.11)}=\sum\left(\widetilde{X}_{\lambda}^{1}\left(\widetilde{Y}_{\lambda}^{1}\right)_{1} \otimes G_{1}^{1} g^{1} S\left(y^{3} x^{3}\right)\right) \otimes\left(\widetilde{X}_{\lambda}^{2}\left(\widetilde{Y}_{\lambda}^{1}\right)_{2} \otimes G_{2}^{1} g^{2} S\left(z^{3} y_{2}^{2} x^{2}\right)\right) \\
& \otimes\left(\left(\widetilde{X}_{\lambda}^{3}\right)_{[-1]} \widetilde{Y}_{\lambda}^{2} \otimes G^{2} S\left(z^{2} y_{1}^{2} x^{1}\right)\right) \otimes\left[\left(\left(\widetilde{X}_{\lambda}^{3}\right)_{[0]} \widetilde{Y}_{\lambda}^{3} \# \varepsilon\right) \# z^{1} y^{1}\right] \\
& \underset{(1.18)}{(2.6)}\binom{(1.9)}{(1)}\left(\widetilde{Y}_{\lambda}^{1} X^{1} \otimes x^{1} g^{1} S\left(y^{3}\right)\right) \otimes\left(\widetilde{X}_{\lambda}^{1}\left(\widetilde{Y}_{\lambda}^{2}\right)_{1} X^{2} \otimes x^{2} g_{1}^{2} G^{1} S\left(z^{3} y_{2}^{2}\right)\right) \\
& \otimes\left(\widetilde{X}_{\lambda}^{2}\left(\tilde{Y}_{\lambda}^{2}\right)_{2} X^{3} \otimes x^{3} g_{2}^{2} G^{2} S\left(z^{2} y_{1}^{2}\right)\right) \otimes\left[\left(\widetilde{X}_{\lambda}^{3} \widetilde{Y}_{\lambda}^{3} \# \varepsilon\right) \# z^{1} y^{1}\right] \\
& { }^{(1.11)}=\sum\left(\widetilde{Y}_{\lambda}^{1} \otimes g^{1} S\left(y^{3}\right)\right)\left(X^{1} \otimes x^{1}\right) \otimes\left(\widetilde{X}_{\lambda}^{1} \otimes G^{1} S\left(z^{3}\right)\right)\left(\left(\widetilde{Y}_{\lambda}^{2}\right)_{1} \otimes g_{1}^{2} S\left(y^{2}\right)_{1}\right)\left(X^{2} \otimes x^{2}\right) \\
& \otimes\left(\widetilde{X}_{\lambda}^{2} \otimes G^{2} S\left(z^{2}\right)\right)\left(\left(\widetilde{Y}_{\lambda}^{2}\right)_{2} \otimes g_{2}^{2} S\left(y^{2}\right)_{2}\right)\left(X^{3} \otimes x^{3}\right) \\
& \otimes\left[\left(\widetilde{X}_{\lambda}^{3} \# \varepsilon\right) \# z^{1}\right]\left[\left(\widetilde{Y}_{\lambda}^{3} \overline{\#} \varepsilon\right) \# y^{1}\right] \\
& (6.5)=\left(1_{H} \otimes \Phi_{\wp}\right)\left(\mathrm{id} \otimes \Delta_{H \otimes H^{\mathrm{op}}} \otimes \mathrm{id}\right)\left(\Phi_{\wp}\right)\left(\Phi_{\left.H \otimes H^{\mathrm{op}} \otimes \mathbf{1}\right)}\right.
\end{aligned}
$$

where $\sum G^{1} \otimes G^{2}$ is another copy of f^{-1} and $\mathbf{1}=\left(1_{\mathbb{A}} \overline{\#} \varepsilon\right) \# 1_{H}$ is the unit of the algebra $\left(\mathbb{A} \overline{\#} H^{*}\right) \# H$.

