A New 7-Local Subgroup of the Monster

CHAT YIN HO

Department of Mathematics, University of Florida,
201 Walker Hall, Gainesville, Florida 32611

Communicated by Walter Feit

Received December 18, 1986

1. INTRODUCTION

In treating a specific problem in finite groups recently, we came across the 7-local structure of the sporadic simple group F_1, the "Monster." To our surprise, we found a 7-local subgroup of F_1 not covered by the list in the "Atlas of Finite Groups" compiled by J. Conway et al. [3]. This subgroup turned out to be a maximal subgroup of F_1. The purpose of this paper is to complete the list of the maximal 7-local subgroups of F_1, using the notation from the Atlas, as the following

<table>
<thead>
<tr>
<th>Structure</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(7 : 3 \times \text{He}) : 2$</td>
<td>$N(7A)$</td>
</tr>
<tr>
<td>$7_{1+}^4 : (3 \times 2S_7)$</td>
<td>$N(7B)$</td>
</tr>
<tr>
<td>$(7^2 : (3 \times 2A_4) \times L_2(7)) \cdot 2$</td>
<td>$N(7A^2)$</td>
</tr>
<tr>
<td>$7^2 : 7 \cdot 2^2 : GL_2(7)$</td>
<td>$N(7B_1^2)$</td>
</tr>
<tr>
<td>$7^2 : SL_2(7)$</td>
<td>$N(7B_2^2)$</td>
</tr>
</tbody>
</table>

The first four groups consist of the groups in the list of the Atlas. The fifth subgroup is the new 7-local. We use $7B_i^2$ to denote a subgroup of type $7B_i$ of the ith kind, for $i = 1, 2$.

We also prove that there is only one conjugacy class of subgroups isomorphic to the sporadic simple group He in F_1; and F_1 does not contain any subgroup isomorphic to the sporadic simple group $(Fi_{24})'$.

Our notations are standard. They can be found in [1, 2, or 3]. We start off by recording the following general result.

1.1. LEMMA. Let G be a finite group, p be a prime, and $x \in G \setminus \{1\}$. Suppose $O_p(C_G(x)) = Q_x$ is an extraspecial p-group of width $w > 1$, and
$N_G\langle x \rangle/Q_x$ does not contain any extraspecial p-group. If $y \in x^G$ and $y \in Q_x$, then $x \in Q_y = O_p(C_G(y))$.

Proof. Since $y \in Q_x$, so $C_{Q_x}(y) = \langle y \rangle \times Q_1$, where Q_1 is an extraspecial p-group of width $w - 1$. This implies that $\langle x \rangle$ is the unique minimal normal subgroup of Q_1. Suppose $Q_1 \cap Q_y = 1$. Then $N_{Q_y}\langle y \rangle/Q_y$ contains Q_1/Q_1, where Q_1/Q_1 is an extraspecial p-group. However $y \not\in x^G$ implies that $N_{Q_y}\langle y \rangle/Q_y \cong N_G\langle x \rangle/Q_x$, which does not contain any extraspecial p-group. This contradiction proves that $Q_1 \cap Q_y \neq 1$. Since $Q_1 \cap Q_y$ is a normal subgroup of Q_1, it contains x. Therefore $x \in Q_y$ as desired.

2. A NEW 7-LOCAL SUBGROUP

In this section, let $G \cong F_1$. There are exactly two conjugacy classes of 7-elements, namely $7A$ and $7B$ in G. For $x \in 7B$, set $Q_x = O_7(C_G(x))$ and $V_x = Q_x/\langle x \rangle$. Then $Q_x \cong \mathbb{Z}^3 \times 4$ and V_x is a 4-dimensional non-degenerate symplectic space over $GF(7)$. Also $N_G\langle x \rangle = Q_x : S_x$, where $S_x \cong 3 \times 2S_7$, and S_x acts irreducibly on V_x. For $\langle \sigma \rangle \in \text{Syl}_7(S_x)$, σ induces

$$
\begin{pmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}
on V_x.
$$

In particular, $|C_{V_x}(\sigma)| = 7$.

