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a b s t r a c t

Beginning in 1893, L.J. Rogers produced a collection of papers in
which he considered series expansions of infinite products. Over
the years, his identities have been given a variety of partition-
theoretic interpretations and proofs. These existing combinatorial
techniques, however, do not highlight the similarities and the
subtle differences seen in so many of these remarkable identities.
It is the goal of this paper to present a new combinatorial approach
that unifies numerous q-series identities. The eight identities of
Rogers that appear in G.E. Andrews’ 1986 CBMS monograph on q-
series will serve as a basis for the collection of identities studied in
this paper.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Near the end of the 19th century, L.J. Rogers produced a series of three papers [12–14] in which
he considered numerous series expansions of infinite products. His work culminated in the now-
celebrated Rogers–Ramanujan identities:

∞∑
n=0

qn
2

(q; q)n
=

∞∏
n=1

1
(1− q5n−1)(1− q5n−4)

(1)

∞∑
n=0

qn
2
+n

(q; q)n
=

∞∏
n=1

1
(1− q5n−2)(1− q5n−3)

(2)

where (z; q)n = (1− z)(1− zq) · · · (1− zqn−1). The history behind these works of Rogers, as well as
Ramanujan’s re-discovery of the Rogers–Ramanujan identities, has been told and re-told on numerous
occasions; see, for example, Andrews [1] and Ramanujan’s Collected Works [8].
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As noted by Andrews [1], Rogers proved numerous series-product identities in his three-paper
series, not just the two identities mentioned above. Many of these series have proven to be invaluable
in the field of q-series. For example, Baxter [3,4] re-discovered many of Rogers’ results on his way
to the solution of the now-famous Hard Hexagon model in statistical physics. And while a number
of techniques have been employed to prove many of Rogers’ identities, both analytic as well as
combinatorial, it is the goal of this work to prove a variety of q-series identities, most of which
appear in Rogers’ work (and are re-stated by Andrews [1, pp. 7–8]), from a new, unified combinatorial
viewpoint which is described in detail below.
In particular, consider the following identities:

∞∑
n=0

qn
2

(q4; q4)n
=

∞∏
n=1

1
(1− q5n−1)(1− q5n−4)(1+ q2n)

(3)

∞∑
n=0

q(3n
2
−n)/2

(q; q)n(q; q2)n
=

∞∏
n=1

(1− q10n−4)(1− q10n−6)(1− q10n)
(1− qn)

(4)

∞∑
n=0

qn
2

(q; q)2n
=

∞∏
n=1

(1− q20n−8)(1− q20n−12)(1− q20n)(1+ q2n−1)
(1− q2n)

. (5)

These appear, in one form or another, in Rogers’ ‘‘trilogy’’ [12–14] as noted in Andrews [1], and all
of these appear in Slater’s extensive list of product-series identities [16,17]. (The interested reader
may also wish to see the recent survey article of McLaughlin, Sills and Zimmer [11] which provides
an expansive, annotated list of Rogers–Ramanujan–Slater type identities.) For our purposes, it will be
more convenient to use (1) to rewrite the above identities in the following form:

∞∑
n=0

qn
2

(q; q)n
= (−q2; q2)∞

∞∑
n=0

qn
2

(q4; q4)n
(6)

∞∑
n=0

q2n
2

(q2; q2)n
= (q; q2)∞

∞∑
n=0

q(3n
2
−n)/2

(q; q)n(q; q2)n
(7)

∞∑
n=0

q4n
2

(q4; q4)n
= (q; q2)∞

∞∑
n=0

qn
2

(q; q)2n
. (8)

It is in this form that we view such identities from the combinatorial perspective of tilings.
As in recent papers of the authors [7,10], the combinatorial setting of the proofs of the identities

studied in this paper (including those mentioned above) will be tilings of a 1×∞ board using some
collection of squares and dominoes. The position of a tile refers to its location on the board and can be
any positive integer, provided that no two tiles cover the same position and that every position on the
board is covered by a tile. In the case of a domino, we say that it is in position i if it covers positions i
and i+ 1. The parity of a tile refers to the parity of the position of the tile. In other words, we say that
a tile is even (resp. odd) if it is in an even (resp. odd) position.
As we work through the various proofs below, we will vary which types of tiles will be used as

well as the weight of the tiles. In every case, white squares will have a weight of 1 and will be used as
‘‘filler’’ to cover positions not covered by a tile with non-trivial weight. In particular, each tiling will
contain a finite number of non-white squares and dominoes. Given a tiling T , the weight of each tile
t ∈ T will be denoted byw(t) and the weight of a tiling T will be defined as∏

t∈T

w(t).