Let H be a quasi-Hopf algebra, ($\mathbb{A}, \lambda, \rho, \Phi_{\lambda}, \Phi_{\rho}, \Phi_{\lambda, \rho}$) an H-bicomodule algebra, and C an H-bimodule coalgebra. By Lemma 6.3, we can consider the category of Doi-Hopf modules ${ }^{C} \mathcal{M}\left(H \otimes H^{\mathrm{op}}\right)_{\left(\mathbb{A} \overline{\#} H^{*}\right) \# H}$. We will prove that it is isomorphic to the category of two-sided two-cosided Hopf modules ${ }_{H}^{C} \mathcal{M}_{\mathbb{A}}^{H}$, in the case where H is finite-dimensional.

Lemma 6.4. Let H be a quasi-Hopf algebra, \mathbb{A} an H-bicomodule algebra, and C an H-bimodule coalgebra. We have a functor

$$
F::_{H}^{C} \mathcal{M}_{\mathbb{A}}^{H} \rightarrow^{C} \mathcal{M}\left(H \otimes H^{\mathrm{op}}\right)_{\left(\mathbb{A} \# H^{*}\right) \# H}
$$

$F(N)=N$ as a k-module, with structure maps given by the equations

$$
\begin{gather*}
n \leftarrow((a \overline{\#} \varphi) \# h)=\sum\left\langle\varphi, S^{-1}\left(f^{2} n_{(1)} a_{\langle 1\rangle} \tilde{p}_{\rho}^{2}\right)\right| S(h) f^{1} \succ n_{(0)} \prec a_{\langle 0\rangle} \tilde{p}_{\rho}^{1}, \tag{6.19}\\
\tilde{\rho}_{N}^{C}(n)=\sum n_{\{-1\}} \otimes n_{\{0\}}=\sum f^{1} \cdot n_{[-1]} \otimes f^{2} \succ n_{[0]} \tag{6.20}
\end{gather*}
$$

for all $n \in N, a \in \mathbb{A}, \varphi \in H^{*}$, and $h \in H . F$ sends a morphism to itself.
Proof. Since N is a two-sided (H, \mathbb{A})-Hopf module, we know by (3.39) that N is a right $\left(\mathbb{A} \# H^{*}\right) \# H$-module via the action defined by (6.19). Let $\sum F^{1} \otimes F^{2}$ be another copy of f. For any $n \in N$, we have that

$$
\begin{aligned}
& \left(\underline{\Delta} \otimes \mathrm{id}_{N}\right)\left(\tilde{\rho}_{N}^{C}(n)\right) \Phi_{\wp}^{-1} \\
& \text { (6.17) }=\sum n_{\{-1\}_{\underline{1}}} \cdot\left(\tilde{x}_{\lambda}^{1} \otimes S\left(X^{3}\right) F^{1}\right) \otimes n_{\{-1\}_{\underline{2}}} \cdot\left(\tilde{x}_{\lambda}^{2} \otimes S\left(X^{2}\right) F^{2}\right) \otimes n_{\{0\}} \leftarrow\left[\left(\tilde{x}_{\lambda}^{3} \# \varepsilon\right) \# X^{1}\right] \\
& { }_{(6.20)}^{(6.11)}=\sum S\left(X^{3}\right) F^{1} \cdot\left(f^{1} \cdot n_{[-1]}\right)_{\underline{1}} \cdot \tilde{x}_{\lambda}^{1} \otimes S\left(X^{2}\right) F^{2} \cdot\left(f^{1} \cdot n_{[-1]}\right)_{\underline{2}} \cdot \tilde{x}_{\lambda}^{2} \\
& \otimes S\left(X^{1}\right) f^{2} \succ n_{[0]} \prec \tilde{x}_{\lambda}^{3} \\
& \text { (6.8) }=\sum S\left(X^{3}\right) F^{1} f_{1}^{1} \cdot n_{[-1]_{\underline{1}}} \cdot \tilde{x}_{\lambda}^{1} \otimes S\left(X^{2}\right) F^{2} f_{2}^{1} \cdot n_{[-1]_{\underline{2}}} \cdot \tilde{x}_{\lambda}^{2} \otimes S\left(X^{1}\right) f^{2} \succ n_{[0]} \prec \tilde{x}_{\lambda}^{3} \\
& \underset{(1.18)}{(6.12)}(1.9)=\sum f^{1} \cdot n_{[-1]} \otimes F^{1} f_{1}^{2} \cdot n_{[0,-1]} \otimes F^{2} f_{2}^{2} \succ n_{[0,0]} \\
& \text { (6.14) }=\sum f^{1} \cdot n_{[-1]} \otimes F^{1} \cdot\left(f^{2} \succ n_{[0]}\right)_{[-1]} \otimes F^{2} \succ\left(f^{2} \succ n_{[0]}\right)_{[0]} \\
& \text { (6.20) }=\sum n_{\{-1\}} \otimes F^{1} \cdot n_{\{0\}_{[-1]}} \otimes F^{2} \succ n_{\{0\}_{[0]}} \\
& \text { (6.20) }=\left(\operatorname{id}_{C} \otimes \tilde{\rho}_{N}^{C}\right)\left(\tilde{\rho}_{N}^{C}(n)\right) .
\end{aligned}
$$