2.1. LEMMA. Suppose $x, y \in 7B$. Then $y \in Q_x$ if and only if $\langle x, y \rangle \cong 7B^2$.

Proof. If $y \in Q_x$, then $x \in Q_y$ by 1.1. Since $N_G\langle x, y \rangle$ contains Q_x, Q_y, and the central 3×2 part of S_x. This shows that $N_G\langle x, y \rangle \cong 7^2 \cdot 7 \cdot 7^2 : GL_2(7)$ and $\langle x, y \rangle \cong 7B^2$.

Suppose $\langle x, y \rangle \cong 7B^2$. Since $C_G\langle x, y \rangle$ contains a subgroup isomorphic to $7^2 \cdot 7 \cdot 7^2$, $|Q_x \cap C_G(y)| \geq 7^4$. If $y \not\in Q_x$, then $|C_{V_x}(y)| = 7$, which implies $|Q_x \cap C_G(y)| \leq 7^2$. This contradiction proves that $y \in Q_x$ and completes the proof of the lemma.

2.2. PROPOSITION. No subgroup of F_1 can be isomorphic to $(F_{16})'$.

Proof. Deny this. Let $F \leq F_1$ such that $F \cong (F_{16})'$. Let χ be the irreducible character of F_1 of degree 196883. The only possible irreducible constituents of the restriction of χ to F (which is also denoted by χ) are the irreducible characters of $(F_{16})'$ of degree not bigger than 196883. Hence $\chi = a\phi_1 + b\phi_2 + c\phi_3$, where a, b, c are non-negative integers and ϕ_1, ϕ_2, ϕ_3
are irreducible characters of \((\text{Fi}_{24})'\) of degrees 1, 8671, 57477, respectively. Computing the value of \(\chi\) on an element of order 23 yields 3 = a. Computing the value of \(\chi\) on an element of order 27 now yields 2 = 3 + b \cdot 1 + c \cdot 0, which forces \(b = -1\). This contradiction establishes the proposition.

2.3. LEMMA. Let \(H \leq G\) such that \(H \cong He\). Suppose \(T \in \text{Syl}_7(H)\) and \(\langle t \rangle = Z(T)\). Then \(t \in 7B\) and \(T \leq Q_1\).

Proof. From \(\langle t \rangle = T\), we obtain \(t \in 7B\). Suppose \(T \not\leq Q_1\). For \(X \leq N_G\langle t \rangle = Y\), set \(\bar{X} = X_{Q_1}/Q_1\). Thus \(|\bar{T}| = 7\). Since \(N_H(T) \leq Y\), so \(N_H(T) \leq N_G\langle Q_2 \rangle\). Hence \(N_H(T) \leq N_G\langle Q_2 \rangle \cong 6 \times (7 : 6)\). However \(N_H(T) \leq N_H(T)/N_H(T) \cap Q_1\), which has a subgroup isomorphic to \(S_3 \times 3\). This contradiction proves that \(T \leq Q_1\). The proof of the lemma is complete.

We now fix an element \(s \in 7B\) and set \(Q = Q_s\), \(V = V_s\), \(S = S_s\), \(C = C_G(s)\), and \(N = N_G\langle s \rangle\). Let \(I = \{1\text{-dimensional subspaces of } V\}\). Then \(|I| = 400\). From the existence of \(7B^2\), 2.1 implies that there exists \(W = \langle w, s \rangle \cong 7B^2\) and \(W \leq Q\). Thus \(C_G(W)\) contains a subgroup \(P \cong 7^2 \cdot 7 \cdot 7^2\). Since \(W \not\leq Z(Q)\), \(P \not\leq Q\). So \(QP \in \text{Syl}_7(C)\) and \(Q \cap P = C_Q(w) = \langle w \rangle \times Q_1\), where \(Q_1 \cong 7^1 + 2\). Let \(u \in P \cap Q\), and \(v \in Q \cap P\). Set \(r = uv\) and \(R = \langle r, s \rangle\). Then \(r \not\in Q\) and \(R \cong 7^2\). We will show that \(N_G(R)\) is a new 7-local and \(R \cong 7B^2\). For any \(A \leq N\), set \(\bar{A} = AQ/Q\).