Before proceeding, we wish to contrast the use of tilings over the more customary partitions to
prove identities of this type. In many instances, partition-theoretic proofs rely on demonstrating a
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bijection between two different collections of partitions. In some cases, the same set of partitions is
constructed in two different manners in order to prove an identity. For example, the identity

∞∑
n=0

qn
2

(q; q)2n
=

∞∑
n=0

qn

(q; q)n

can be proven by pointing out that the left-hand side generates all partitions according to the size of
their Durfee square whereas the right-hand side generates all partitions according to the size of their
largest part.
All of our proofs will follow this latter method of proof by constructing the same combinatorial

objects in two different manners. For example, to prove Eq. (6), Bressoud demonstrated a bijection
between partitions where parts differ by at least 2 and partitions with distinct parts where each even
part is larger than twice the number of odd parts. In the next section, we will prove the same identity
by constructing the same set of tilings with squares and dominoes in two different ways. The tiling
constructions used to explain different identities are extremely similar, underlining the fact that the
identities presented here have much more in common than mere appearance.
We conclude this section by presenting a general outline of the following sections and proofs. Each

section will begin with a brief description of the type of tilings to be studied, followed by a definition
of the corresponding weight function w(t). Furthermore, each section will contain a unique method
for constructing all relevant tilings. Each construction will be based on an operation that moves tiles
around on the board. In particular, the term projectionwill be used to refer to any invertible operation
on tiles that satisfies the following properties:
P1: Only the position of the tiles are affected. In other words, no tiles are permanently removed from
the board and no new tiles are introduced.

P2: The effect on the weight of a tiling is to multiply by qk, where k does not depend on which tile
was projected.

P3: The relative position of the projectiles (i.e., tiles that can be projected) cannot change.
P4: When projected, a tile is moved past r white squares, for some fixed value of r > 0, while the
position of the remaining projectiles does not change.

Given a specific tiling T , we can create infinitely manymore tilings by systematically projecting all
of the projectiles in the followingmanner. Suppose that T contains projectiles, t1, t2, . . . , tn, where tile
ti+1 appears to the right of tile ti for 1 ≤ i < n. We begin by projecting tile tn a total of pn ≥ 0 times.
Next, project tile tn−1 a total of pn−1 times where 0 ≤ pn−1 ≤ pn. In general, working in a right-to-left
manner, project tile ti pi times for 1 ≤ i ≤ n, where 0 ≤ p1 ≤ p2 ≤ · · · ≤ pn. We will refer to this
operation as projecting the tiles.
Note that this right-to-left manner in which projecting the tiles must take place is essentially

dictated by properties P3 and P4. Property P2 and the fact that projection must be invertible leads
us to the following lemma.

Lemma 1. Let T be a tiling that contains n projectiles. Then the generating function for all tilings that can
be obtained from T by projecting the tiles is given by

w(T )
(qk; qk)n

if each projection increases the weight of a tiling by a factor of qk.

Proof. Note that any tiling that can be obtained from T by projecting the tiles corresponds to a unique
sequence, 0 ≤ p1 ≤ · · · ≤ pn, where pi represents the number of times the ith projectile in T was
projected. If each projection increases the weight of the tiling by a factor of qk, then the cumulative
effect of projecting the tiles is given by∑

0≤p1≤p2≤···≤pn

qk(p1+p2+p3+···+pn) =
1

(qk; qk)n

as claimed. �
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For example, consider tilings that consist of white squares and gray dominoes where the weight
function is given by

w(t) =
{
zqi if t is a gray domino in position i
1 if t is a white square in position i.

In this case, any domino will be considered a projectile. Since we always project tiles in a right-to-
left manner, it is enough to explain how to project a domino that is immediately followed by a white
square. To project such a domino, simply increase the position of the domino by one, which increases
the weight of the tiling by a factor of q.
To construct a tiling with exactly n dominoes, initially place dominoes in positions 1, 3, 5, . . . ,

2n−1, which accounts for a weight of znqn
2
. It remains to project the tiles (i.e., project the dominoes).

Applying Lemma 1 with k = 1 shows that

znqn
2

(q; q)n
is the generating function for tilings with exactly n dominoes.
With the above machinery constructed, we now proceed to prove a variety of q-series identities

via weighted tilings. The proofs provided are very straightforward and brief in this context, adding to
the elegance of this proof approach when dealing with such identities.

2. Fibonacci tilings

Consider tilings of a 1 ×∞ board using white squares and gray dominoes. We will refer to such
tilings as (infinite) Fibonacci tilings since the number of ways to cover a 1 × n board with white
squares and gray dominoes is given by the nth Fibonacci number, Fn, where Fn = Fn−1 + Fn−2, F0 = 1
and F1 = 1. The weight of tile t is defined as follows:

w(t) =
{
zqi if t is a domino in position i
1 if t is a white square in position i.

Note that Fibonacci tilings together with the above weight function are the same objects used in the
example at the end of the previous section. Consequently, the generating function for all Fibonacci
tilings with respect to the above weight function is given by

∞∑
n=0

znqn
2

(q; q)n
. (9)

However, in this section, we will project a tile in a slightly different manner so that we can count
Fibonacci tilings according to the number of odd dominoes. Therefore, in this section, projectiles will
refer to odd dominoes only. To project an odd domino that is followed by a white square, simply
move it to the beginning of the next collection of odd dominoes. Note that the next collection of odd
dominoes could be empty, before this projection is performed.
More formally, suppose that there is an odd domino in position i, followed by a white square,

followed by j ≥ 0 even dominoes, followed by another white square. To project the odd domino,
rearrange these tiles so that there arewhite squares in positions i and i+2j+1 and dominoes covering
the remaining positions. Clearly this operation preserves the number of odd dominoes and increases
the weight of the tiling by a factor of q2, as illustrated below.