We still have to show the compatibility relation (5.5). For, observe that (3.6), (6.3), and (1.5) imply

$$
\begin{equation*}
\sum \Omega^{1}\left(\tilde{p}_{\rho}^{1}\right)_{[-1]} \otimes \Omega^{2}\left(\tilde{p}_{\rho}^{1}\right)_{[0]} \otimes \Omega^{3} \tilde{p}_{\rho}^{2}=\sum \omega^{1} \otimes \omega_{\langle 0\rangle}^{2} \tilde{p}_{\rho}^{1} \otimes \omega_{\langle 1\rangle}^{2} \tilde{p}_{\rho}^{2} S\left(\omega^{3}\right) \tag{6.21}
\end{equation*}
$$

Now, for all $n \in N, a \in \mathbb{A}, \varphi \in H^{*}$, and $h \in H$ one can show that

$$
\tilde{\rho}_{N}^{C}(n \leftarrow((a \overline{\#} \varphi) \# h))=\tilde{\rho}_{N}^{C}(n) \wp((a \overline{\#} \varphi) \# h),
$$

completing the proof.
Lemma 6.5. Let H be a finite-dimensional quasi-Hopf algebra, \mathbb{A} an H-bicomodule algebra, and C an H-bimodule coalgebra. We have a functor

$$
G:{ }^{C} \mathcal{M}\left(H \otimes H^{\mathrm{op}}\right)_{\left(\mathbb{A} \overline{\#} H^{*}\right) \# H} \rightarrow{ }_{H}^{C} \mathcal{M}_{\mathbb{A}}^{H}
$$

$G(N)=N$ as a k-module, with structure maps given by

$$
\begin{align*}
& h \succ n=n \leftarrow\left[\left(1_{\mathbb{A}} \# \varepsilon\right) \# S^{-1}(h)\right], \quad n \prec a=n \leftarrow\left[(a \overline{\#} \varepsilon) \# 1_{H}\right], \tag{6.22}\\
& \rho_{N}^{H}: N \rightarrow N \otimes H, \\
& \rho_{N}^{H}(n)=\sum_{i=1}^{n} n \leftarrow\left[\left(\tilde{q}_{\rho}^{1} \overline{\#} S^{-1}\left(g^{2}\right) \rightharpoonup e^{i} S \leftharpoonup \tilde{q}_{\rho}^{2}\right) \# S^{-1}\left(g^{1}\right)\right] \otimes e_{i}, \tag{6.23}\\
& \quad \underline{\rho}_{N}^{C}: N \rightarrow C \otimes N, \quad \underline{\rho}_{N}^{C}(n)=\sum g^{1} \cdot n_{[-1]} \otimes g^{2} \succ n_{[0]} \tag{6.24}
\end{align*}
$$

for $n \in N, a \in \mathbb{A}$, and $h \in H$. Here $\left\{e_{i}\right\}_{i=\overline{1, n}}$ is a basis of H and $\left\{e^{i}\right\}_{i=\overline{1, n}}$ is the corresponding dual basis of H^{*}. G sends a morphism to itself.