2.4. LEMMA. We have \(C_G(r) = \langle s \rangle\) and \(C_G(R) = R\).

Proof. Let \(C_1 = C_G(r)\). First we show \(C_1 = \langle s \rangle\). Since \(v \in Q\), \(u\), and \(r\) induce the same action of \(V\). So \(C_V(r) = C_V(u) = W/\langle s \rangle\). Hence \(C_1 \leq W\). From \([v, w] \in \langle s \rangle\) and \([u, w] = 1\), we obtain \([r, w] = [vu, w] = [v, w]\). Since \(1 \not\in [v, w]\), \(C_1 \not= W\). Therefore \(C_1 = \langle s \rangle\) as desired.

Let \(y \in C_G(R)\). Then \(\bar{y} \in C_G(\bar{r}) = D\langle \bar{r} \rangle\), where \(D\) is the central \(3 \times 2\) part in \(\bar{N}\). Let \(i\) be an involution in \(C\). Then \(i\) is the central involution in \(\bar{N}\). Suppose \(i \in C_G(R)\). Then \(\bar{i}\) normalizes \(C_V(r) = \bar{W}\). Hence \(i\) normalizes \(O_2(N_G(W))\) which is \(P\). This implies \(u' = u_1 u\), where \(u_1 \in P\). Since \(i\) induces \(-I\) on \(V\), \(v' = v^{-1}s_1\), where \(s_1 \in \langle s \rangle\). From \(r = r'\) we obtain \(v^2 = s_1 u_1\). So \(v \in P\). This contradiction proves that \(|C_G(R)| = 1\). Let \(j \in C_G(R)\) with \(j^2 = 1\). Then \(j\) lies in the \(2S_7\) part of \(\bar{N}\) as the central \(3\text{-part of } \bar{N}\) does not centralize \(s\). But then \([j, r] \not= 1\). This contradiction proves that \(|C_G(R)| = 1\). Therefore \(R_1 = R\langle y \rangle\) is an elementary abelian 7-group as the exponent of a Sylow 7-subgroup in \(G\) is \(7\). Since \(|\bar{N}| = 7\) and \(r \not\in Q\), \(R_1 = (Q \cap R_1)\langle r \rangle\). Hence \(Q \cap R_1 \leq C_G(r) = \langle s \rangle\). So \(R_1 = \langle s \rangle \langle r \rangle = R\). In particular \(y \in R\). The proof of the lemma is complete.

2.5. LEMMA. We have \(R \cong 7B^2\) and \(N_G(R) \cong 7^2 : SL_2(7)\).
Proof. First we claim \(r \in 7B \). Deny this. Then \(C_G(r) = \langle r \rangle \times H \), where \(H \cong H_e \). Since a Sylow 7-subgroup of \(H_e \) is isomorphic to \(7^{1+2} \), \(|C_H(R \cap H)| \geq 7^2 \). From \(C_G(R) \geq \langle r \rangle \times C_H(R \cap H) \), we get \(|C_G(R)| \geq 7^3 \). This contradicts 2.4. So \(r \in 7B \) as claimed.

Next recall \(W = \langle w, s \rangle \leq \langle w, s, r \rangle = W_1 \), and \(1 \neq [r, w] \in \langle s \rangle \). Hence \(W_1 \geq 7^{1+2} \) and \(R \leq W_1 \). Now \(|\{\langle r \rangle \langle w \rangle\}| = 7 \) and \(r \in 7B \) imply that \(R \geq 7B^2 \).