= zqi · zqi+3 · · · zqi+2j−1 · zqi+2j+1

= z j+1q(i+j+1)(j+1)−1

= zqi+1 · zqi+3 · · · zqi+2j−1 · zqi+2j+2

= z j+1q(i+j+1)(j+1)+1.
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Theorem 2.
∞∑
n=0

znqn
2

(q; q)n
= (−zq2; q2)∞

∞∑
n=0

znqn
2

(q2; q2)n(−zq2; q2)n
. (10)

Proof. As mentioned above, the left-hand side is the generating function for all Fibonacci tilings. It
remains to show that the right-hand side is also the generating function for all Fibonacci tilings. We
will do so by counting tilings according to the number of odd dominoes. To construct a Fibonacci tiling
that has exactly n odd dominoes, first place dominoes in positions 1, 3, 5, . . . , 2n−1, which accounts
for a weight of znqn

2
. Now go through each of the remaining even positions and decide whether or

not to place a domino in that position. The factor (1+ zq2j) represents the choice of whether or not to
place a domino in position 2j for j ≥ n+ 1. This accounts for a weight of∏

j≥n+1

(1+ zq2j) =
(−zq2; q2)∞
(−zq2; q2)n

.

And finally, project the odd dominoes. Applying Lemma 1 with k = 2 yields that

(−zq2; q2)∞
znqn

2

(q2; q2)n(−zq2; q2)n
is the generating function for all Fibonacci tilings that have exactly n odd dominoes. Summing over
all values of n ≥ 0 completes the proof. �

Theorem2unifies the following two identities of Rogerswhich appear as equations (4.11) and (4.7)
in Andrews [1].

Corollary 3.

∞∑
n=0

qn
2

(q; q)n
= (−q2; q2)∞

∞∑
n=0

qn
2

(q4; q4)n
(11)

∞∑
n=0

qn
2
+n

(q; q)n
= (−q; q2)∞

∞∑
n=0

qn
2
+n

(q2; q2)n(−q; q2)n+1
. (12)

Proof. The above identities follow by setting z = 1 and z = q in (10), respectively. �

Eq. (11), after applying (1), appears in Slater’s list [17, Equation (20)]. Eq. (12), after applying (2),
also appears in Slater’s list [17, Equation (17)].

Theorem 4.
∞∑
n=0

znqn
2
+n

(q; q)n
= (−zq2; q2)∞

∞∑
n=0

znqn
2
+2n

(q2; q2)n(−zq2; q2)n
. (13)

Proof. Note that the left-hand side is obtained by replacing z with zq in (9). Combinatorially, this
replacement is equivalent to increasing the position of each domino by one. In other words, we are
now counting Fibonacci tilings where position onemust be covered with a white square. To complete
the proof, we will show that the right-hand side also counts these Fibonacci tilings according to the
number of odd dominoes.
As before, we begin by placing n dominoes in positions 1, 3, 5, . . . , 2n− 1. Next, go through each

of the remaining even positions and decide whether or not to place a domino in that position. Now,
to make sure that position one is covered by a white square, project each of the odd dominoes exactly
once, starting with the domino in position 2n− 1 and working right-to-left. This increases the weight
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of the tiling by a factor of q2n. Now finally, project the odd dominoes. Applying Lemma 1 with k = 2
shows that

(−zq2; q2)∞
znqn

2
+2n

(q2; q2)n(−zq2; q2)n

is the generating function for Fibonacci tilings that have position one covered with a square and have
exactly n odd dominoes. Summing over all values of n ≥ 0 completes the proof. �

Theorem4unifies the following two identities of Rogerswhich appear as equations (4.8) and (4.12)
in Andrews [1].

Corollary 5.

∞∑
n=0

qn
2

(q; q)n
= (−q; q2)∞

∞∑
n=0

qn
2
+n

(q2; q2)n(−q; q2)n
(14)

∞∑
n=0

qn
2
+n

(q; q)n
= (−q2; q2)∞

∞∑
n=0

qn
2
+2n

(q4; q4)n
. (15)

Proof. The above identities follow by setting z = 1/q and z = 1 in (13), respectively. �

Eq. (15), after applying (2), also appears in Slater’s list [17, Equation (16)].
In a recent article [5], Bowman, McLaughlin and Sills present a collection of Rogers–Ramanujan

type identities. Among them are the following identities:

∞∑
n=0

qn
2
+n(−q; q)n+1
(q2; q2)n

=

∞∏
n=1

1
(1− q5n−1)(1− q5n−4)

∞∑
n=0

qn
2
(q; q2)n+1

(q; q)n(q; q2)n
=

∞∏
n=1

1
(1− q5n−2)(1− q5n−3)

.

In light of our combinatorial interpretation of (9) and the Rogers–Ramanujan identities (1) and (2),
the above identities can be proven by showing that the two series count the appropriate collection of
Fibonacci tilings. In particular, the first series counts all Fibonacci tilings according to the number of
dominoes in position 2 or more. More specifically, suppose that there are exactly n dominoes that are
in position 2 or more. First, construct all tilings that have a white square in position 1. To do so, place
dominoes in positions 2, 4, 6, . . . , 2n and then arbitrarily project these n dominoes. In this context, to
project a domino, simply increase its position by 1. Second, construct all tilings that have a domino in
position 1. To do so, place dominoes in positions 1, 3, 5, . . . , 2n+ 1 and then arbitrarily project the n
dominoes in positions 3, 5, 7, . . . , 2n+ 1. Therefore, the generating function (with z = 1) for tilings
that have exactly n dominoes in position 2 or more is given by

qn
2
+n

(q; q)n
+
q(n+1)

2

(q; q)n
=
qn
2
+n(1+ qn+1)

(q; q)n

=
qn
2
+n(−q; q)n+1
(q2; q2)n

.