Proof. Since N is a right $\left(\mathbb{A} \overline{\#} H^{*}\right) \# H$-module, we already know by (3.36) and (3.38) that H is a two-sided (H, \mathbb{A})-Hopf module via (6.22) and (6.23). Thus we only have to check (6.12)-(6.15). First note that $N \in{ }^{C} \mathcal{M}\left(H \otimes H^{\mathrm{op}}\right)_{\left(\mathbb{A} \tilde{\#} H^{*}\right) \# H}$ implies

$$
\begin{align*}
& \sum n_{[-1]} \otimes n_{[0,-1]} \otimes n_{[0,0]} \\
& \quad=\sum S\left(X^{3}\right) f^{1} \cdot n_{[-1]_{1}} \cdot \tilde{x}_{\lambda}^{1} \otimes S\left(X^{2}\right) f^{2} \cdot n_{[-1]_{2}} \cdot \tilde{x}_{\lambda}^{2} \otimes n_{[0]} \leftarrow\left[\left(\tilde{x}_{\lambda}^{3} \# \varepsilon\right) \# X^{1}\right], \tag{6.25}\\
& \sum\{n \leftarrow[(a \overline{\#} \varphi) \# h]\}_{[-1]} \otimes\{n \leftarrow[(a \overline{\#} \varepsilon) \# h]\}_{[0]} \\
& \quad=\sum S\left(x^{3} h_{2}\right) \cdot n_{[-1]} \cdot a_{[-1]} \omega^{1} \otimes n_{[0]} \leftarrow\left[\left(a_{[0]} \omega^{2} \# x^{1} \rightharpoonup \varphi \leftharpoonup \omega^{3}\right) \# x^{2} h_{1}\right] \tag{6.26}
\end{align*}
$$

for all $n \in N, a \in \mathbb{A}, \varphi \in H^{*}$, and $h \in H$. By the above definitions and (6.26), it is immediate that

$$
\begin{equation*}
\underline{\rho}_{N}^{C}(h \succ n)=\Delta(h) \underline{\rho}_{N}^{C}(n) \quad \text { and } \quad \underline{\rho}_{N}^{C}(n \prec a)=\underline{\rho}_{N}^{C}(n) \rho_{\lambda}(a) \tag{6.27}
\end{equation*}
$$

for all $h \in H, n \in N$, and $a \in \mathbb{A}$ (we leave it to the reader to verify the details). Let $\sum G^{1} \otimes G^{2}$ be another copy of f^{-1}. We compute that