On \(R \), \(w \) centralizes \(s \) and moves \(r \). By symmetry, there is \(w_1 \in C_G(R) \cap N_G(R) \) such that \(w_1 \) moves \(s \). Hence \(\langle w, w_1 \rangle \) induces \(SL_2(7) \) on \(R \) by Dickson's theorem. Suppose \(i \) is an involution of \(C \). Then \(i \) is the central involution in \(\tilde{N} \). So \([i, r] = 1 \). If \(i \in N_G(R) \), then \(i \in C_G(R) \). This contradicts 2.4. Hence \(|C \cap N_G(R)| \geq 1 \). A similar argument shows that \(|C \cap N_G(R)| \geq 1 \). Therefore \(N_G(R) \geq 7^2 : SL_2(7) \) by 2.4. The proof of the lemma is complete.

2.6. THEOREM. \(N_G(R) \) is a maximal subgroup of \(G \).

Proof. Let \(B = N_G(R) \). Suppose \(B < M \), a maximal subgroup of \(G \). Let \(B_1 \in \text{Syl}_7(B) \). Then \(B_1 \geq 7^{1+2} \). First we claim that \(M \) does not contain any normal abelian subgroup.

Deny this. Let \(E \cong p^n \) be a minimal normal subgroup of \(M \), where \(p \) is a prime. Suppose \(p \neq 7 \). On any \(B \)-invariant subspace of \(E \), if the kernel of the action is not trivial, then it contains \(R \) as \(R \) is a minimal normal subgroup of \(B \). This is impossible by 2.4. In particular, \(B_1 \) acts faithfully on any irreducible \(B \)-module of \(E \). Therefore \(n \geq (\dim_{GF(p)} F) \cdot 7 \), where \(F \) is a field containing the 7th root of unity. This rules out all \(p \) except possibly \(p = 2 \). Suppose \(p = 2 \). If \(E \) is an irreducible \(B_1 \)-module, then \(Z(B_1) \) induces scalar linear transformations of \(E \). By 2.4, 1 is not an eigenvalue for \(Z(B_1) \). Since all subgroups of order 7 of \(R \) are conjugate in \(B \), none of these subgroups have 1 as an eigenvalue. However, \(R \geq 7^2 \) implies that the kernel of any irreducible \(R \)-module is not trivial. This contradiction proves that \(E \) has at least two non-linear irreducible \(B_1 \)-module. So \(n \geq 2(21) = 42 \). Since \(G \) does not contain any subgroup isomorphic to \(2^{42} \), the analysis for \(p \neq 7 \) is complete. Suppose \(p = 7 \). Since \(C_E(R) \neq 1 \), 2.5 implies \(R = E \). Hence \(B = M \). This contradiction proves that \(M \) does not contain any normal abelian subgroup as claimed.

Next let \(E \) be a minimal normal subgroup of \(M \). Then \(E = E_1 \times \cdots \times E_t \), where \(E_1, ..., E_t \) are non-abelian simple groups. If \(7 \nmid |E| \), then \(B_1 \) will normalize a \(p \)-group for some prime \(p \neq 7 \). The argument in the last paragraph yields a contradiction in this case. If \(B \not\leq E_i \) for \(i = 1, ..., t \), then \(t \geq 7 \) as no simple group involved in \(F_1 \) has an outer automorphism of order 7. This implies that \(|E| \geq 7^7 \). This contradiction proves that \(B \leq E_k \) for some \(k \in \{1, ..., t\} \). Let \(L = E_k \). Using \(7^3 | |L| \), we obtain that \(L \cong H_e \) or \((F_{24})' \). By 2.2, we may assume \(L \cong H_e \). Then \(B_1 \in \text{Syl}_7(L) \). Since all subgroups of
order 7 of R are conjugate in B, we may assume that $\langle s \rangle = Z(B_1)$. By 2.3, $B_1 \leq Q$. In particular $r \in Q$. This contradiction proves that $L \not\cong He$. The proof of the theorem is complete.

3. Maximal 7-Locals

We continue to use the notations in Section 2, especially, s, Q, V, S, C, N, Γ, W, and G. For $A \leq N$, $A = AQ/Q$, and $\hat{A} = A\langle s \rangle / \langle s \rangle$.

For $X \leq G$ such that $X \cong 7^2$, the notation $X \cong 7B_2^2$ means that X is conjugate to R.