The second series counts Fibonacci tilings that contain a square in position 1 by constructing all
Fibonacci tilings and then removing the tilings where position 1 is covered by a domino. In particular,
the difference between the generating functions (with z = 1) for Fibonacci tilings with n dominoes
and Fibonacci tilings with n + 1 dominoes where position 1 is covered by a domino (using the same
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construction as described above) is given by

qn
2

(q; q)n
−
q(n+1)

2

(q; q)n
=
qn
2
(1− q2n+1)
(q; q)n

=
qn
2
(q; q2)n+1

(q; q)n(q; q2)n
.

A natural generalization of Fibonacci tilings is tilings that use only white squares and k-ominoes
for a fixed value of k ≥ 1. By analogy, the position of a k-omino refers to the left-most position covered
by the tile and the weight of a k-omino in position i would be given by zqi. The parity of a k-omino
refers to the residue class of the position of the tile mod k. In other words, a k-omino of parity j is a
k-omino in position km+ j for somem ≥ 0 and 0 ≤ j < k.
To project a k-omino that is immediately followed by awhite square, first find the kthwhite square

that appears to its right. Suppose that the k-omino is in position i and that the kth white square to its
right is in position j. To project the k-omino in position i, first remove it from the board, decrease by k
the position of the tiles in positions i+k through j, and finally reinsert the k-omino in position j−k+1.
The overall effect on the weight of the tiling is to multiply by qk.
The following theorem generalizes the results of this section by counting tilings using white

squares and k-ominoes where the first k-omino appears in position i or greater.

Theorem 6. For 1 ≤ i ≤ k,
∞∑
n=0

znqk(
n
2 )+in

(q; q)n

= (−zqk; qk)∞
∑

n1,n2,...,nk−1≥0

zn1+n2+···+nk−1qN

(qk; qk)n1(qk; qk)n2 · · · (qk; qk)nk−1(−zqk; qk)n1+n2+···+nk−1
(16)

where

N = k
(
n1 + n2 + · · · + nk−1

2

)
+ n1 + 2n2 + · · · + (k− 1)nk−1 + k(n1 + · · · + ni−1).

Proof. Wepresent an outline of the proof, as the constructions belowmirror the proofs of Theorems 2
and4. In particular,wewill show that each side of (16) is the generating function for tilings usingwhite
squares and k-ominoes where the first k-omino appears in position i or greater.
One method for constructing such tilings is to place n ≥ 0 k-ominoes in positions i, i + k, i +

2k, . . . , i + (n − 1)k and then to increase the position of the jth k-omino by mj such that 0 ≤ m1 ≤
m2 ≤ m3 ≤ · · · ≤ mn. This construction corresponds to the left-hand side of (16).
Anothermethod is to construct tilings based on the number of k-ominoes of each parity that appear

in the tiling. In particular, let ni ≥ 0 represent the number of k-ominoes of parity i for 1 ≤ i ≤ k− 1.
Place k-ominoes in the first n1 positions of parity 1, then place n2 k-ominoes in the first available
positions of parity 2, and so on. Now go through the remaining uncovered positions of parity 0 and
decide whether or not to place a k-omino in that position. It remains to project the k-ominoes in all
possibleways. This can be done by projecting the k-ominoes of parity 1, then projecting the k-ominoes
of parity 2, and so on. In order to make sure that no k-omino appears in positions 1 through i − 1,
make sure to project all of the k-ominoes of parity 1 through i − 1 at least once. This completes the
construction associated with the right-hand side of (16). �

The k = i = 1 case of Eq. (16) simplifies to the usual series-product identity for partitions with
distinct parts. The k = 2 case yields Theorems 2 and 4 for i = 1 and i = 2, respectively. Bressoud gave
a bijective proof of a partition-theoretic variant of these cases. For example, Eq. (11) can be interpreted
as the number of partitions of nwithminimal difference at least 2 between parts equals the number of
partitions of n into distinct parts wherein each even part is larger than twice the number of odd parts.
Bressoud’s bijection is described in Andrews [1, Theorem 6.2]. It should be noted that Fibonacci tilings
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are equivalent to partitions with minimal difference at least 2 between parts, where the position of a
domino corresponds to a part in a partition. The construction used in the proof of Theorem 2 begins
with the positions of each even domino being at least twice the number of odd dominoes placed at
the beginning of the board. In other words, the tiling built after the first step of our construction is
equivalent to a partition with n odd parts 1, 3, 5, . . . , 2n− 1 and each even part larger than twice the
number of odd parts. However, instead of increasing the value of the odd parts without changing their
parity or the value of the even parts as Bressoud did, we have simultaneously increased the positions
of the odd dominoes and decreased the position of the even dominoes via the operation of projection
to stay in the context of Fibonacci tilings or equivalently, partitions with minimal difference at least 2
betweenparts. The cumulative effect of projecting the odd tiles in this case is equivalent to rearranging
the parts of the partitions as Bressoud did. Generalizations of Bressoud’s work that correspond to the
partition-theoretic interpretation of Theorem 6 can be found in [6].