$$
\begin{aligned}
& \Phi\left(\underline{\Delta} \otimes \operatorname{id}_{N}\right)\left(\underline{\rho}_{N}^{C}(n)\right) \\
& \text { (6.24) }=\sum X^{1} \cdot\left(g^{1} \cdot n_{[-1]}\right)_{\underline{1}} \otimes X^{2} \cdot\left(g^{1} \cdot n_{[-1]}\right)_{\underline{2}} \otimes X^{3} g^{2} \succ n_{[0]} \\
& \underset{(6.8)}{(6.22)}=\sum X^{1} g_{1}^{1} \cdot n_{[-1]_{1}} \otimes X^{2} g_{2}^{1} \cdot n_{[-1]_{2}} \otimes n_{[0]} \leftarrow\left[\left(1_{\mathbb{A}} \overline{\#} \varepsilon\right) \# S^{-1}\left(X^{3} g^{2}\right)\right] \\
& \underset{(6.18)}{(6.25)}=\sum X^{1} g_{1}^{1} G^{1} S\left(x^{3}\right) \cdot n_{[-1]} \cdot \widetilde{X}_{\lambda}^{1} \otimes X^{2} g_{2}^{1} G^{2} S\left(x^{2}\right) \cdot n_{[0,-1]} \cdot \widetilde{X}_{\lambda}^{2} \\
& \otimes n_{[0,0]} \leftarrow\left[\left(\widetilde{X}_{\lambda}^{3} \overline{\#} \varepsilon\right) \# S^{-1}\left(X^{3} g^{2} S\left(x^{1}\right)\right)\right] \\
& { }_{(1.18)}^{(1.9)}=\sum g^{1} \cdot n_{[-1]} \cdot \widetilde{X}_{\lambda}^{1} \otimes g_{1}^{2} G^{1} \cdot n_{[0,-1]} \cdot \widetilde{X}_{\lambda}^{2} \otimes n_{[0,0]} \leftarrow\left[\left(\widetilde{X}_{\lambda}^{3} \# \varepsilon\right) \# S^{-1}\left(g_{2}^{2} G^{2}\right)\right] \\
& \text { (6.22) }=\sum g^{1} \cdot n_{[-1]} \cdot \widetilde{X}_{\lambda}^{1} \otimes g_{1}^{2} G^{1} \cdot n_{[0,-1]} \cdot \widetilde{X}_{\lambda}^{2} \otimes g_{2}^{2} G^{2} \succ n_{[0,0]} \prec \widetilde{X}_{\lambda}^{3} \\
& \underset{(6.27)}{(6.24)}\left(\operatorname{cin}^{(6.8)}=\left(\mathrm{id}_{C} \otimes \underline{\rho}_{N}^{C}\right)\left(\underline{\rho}_{N}^{C}(n)\right) \Phi_{\lambda}\right. \text {. }
\end{aligned}
$$

The verification of (6.13) is based on similar computations, and we leave the details to the reader.

As a consequence of Lemmas 6.4 and 6.5, we have the following description of ${ }_{H}^{C} \mathcal{M}_{\mathbb{A}}^{H}$ as a category of Doi-Hopf modules; this description generalizes [4, Proposition 2.3].

Theorem 6.6. Let H be a finite-dimensional quasi-Hopf algebra, \mathbb{A} an H-bicomodule algebra, and C an H-bimodule coalgebra. Then the categories ${ }^{C} \mathcal{M}\left(H \otimes H^{\mathrm{op}}\right)_{\left(\mathbb{A} \overline{\#} H^{*}\right) \# H}$ and ${ }_{H}^{C} \mathcal{M}_{\mathbb{A}}^{H}$ are isomorphic.

Proof. We have to verify that the functors F and G defined in Lemmas 6.4 and 6.5 are inverses. For the C-coactions (6.20) and (6.24), this is obvious; for the other structures, it has been already done in Corollary 3.6.

Propositions 5.2 and 5.4, and Theorem 6.6 immediately imply the following result.

Corollary 6.7. Let H be a finite-dimensional quasi-Hopf algebra, \mathbb{A} an H-bicomodule algebra, and C an H-bimodule coalgebra. Then ${ }_{H}^{C} \mathcal{M}_{\mathbb{A}}^{H}$ is isomorphic to the category of right comodules over the coring $\mathbf{C}=\left(\left(\mathbb{A} \# H^{*}\right) \# H\right) \otimes C$. If C is finite-dimensional, then the category ${ }_{H}^{C} \mathcal{M}_{\mathbb{A}}^{H}$ is isomorphic to the category of right modules over the generalized smash product $C^{*} \times\left(\left(\mathbb{A} \overline{\#} H^{*}\right) \# H\right)$.