Set $\omega = \langle s \rangle$. From the 7-elements of S and its fixed points on V, we obtain the following easily.

3.1. Lemma. We have $\omega^S = \{ \delta \in \Gamma \mid |N_\delta|_7 \neq 1 \} = \{ Y/\langle x \rangle \mid Y \cong 7B_2^2 \text{ and } Y \leq Q \}$. Also $|\omega^S| = 120$.

3.2. Lemma. If $T \cong 7A^2$ and $T \leq N$, then $T \leq Q$.

Proof. Suppose $T \nleq Q$. Then $T = \langle \alpha, \beta \rangle$, where $\alpha \in Q$ and $\beta \in Q$. So $1 \neq \beta$ centralizes \hat{s}. By 3.1, $\langle \alpha, s \rangle \in \omega^S$. This contradicts $\alpha \in 7A$. The proof of the lemma is complete.

Using 3.1, 3.2, and a counting argument we obtain the following.

3.3. Lemma. We have $\Gamma = \{ \omega^S \} \cup \{ \lambda^S \}$, where $|\lambda^S| = 280$ and $\lambda^S = \{ \hat{Y} \mid Y \leq Q \text{ and } Y \cong 7A_7B \}$.

3.4. Lemma. If $E \cong 7^3$ is a subgroup of G, then E is not an irreducible $N_G(E)$-module.

Proof. Without loss of generality, we may assume that s is in the center of a Sylow 7-subgroup which contains E. First we claim that there is an element in $N_G(E)$ inducing a transvection on E.

Suppose $E \leq Q$. Then $s \in E$. Let $e \in E \setminus \langle s \rangle$. Then $e \neq 1$ in \hat{V}. Let $\langle s \rangle \leq E_1$ such that $\hat{E}_1 = e^\perp$. Then $|E_1| = 7^4$ and $E \leq E_1$. Since $\hat{E} = (\hat{E})^\perp$, $\hat{E} \cong Z(E_1)$. Let $t \in E \setminus E_1$. Then t induces a transvection on E.

Now suppose $E \nleq Q$. Let $E_2 = E \cap Q$. So $|E_2| = 7^2$. Since \hat{E}_2 is central-
ized by an element of $E \setminus Q$, 3.1 implies that $E_2 \cong 7B_2^2$ and $s \in E_2$. Clearly $C_Q(E) = E_2$. Let $E_3 = C_Q(E_2)$. Then $E \leq N_G(E_3)$ and $|E_3| = 7^4$. Hence E normalizes a chain of normal subgroups of E_3: $1 < \langle s \rangle < E_2 < E_4 < E_3$. From the action of E on V, we obtain $[E, E_4] \neq 1$. Since $E_2 \leq E \cap E_4$, $|EE_4| = 7^3$. So $E \nleq EE_4$. Therefore an element in $E_4 \setminus E$ will induce a transvection on E. This establishes our claim.
Assume that $N_G(E)$ acts irreducibly on E. Since $N_G(E)$ contains an element inducing transvection on E, the subgroup generated by these transvections is $SL_3(7)$. However, F_1 does not involve $L_3(7)$ by the Atlas [3]. This contradiction completes the proof of the lemma.