3. Even weighted Fibonacci tilings

For the next two identities, we again consider Fibonacci tilings with the same projection operation
from the previous section. However, the weight function is now given by

w(t) =

−zq
2i if t is an even domino in position 2i

zq2i if t is an odd domino in position 2i− 1
1 if t is a square covering position i.

Notice that projection still has the same effect on the weight of a tiling, even though the weight
function has changed. In particular, increasing the position of an odddominoby one changes itsweight
by a factor of−1. Increasing the position of an even domino by one changes its weight by a factor of
−q2. It is easy to see that the projection described in the previous section involved moving one odd
domino and one even domino and thus the cumulative effect of projection combined with this new
weight function is to multiply by a factor of q2.
The collection of Fibonacci tilings combined with the above weight function and projection will

be referred to as even weighted Fibonacci tilings. The following theorem, which yields two additional
Rogers identities, concerns even weighted Fibonacci tilings counted according to the number of odd
dominoes.

Theorem 7.
∞∑
n=0

z2nq4n
2
+2n

(q4; q4)n
= (zq2; q2)∞

∞∑
n=0

znqn
2
+n

(q2; q2)n(zq2; q2)n
. (17)

Proof. Consider even weighted Fibonacci tilings that contain exactly n odd dominoes. To construct
such a tiling, first place n odd dominoes in positions 1, 3, . . . , 2n− 1, which accounts for a combined
weight of

znq2+4+···+2n = znqn
2
+n.

Next, decide whether or not to place a domino in each of the remaining even positions. This accounts
for a weight of∏

j≥n+1

(1− zq2j) =
(zq2; q2)∞
(zq2; q2)n

.

And finally, project the odd dominoes. Applying Lemma 1 with k = 2 shows that

(zq2; q2)∞
znqn

2
+n

(q2; q2)n(zq2; q2)n
is the generating function for even weighted Fibonacci tilings with exactly n odd dominoes. Summing
over n ≥ 0 yields the right-hand side of (17).
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We now use a sign-reversing involution to simplify our construction. In particular, given an even
weighted Fibonacci tiling, T , find the first occurrence (from left-to-right) of a sequence of consecutive
odd dominoes of odd length or a sequence of consecutive odd dominoes of nonnegative even length
followed by a square followed by an even domino. Note that if there is at least one even domino in T ,
then at least one of these sequences of tiles must appear in T .
If the consecutive odd dominoes of odd length appear first, then increase the position of the last

of these odd dominoes by one, resulting in a sequence of consecutive odd dominoes of even length
followed by a square followed by an even domino. If the consecutive odd dominoes of even length
appear first, then decrease the position of the corresponding even domino by one, resulting in a
sequence of consecutive odd dominoes of odd length.
For example, the tilings

and

are paired off under this involution. Note that the even positions covered by the dominoes remain the
same under this involution, but the number of even dominoes changes by exactly one. In other words,
the tilings have the same z and q weights, but opposite signs, and therefore cancel each other out in
the right-hand side of (17).
The only tilings to which this involution cannot be applied are ones that do not contain any even

dominoes or sequences of consecutive odd dominoes of odd length. Therefore, our above construction
need only account for tilings that contain an even number of odd dominoes and each sequence of
consecutive odd dominoesmust contain an even number of dominoes. To construct such a tiling, place
2n odd dominoes in positions 1, 3, 5, . . . , 4n − 1, which has a combined weight of z2nq4n

2
+2n. Now

project the odd dominoes in pairs. In other words, project the last two odd dominoes pn ≥ 0 times.
Thenproject the next twoodddominoes (from right-to-left) pn−1 ≤ pn times, and so on. Consequently,
each projection (applied to two dominoes at a time) will increase the weight of the tiling by a factor
of q4. Applying Lemma 1 with k = 4 shows that

z2nq4n
2
+2n

(q4; q4)n

is the generating function for even weighted Fibonacci tilings that contain exactly 2n odd dominoes.
Summing over n ≥ 0 completes the proof. �

Theorem7unifies the following two identities of Rogerswhich appear as equations (4.9) and (4.10)
in Andrews [1].

Corollary 8.

∞∑
n=0

q4n
2

(q4; q4)n
= (q; q2)∞

∞∑
n=0

qn
2

(q2; q2)n(q; q2)n
(18)

∞∑
n=0

q4n
2
+4n

(q4; q4)n
= (q; q2)∞

∞∑
n=0

qn
2
+2n

(q2; q2)n(q; q2)n+1
. (19)

Proof. The above identities follow by setting z = 1/q and z = 1 in (17), respectively. �

Eq. (18), after applying (1), appears in Slater’s list [17, Equation (79)]. Eq. (19), after applying (2),
also appears in Slater’s list [17, Equation (96)].
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4. Signed Jacobsthal tilings

Now consider tilings of a 1 ×∞ board using white squares, black dominoes and gray dominoes.
We will refer to such tilings as (infinite) Jacobsthal tilings since the number of ways to cover a 1× n
board with one color of squares and two colors of dominoes is the nth Jacobsthal number, Jn, where
Jn = Jn−1 + 2Jn−2, J0 = 1 and J1 = 1. The weight of tile t is defined as follows:

w(t) =

zq
i if t is a black domino in position i
−zqi if t is a gray domino in position i
1 if t is a white square in position i.