Remark 6.8. Let H be a finite-dimensional Hopf algebra. Cibils and Rosso [10] introduced an algebra $X=\left(H^{\mathrm{op}} \otimes H\right) \otimes\left(H^{*} \otimes H^{* \mathrm{op}}\right)$ having the property that the category of twosided two-cosided Hopf modules over H^{*} coincides with the category of left X-modules. Moreover, it was also proved in [10] that X is isomorphic to the direct tensor product of a Heisenberg double and the opposite of a Drinfeld double. Recently, Panaite [23] introduced two other algebras Y and Z with the same property as X. More precisely, Y is the twosided crossed product $H^{*} \#\left(H \otimes H^{\mathrm{op}}\right) \# H^{* \mathrm{op}}$, and Z is the diagonal crossed product in the sense of [16], $\left(H^{*} \otimes H^{* \mathrm{op}}\right) \bowtie\left(H \otimes H^{\mathrm{op}}\right)$. Using different methods, we proved that the category of two-sided two-cosided Hopf modules over a finite-dimensional quasiHopf algebra is isomorphic to the category of right (respectively left) modules over the generalized smash product $\mathcal{A}=H^{*} \kappa\left(\left(H \overline{\#} H^{*}\right) \# H\right)$ (respectively $\left.\mathcal{A}^{\text {op }}\right)$. Note that, in general, the multiplication on $C^{*} \ltimes\left(\left(\mathbb{A} \overline{\#} H^{*}\right) \# H\right)$ is given by the formula

$$
\begin{aligned}
{\left[c^{*}\right.} & \propto((a \overline{\#} \varphi) \# h)]\left[d^{*} \ltimes\left(\left(a^{\prime} \# \psi\right) \# h^{\prime}\right)\right] \\
= & \sum\left(\tilde{x}_{\lambda}^{1} \rightharpoonup c^{*} \leftharpoonup S\left(X^{3}\right) f^{1}\right)\left(\tilde{x}_{\lambda}^{2} a_{[-1]} \omega^{1} \rightharpoonup d^{*} \leftharpoonup S\left(X^{2} x^{3} h_{2}\right) f^{2}\right) \\
& \ltimes\left\{\left[\tilde{x}_{\lambda}^{3} a_{[0]} \omega^{2} a_{\langle 0\rangle}^{\prime} \tilde{x}_{\rho}^{1} \overline{\#}\left(X_{(1,1)}^{1} y^{1} x^{1} \rightharpoonup \varphi \leftharpoonup \omega^{3} a_{\langle 1\rangle}^{\prime} \tilde{x}_{\rho}^{2}\right)\left(X_{(1,2)}^{1} y^{2} x_{1}^{2} h_{(1,1)} \rightharpoonup \psi \leftharpoonup \tilde{x}_{\rho}^{3}\right)\right]\right. \\
& \left.\quad \# X_{2}^{1} y^{3} x_{2}^{2} h_{(1,2)} h^{\prime}\right\} .
\end{aligned}
$$