3.5. PROPOSITION. There is only one conjugacy class of subgroups isomorphic to He in F_1.

Proof. Let $H \leq G \cong F_1$, $H \cong He$. There is a subgroup $D = D_1 D_2$ of H such that $D_1 \leq D$, $D_1 \cong 7^2$, and $D_2 \cong SL_2(7)$. Let $J \in Syl_7(D)$. By 2.3 $J \leq Q_j$, where $\langle j \rangle = Z(J)$ and $j \in 7B$. By conjugation if necessary, we may assume $s = j$ without loss of generality. Thus $D_1 \cong 7B^2$ and $s \in D_1$. So $N_G(D_1) \cong 7^2 \cdot 7^2 : GL_2(7)$. Let $D_3 \geq D_1$ such that $N_G(D_1)/D_3 \cong 7^2 : GL_2(7)$ (i.e., $D_3 = D_1 \cdot 7$). Since $N_G(D_1)$ acts irreducibly on D_1, $D_1 \leq Z(D_3)$. Hence $D_3 \cong 7^3$. This implies $D_1 D_2 = (D_1 D_2) \cdot \langle y \rangle$. Since $y \in C$ and $[y, J] = 1$, $y \in Q$. Now $N_H(J) = J J_1$, where $J_1 \cong S_3 \times 3$. In N, $N_H(J)$ acts on V leaving \hat{J} invariant. So $N_H(J)$ acts on $(\hat{J})^\perp$. This is the same action induced by the normalizer of an ordinary copy of He in $N(7A)$, where J_1 acts trivially on \hat{J}. Hence $J_1 \leq C_G(y)$. Therefore $\langle D, J_1 \rangle \leq C_G(y)$. Since D is a maximal subgroup of H, so $H = \langle D, J_1 \rangle \leq C_G(y)$. This implies that $y \in 7A$ and H is the unique subgroup of $C_G(y)$ isomorphic to He. The proof of the proposition is complete.

3.6. LEMMA. If $T \leq G$ and $T \cong 7^3$, then $T \cap 7A \neq \emptyset$.

Proof. First we claim that the following holds:

(1) If $T \leq Q_x$, for some $x \in 7B$, then $T \cap 7A \neq \emptyset$. Deny this. By conjugation if necessary, we may assume that $T \leq Q$. From $T \cap 7A = \emptyset$, we obtain that all 1-dimensional subspaces of the totally isotropic 2-dimensional subspace \hat{T} belong to ω^5. However, for $e \in \omega^5$, any 2-dimensional subspace in e^\perp containing e always contains a 1-dimensional subspace from $\lambda^5 = \{ \hat{Y} \mid Y \leq Q \text{ and } Y \cong 7A, B \}$. This contradiction establishes (1).

In general, let $T \leq P \in Syl_7(G)$. By conjugation if necessary, we may assume $s \in Z(P)$. Let $T_1 = T \cap Q$. Suppose $T \cap 7A = \emptyset$. By (1), $T \leq Q$. So $|T_1| = 7^2$. Let $t \in T \setminus Q$. Then $t \in 7B$. Let $T_2 = T \cap Q$. By (1), $T \leq Q_t$. So $|T_2| = 7^2$. Since T_1 and T_2 are subgroups of T and $|T| = 7^3$, there is $1 \neq \theta$ such that $\theta \in T_1 \cap T_2$. Thus $\theta \in 7B$. Since $\theta \in T_1 \leq Q$ (resp. $\theta \in T_2 \leq Q_t$), 1.1 implies $s \in Q_\theta$ (resp. $t \in Q_s$). As $T_1 = \langle s, \theta \rangle$ and $t \notin T_1$, so $T = \langle t, \theta, s \rangle$. Thus $T \leq Q_\theta$ which is impossible by (1). This contradiction completes the proof of the lemma.

3.7. THEOREM. The list: $N_G(L)$ where $L \in \{7A, 7B, 7A^2, 7B_1^2, 7B_2^2 \}$ is complete for the maximal 7-locals.
Proof. By 3.4, it suffices to treat $K = N_G(X)$ where $X \cong 7^2$. We divide the proof into the following steps.

I. $X \cong 7B^2$, then K is in the list.

Proof. We may assume that $s \in X$. The action of N on V implies the following. If $X \leq Q$ (resp. $C_G(X) = \langle s \rangle$), then $X \cong 7B_2^2$ (resp. $X \cong 7B_2^2$).

Suppose $C_G(X) = X_1 \cong 7^2$. Let $E = XX_1(\cong 7^2)$. By 3.4, there is $\beta \in E \cap 7A$. Let H be the unique subgroup of $C_G(\beta)$ which is isomorphic to He. Let $T \in \text{Syl}_3(H)$ such that $E \cap H \leq T$. If $\langle t \rangle = Z(T)$, then $E \cap H \leq Q_1$. Since $[\beta, T] = 1$, $\beta \in Q_1$. Therefore $E = \langle \beta \rangle \times (E \cap H) \leq Q_1$. So, $X \leq Q_1$. This implies $t \in X$ and $X \cong 7B_2^2$.