In this case, only black dominoes will be used as projectiles. Suppose that there is a black domino in
position i, followed by j ≥ 0 gray dominoes followed by a white square. To project the black domino,
rearrange the tiles so that the gray dominoes start in position i, the white square is placed in position
i+ 2j and the black domino is placed in position i+ 2j+ 1. Note that the effect of this operation is to
increase the weight of the tiling by a factor of q, as illustrated below.

= zqi(−zqi+2)(−zqi+4) · · · (−zqi+2j)

= (−1)jz j+1q(i+j)(j+1)

= (−zqi)(−zqi+2) · · · (−zqi+2j−2)zqi+2j+1

= (−1)jz j+1q(i+j)(j+1)+1.

The collection of Jacobsthal tilings combined with the above weight function and projection will be
referred to as signed Jacobsthal tilings.

Theorem 9.
∞∑
n=0

znq2n
2
+n

(q2; q2)n
= (zq2; q2)∞

∞∑
n=0

znq(3n
2
+n)/2

(q; q)n(zq2; q2)n
. (20)

Proof. Consider all signed Jacobsthal tilings that contain exactly n black dominoes, each one of which
is immediately preceded by at least one white square, and do not contain any odd gray dominoes. To
construct such a tiling, first place n black dominoes in positions 1, 3, 5, . . . , 2n − 1, which accounts
for a weight of znqn

2
. Next, arbitrarily place even gray dominoes in positions 2j for j ≥ n + 1. This

accounts for a weight of∏
j≥n+1

(1− zq2j) =
(zq2; q2)∞
(zq2; q2)n

.

Now project the ith black domino exactly i times (starting with the right-most black domino and
working right-to-left), for i = 1, 2, . . . , n. This ensures that each black domino is immediately
preceded by a white square and increases the weight of the tiling by a factor of

q1+2+3+···+n = q(n
2
+n)/2.

Lastly, project the black dominoes. Note that projection does not change the parity of any of the gray
dominoes. Therefore, the generating function for all such tilings is given by

(zq2; q2)∞
znq(3n

2
+n)/2

(q; q)n(zq2; q2)n
.

Summing over n ≥ 0 completes the construction and yields the right-hand side of (20).
We now use a sign-reversing involution to simplify our construction. In particular, find the first

occurrence of an even domino. If the first even domino is black, convert it to a gray domino and vice
versa. Notice that if the first even domino that appears is gray, then it must necessarily be preceded
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by a white square and thus converting it to a black domino results in a constructible tiling. Clearly,
any two tilings paired off by this involution have the same z and q weights but opposite signs and,
therefore, cancel each other out in the right-hand side of (20).
The only tilings to which this involution cannot be applied are ones that contain only squares and

odd black dominoes. To construct such a tiling that has exactly n ≥ 0 odd black dominoes, start by
placing n black dominoes in positions 3, 7, . . . , 4n − 1 so that each domino has at least one white
square preceding it, as required. This accounts for a weight of

znq3+7+···+4n−1 = znq2n
2
+n.

Nowproject the black dominoes,making sure to project each one an even number of times tomaintain
its parity. In other words, think of projection as simply increasing the position of a domino by two,
which increases the weight of a tiling by q2. Therefore,

znq2n
2
+n

(q2; q2)n
is the generating function for these tilings that contain exactly n odd black dominoes. Summing over
n ≥ 0 completes the proof. �

Theorem 9 unifies the following two identities of Rogers, which appear as equations (4.5) and (4.6)
in Andrews [1].

Corollary 10.
∞∑
n=0

q2n
2

(q2; q2)n
= (q; q2)∞

∞∑
n=0

q(3n
2
−n)/2

(q; q)n(q; q2)n
(21)

∞∑
n=0

q2n
2
+2n

(q2; q2)n
= (q; q2)∞

∞∑
n=0

q(3n
2
+3n)/2

(q; q)n(q; q2)n+1
. (22)

Proof. The above identities follow by setting z = 1/q and z = 1 in (20), respectively. �

Eq. (21), after applying (1) with q replaced by q2, appears in Slater’s list [17, Equation (46)]. Eq. (22),
after applying (2) with q replaced by q2 also appears in Slater’s list [17, Equation (44)].
Now suppose that instead of disallowing odd gray dominoes as we did in the previous proof, we

disallow even gray dominoes. In order to use an analogous involution, wewould have to insist that no
gray domino is placed in position one. With this in mind, we can now prove the following theorem.

Theorem 11.
∞∑
n=0

znq2n
2

(q2; q2)n
= (zq; q2)∞

∞∑
n=0

znq(3n
2
+n)/2

(q; q)n(zq; q2)n+1
. (23)

Proof. Consider all signed Jacobsthal tilings that contain exactly n black dominoes, each one of which
is immediately preceded by at least one white square, and do not contain any even gray dominoes
nor a gray domino in position one. To construct such a tiling, place n black dominoes in positions
1, 3, 5, . . . , 2n− 1. Next, arbitrarily place odd dominoes in positions 2j+ 1 for j ≥ n+ 1.
Now project the ith black domino exactly i times, just as in the proof of the previous theorem. Note

that since we did not place a gray domino in position 2j+ 1 (i.e., there are at least two white squares
before the first gray domino), there cannot be a gray domino in position one, as required.
Lastly, project the black dominoes. Therefore, the generating function for all such tilings is given

by

(zq; q2)∞
znq(3n

2
+n)/2

(q; q)n(zq; q2)n+1
.