References

[1] H. Albuquerque, S. Majid, Quasialgebra structure of the octonions, J. Algebra 220 (1999) 188-224.
[2] H. Albuquerque, S. Majid, \mathbb{Z}_{n}-quasialgebras, in: Matrices and Group Representations, Coimbra, 1998, in: Textos Mat. Sér. B, Vol. 19, Univ. Coimbra, Coimbra, 1999, pp. 57-64.
[3] D. Altschuler, A. Coste, Quasi-quantum groups, knots, three-manifolds, and topological field theory, Comm. Math. Phys. 150 (1992) 83-107.
[4] M. Beattie, S. Dăscălescu, Ş. Raianu, F. Van Oystaeyen, The categories of Yetter-Drinfeld modules, DoiHopf modules and two-sided two-cosided Hopf modules, Appl. Categ. Structures 6 (1998) 223-237.
[5] T. Brzeziński, The structure of corings. Induction functors, Maschke-type theorem, and Frobenius and Galois properties, Algebr. Represent. Theory 5 (2002) 389-410.
[6] D. Bulacu, E. Nauwelaerts, Relative Hopf modules for (dual)quasi Hopf algebras, J. Algebra 229 (2000) 632-659.
[7] D. Bulacu, F. Panaite, A generalization of the quasi-Hopf algebra $D^{\omega}(G)$, Comm. Algebra 26 (1998) 41254141.
[8] D. Bulacu, F. Panaite, F. Van Oystaeyen, Quasi-Hopf algebra actions and smash product, Comm. Algebra 28 (2000) 631-651.
[9] S. Caenepeel, G. Militaru, S. Zhu, Crossed modules and Doi-Hopf modules, Israel J. Math. 100 (1997) 221-247.
[10] C. Cibils, M. Rosso, Hopf bimodules are modules, J. Pure Appl. Algebra 128 (1998) 225-231.
[11] S. Dăscălescu, Ş. Raianu, F. Van Oystaeyen, Some remarks on a theorem of H.-J. Schneider, Comm. Algebra 24 (1996) 4477-4493.
[12] R. Dijkgraaf, V. Pasquier, P. Roche, Quasi-Hopf algebras, group cohomology and orbifold models, Nuclear Phys. B Proc. Suppl. 18B (1990) 60-72.
[13] Y. Doi, On the structure of relative Hopf modules, Comm. Algebra 11 (1981) 31-50.
[14] Y. Doi, Unifying Hopf modules, J. Algebra 153 (1992) 373-385.
[15] V.G. Drinfeld, Quasi-Hopf algebras, Leningrad Math. J. 1 (1990) 1419-1457.
[16] F. Hausser, F. Nill, Diagonal crossed products by duals of quasi-quantum groups, Rev. Math. Phys. 11 (1999) 553-629.
[17] F. Hausser, F. Nill, Doubles of quasi-quantum groups, Comm. Math. Phys. 199 (1999) 547-589.
[18] F. Hausser, F. Nill, Integral theory for quasi-Hopf algebras, math.QA/9904164.
[19] C. Kassel, Quantum Groups, in: Grad. Texts Math., Vol. 155, Springer-Verlag, Berlin, 1995.
[20] M. Koppinen, Variations on the smash product with applications to group-graded rings, J. Pure Appl. Algebra 104 (1995) 61-80.
[21] S. Majid, Quantum Double for quasi-Hopf algebras, Lett. Math. Phys. 45 (1998) 1-9.
[22] S. Majid, Foundations of Quantum Group Theory, Cambridge Univ. Press, 1995.
[23] F. Panaite, Hopf bimodules are modules over a diagonal crossed product algebra, Comm. Algebra 30 (8) (2002) 4049-4058.
[24] P. Schauenburg, Hopf Modules and the Double of a quasi-Hopf algebra, preprint, 2002.
[25] M. Sweedler, Hopf Algebras, Benjamin, New York, 1969.
[26] M. Sweedler, The predual theorem to the Jacobson-Bourbaki Theorem, Trans. Amer. Math. Soc. 213 (1975) 391-406.
[27] M. Takeuchi, A correspondence between Hopf ideals and sub-Hopf algebras, Manuscripta Math. 7 (1972) 251-270.
[28] M. Takeuchi, as referred to in MR 2000c 16047, by A. Masuoka.

[^0]: ${ }^{2}$ Research supported by the bilateral project "Hopf Algebras in Algebra, Topology, Geometry and Physics" of the Flemish and Romanian governments.

 * Corresponding author.

 E-mail address: scaenepe@vub.ac.be (S. Caenepeel).
 ${ }^{1}$ This paper was written while the author was visiting the Free University of Brussels, VUB (Belgium); he thanks VUB for its warm hospitality.