II. If $X \cap 7B \neq \phi$, then K lies in a subgroup in the list.

Proof. If $|X \cap 7B|$ or $|X \cap 7A| = 1$, then $K \leq N(7B)$ or $N(7A)$. Hence we may assume that $|X \cap 7B| > 1$ and $|X \cap 7A| > 1$ by (I). By conjugation if necessary, we may assume $s \in X$. If $X \leq Q$, then $X \cong 7A_7B$, which implies $|X \cap 7B| = 1$. Therefore $X \leq Q$. Let $\alpha \in X \cap 7A$, and let $H \leq C_G(\alpha)$ such that $H \cong He$. Let $X \cap H \leq T \in \text{Syl}_3(G)$ and $\langle t \rangle = Z(T)$. Then $X \leq Q_1$. If $t \in X$, then again $X \cong 7A_7B$, which implies $|X \cap 7B| = 1$. Therefore $t \notin X$. Since $s \in Q_1$, 1.1 implies that $t \in Q$. Since $S \leq Q$, $s \notin Q$. Hence $|C_F(x)| = 7$. As $t \in Q$, this implies that $C_G(x) = \langle t, s \rangle$. From $C_G(x) = C_G(s) \cap C_G(\alpha)$, we obtain that $Y = \langle x, t, x \rangle$ is the unique Sylow 7-subgroup in $C_G(\alpha)$. Note that $Y \cong 3^3$. Since K acts on $X \cap 7A$ and $X \cap 7B$ (both have cardinality bigger than 1), so $|N_G(X)/C_G(X)| = 1$. Hence $K = Y \cdot U$, where $|U|_7 = 1$. So $Y = X \oplus Y_1$, where Y_1 is a 1-dimensional invariant K-subspace by Maschke's theorem. Therefore $K \leq N_G(Y_1)$, a subgroup in the list.

III. There is only one conjugacy class of subgroups of $7A^2$.

Proof. Let $X \cong 7A^2$, and let $\alpha \in X \cap 7A$. Let $H \leq C_G(\alpha)$ such that $H \cong He$. Let $X \cap H \leq T \in \text{Syl}_3(H)$ and $\langle t \rangle = Z(T)$. Also let $H_1 \leq C_G(\alpha)$ such that $H_1 \cong He \cdot 2$. Then $N_{H_1}(T) \cong T : (S_3 \times G)$. On the 8 points of the projective line $T/\langle t \rangle$, S_3 has two orbits. One such orbit has size 2 and the other has size 6. One such orbit comes from $7B_2^2$ types and the other orbit comes from $7A_2^2$ types. Let $T = \langle \beta, \gamma \rangle$, where $X \cap H = \langle \beta \rangle$. As $\langle \alpha \rangle \times T \leq Q_1$, γ normalizes $\langle \beta, t \rangle$. Hence γ normalizes $T_1 = \langle \alpha, \beta, t \rangle \cong 7^3$. Since $[\gamma, \beta] \neq 1$, subgroups containing α of order 7^2 of T_1 are $\langle \alpha, t \rangle$ and $\langle \alpha, \beta, t \rangle$. Since $t \in 7B$, $\langle \alpha, t \rangle \leq 7A_2^2$. Hence subgroups containing α of order 7^2 of T_1 are all conjugate in T_1. Since there is only one class of $7A$ and only one S_3-orbit in $T/\langle t \rangle$ corresponding to $7A_2^2$, the proof of III is complete.

The proof of the theorem now follows easily from I, II, and III.
ACKNOWLEDGMENTS

I thank Professor J. Thompson for his interest, encouragement, and the ideas he taught me in this problem. Also, I thank Professors R. Solomon and R. Lyons for their helpful conversations.

REFERENCES