Summing over n ≥ 0 completes the construction and yields the right-hand side of (23).
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We now use a sign-reversing involution to simplify our construction. In particular, find the first
occurrence of an odd domino. If the first odd domino is black, convert it to a gray domino and vice
versa. This involution cancels out all tilings except those that contain only squares and even black
dominoes. To construct such a tiling that has exactly n ≥ 0 even black dominoes, place n black
dominoes in positions 2, 6, . . . , 4n− 2 to make sure that each domino has at least one white square
preceding it. Now project the black dominoes (i.e., increase position by two). Therefore,

znq2n
2

(q2; q2)n
is the generating function for those tilings that contain exactly n odd black dominoes. Summing over
n ≥ 0 completes the proof. �

Corollary 12.

∞∑
n=0

q2n
2

(q2; q2)n
= (q; q2)∞

∞∑
n=0

q(3n
2
+n)/2

(q; q)n(q; q2)n+1
(24)

∞∑
n=0

q2n
2
+2n

(q2; q2)n
= (q; q2)∞

∞∑
n=0

q(3n
2
+5n)/2

(q; q)n(q; q2)n+2
. (25)

Proof. The above identities follow by setting z = 1 and z = q2 in (23), respectively. �

Eq. (24), after applying (1) with q replaced by q2 and dividing both sides by (q; q2)∞, is due to
Rogers [15, p. 330].

5. Signed Pell tilings

For the last pair of identities that we examine in this paper, consider tilings of a 1×∞ board using
white squares, black squares and gray dominoes. We will refer to such tilings as (infinite) Pell tilings
since the number of ways to tile a 1× n board with two colors of squares and one color of dominoes
is given by the nth Pell number, Pn, where Pn = 2Pn−1 + Pn−2, P0 = 1 and P1 = 2. The weight of tile t
is defined as follows:

w(t) =

−zq
i if t is a gray domino in position i

zqi if t is a black square in position i
1 if t is a white square in position i.

In this case, only gray dominoes that are immediately preceded by a black square will be used as
projectiles. Suppose that there is a gray domino in position i which is immediately preceded by a
black square and immediately followed by j ≥ 0 black squares followed by a white square. To project
the gray domino, rearrange the tiles so that the white square is in position i − 1, followed by j + 1
black squares followed by the gray domino. The effect of this operation is to increase the weight of
the tiling by a factor of q2, as illustrated below.

= zqi−1(−zqi)zqi+2 · zqi+3 · · · zqi+j+1

= −z j+2qi(j+2)+
(
j+2
2

)
−2

= zqi · zqi+1 · · · zqi+j(−zqi+j+1)

= −z j+2qi(j+2)+
(
j+2
2

)
.

The collection of Pell tilings combined with the above weight function and projection will be referred
to as signed Pell tilings.
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Theorem 13.
∞∑
n=0

znqn
2

(q; q)n
= (−zq; q)∞

∞∑
n=0

(−1)nz2nq3n
2

(q2; q2)n(−zq; q)2n
. (26)

Proof. Consider signed Pell tilings with exactly n dominoes where each domino is immediately
preceded by at least one black square. To construct such a tiling, place n black squares in positions
1, 4, 7, . . . , 3n− 2 and n dominoes in positions 2, 5, 8, . . . , 3n− 1, which accounts for a weight of

(−1)nz2nq3+9+15+···+6n−3 = (−1)nz2nq3n
2
.

Next, for each j ≥ 1, determine whether or not to insert a black square immediately before the jth
square (black or white) on the board, starting with j = 1. Suppose that you decide to insert a black
square immediately before the jth square on the board, which has 0 ≤ k ≤ n dominoes appearing to
its left. Thus the jth square appears in position 2k+ j and has n− k dominoes and n− k black squares
weakly to its right. Therefore, increasing the position of each of the n − k dominoes and n − k black
squares by one and inserting a black square in position 2k + j increases the weight of the tiling by a
factor of

zq2k+jq2(n−k) = zq2n+j.

Thus the factor (1 + zq2n+j) represents the choice of whether or not to insert a black square
immediately before the jth square. Therefore∏

j≥1

(1+ zq2n+j) =
(−zq; q)∞
(−zq; q)2n

accounts for all possible choices of inserting black squares. At this stage, the tiling consists of a
collection of dominoes and black squares mixed together followed by a collection of black and white
squares mixed together. It remains to mix these two collections of tiles. We can accomplish this
by projecting the dominoes. Therefore, the generating function for signed Pell tilings with exactly
n dominoes, each one of which is immediately preceded by at least one black square, is given by

(−zq; q)∞
(−1)nz2nq3n

2

(q2; q2)n(−zq; q)2n
.

Summing over n ≥ 0 completes the construction and yields the right-hand side of (26).
We now use a sign-reversing involution to simplify the right-hand side. In particular, find the first

occurrence of a domino or two consecutive black squares followed by a white square. In the event
that a domino appears first, simply replace this tile with a black square followed by a white square.
In the event that two consecutive black squares followed by a white square appears first, replace the
second of the two black squares and the white square with a single domino.
For example, the tilings

and

are paired off under this involution. Note that any two tilings paired by this involution clearly have
the same z and q weights, but opposite signs, and therefore cancel each other out in the right-hand
side of (26).
The fixed points of our involution are tilings that do not contain any dominoes or consecutive black

squares. To construct such a tiling that contains n ≥ 0 black squares, start by placing black squares in
positions 1, 3, 5, . . . , 2n− 1, which accounts for a weight of znqn

2
. Now project the black squares. To

project a black square, simply increase its position by one, which increases the weight of the tiling by
a factor of q. Therefore,
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znqn
2

(q; q)n
is the generating function for the remaining tilings. Summing over n ≥ 0 completes the proof. �

Corollary 14.

∞∑
n=0

qn
2

(q; q)n
= (−q; q)∞

∞∑
n=0

(−1)nq3n
2

(q2; q2)n(−q; q)2n
(27)

∞∑
n=0

qn
2
+n

(q; q)n
= (−q; q)∞

∞∑
n=0

(−1)nq3n
2
+2n

(q2; q2)n(−q; q)2n+1
. (28)

Proof. The above identities follow by setting z = 1 and z = q in (26), respectively. �

Eq. (27), after applying (1), appears in Slater’s list [17, Equation (19)]. Eq. (28), after applying (2)
and dividing both sides by (−q; q)∞, can be attributed to Ramanujan (see [2, Equation 11.2.7]). Proofs
of these identities can also be found in [9, Chapter 5].

Theorem 15.
∞∑
n=0

znqn
2
+n(1− z2q2n+3)

(q; q)n
= (−zq; q)∞

∞∑
n=0

(−1)nz2nq3n
2

(q2; q2)n(−zq; q)2n+1
. (29)

Proof. Suppose that in the previous proof, we do not allow for a black square to be placed before the
first square (black or white). In other words, for each n ≥ 0, divide the nth term of the right-hand side
of (26) by (1+ zq2n+1), which results in the right-hand side of (29). Consequently, the right-hand side
of (29) can be interpreted as the generating function for signed Pell tilings where the first domino has
exactly one black square appearing to its left, or in the case there are no dominoes, the first position
must be covered by a white square.
Since not all signed Pell tilings are allowed, we must also update our involution from the previous

proof. In particular, if a black square appears in position one and a domino appears in position two,
replacing the domino in position twowith a black square followed by awhite square results in a tiling
which is no longer allowed. Therefore, in this case only, find the second occurrence of a domino or
the first occurrence of two consecutive black square followed by a white square and then proceed as
before.
Now the fixed points of our involution are tilings that start with a white square or start with

a black square followed by a domino, with the rest of the board covered by white squares and
nonconsecutive black squares. To construct a fixed point that starts with a white square and contains
n ≥ 0 nonconsecutive black squares, place black squares in positions 2, 4, . . . , 2n. Then project the
black squares. In this case, to project a black square which is immediately followed by a white square,
simply increase its position by one. Therefore, the corresponding generating function is given by

∞∑
n=0

znqn
2
+n

(q; q)n
.

To construct a fixed point that starts with a black square followed by a domino and contains n ≥ 0
additional black squares, place black squares in positions 1, 4, 6, 8, . . . , 2n+ 2 and a gray domino in
position two. Then project the last n black squares. Therefore, the corresponding generating function
is given by

−

∞∑
n=0

zn+2qn
2
+3n+3

(q; q)n
.

Summing these two generating functions completes the proof. �
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Corollary 16.

∞∑
n=0

qn
2
+n

(q; q)n
= (−q; q)∞

∞∑
n=0

(−1)nq3n
2
−2n

(q2; q2)n(−q; q)2n
. (30)

Proof. Replacing z with 1/q in the left-hand side of (29) yields
∞∑
n=0

qn
2
(1− q2n+1)
(q; q)n

=

∞∑
n=0

qn
2

(q; q)n
−

∞∑
n=0

qn
2
+2n+1

(q; q)n

= 1+
∞∑
n=1

qn
2

(q; q)n
−

∞∑
n=1

qn
2

(q; q)n−1

= 1+
∞∑
n=1

qn
2

(q; q)n

(
1− (1− qn)

)
= 1+

∞∑
n=1

qn
2
+n

(q; q)n

=

∞∑
n=0

qn
2
+n

(q; q)n
.

Making the same replacement in the right-hand side of (29) yields

(−1; q)∞
∞∑
n=0

(−1)nq3n
2
−2n

(q2; q2)n(−1; q)2n+1
= (−q; q)∞

∞∑
n=0

(−1)nq3n
2
−2n

(q2; q2)n(−q; q)2n

as claimed. �

Eq. (30), after applying (2), appears in Slater’s list [17, Equation (15)].

6. Concluding thoughts

In this work, we have proven the collection of eight identities of Rogers (Corollaries 3, 5, 8 and
10) as presented by Andrews [1, Chapter 4], along with five additional related q-series identities
(Corollaries 12, 14 and 16), in a very natural way using weighted tilings. While it is very satisfying
to see this set of q-series identities proven in this manner, undoubtedly other identities can be given
similar interpretations. Our goal for future work is to prove additional q-series identities via weighted
tilings.
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