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This  paper  proposes  an  analytical  method  to detect  adulteration  of  diesel/biodiesel  blends  based  on  near
infrared  (NIR)  spectrometry  and  supervised  pattern  recognition  methods.  For  this  purpose,  partial  least
squares discriminant  analysis  (PLS-DA)  and  linear  discriminant  analysis  (LDA)  coupled  with  the  succes-
sive  projections  algorithm  (SPA)  have  been  employed  to  build  screening  models  using  three  different
optical  paths  and  the following  spectra  ranges:  1.0  mm  (8814–3799  cm−1),  10  mm  (11,329–5944  cm−1

and  5531–4490  cm−1) and  20 mm  (11,688–5952  cm−1 and  5381–4679  cm−1).  The  method  is  validated  in
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a  case  study  involving  the  classification  of  140  diesel/biodiesel  blend  samples,  which  were divided  into
four  different  classes,  namely:  diesel  free  of  biodiesel  and  raw  vegetal  oil  (D),  blends  containing  diesel,
biodiesel  and  raw  oils (OBD),  blends  of diesel  and  raw  oils  (OD),  and  blends  containing  a  fraction  of 5%
(v/v)  of  biodiesel  in  diesel  (B5).  LDA-SPA  models  were  found  to  be the  best  method  to classify  the  spec-
tral  data  obtained  with  optical  paths  of  1.0  and  20  mm.  Otherwise,  PLS-DA  shows  the  best  results  for
classification  of  10  mm  cell data,  which  achieved  a correct  prediction  rate  of  100%  in  the  test  set.

© 2011 Elsevier B.V. Open access under the Elsevier OA license.
. Introduction

In 2005, the Brazilian government allowed the commercial use
f biodiesel blends, introducing biodiesel in the Brazilian energy
atrix. Initially, a volume fraction of 2% in conventional diesel

B2) was established, but in 2010 the biodiesel content in diesel
uel increased to 5% (B5), which is obligatory by law. According to
he Brazilian National Agency for Petroleum Natural Gas, and Bio-
uels (ANP) regulations [1],  the permitted maximum variation of
iodiesel in B5 is ±0.5% (v/v).

Recently, the ANP has begun to develop means to avoid fuel
dulteration. In the case of diesel/biodiesel blends, the main form
f adulteration happens with the irregular addition of raw veg-

table oils to diesel fuel. The use of these oils directly with engines
an cause carbon deposits, injection blocking, and incomplete com-
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bustion, because of their high viscosities, low volatilities, and gum
formation which is characteristic of oxidation and polymerization.

The European standard EN 14078 [2] for determining the
biodiesel content in diesel fuel by using middle infrared (MIR) spec-
troscopy is an univariate method which measures the absorbance
of the carbonyl stretching frequency at 1745 cm−1. Vegetable oils
also have carbonyl groups, however, that absorb in the same region
(1745 cm−1). The result obtained, therefore, by this method is com-
promised if the sample is adulterated with vegetable oils.

Considering the possibility of adulteration of biodiesel blends
with vegetable oil, it is important to develop a method that is able
to certify if the biodiesel blends are free of raw vegetable oil quickly,
easily, and economically.

Recently, some methodologies have been developed to quantify
vegetable oils in biodiesel blends using near infrared (NIR) and/or
MIR  spectrometry [3–5].

Pimentel et al. [3] developed multivariate calibration models
based on MIR  and NIR spectroscopy to determine the content of
biodiesel in diesel fuel blends, considering the presence of raw veg-
etable oil. Additionally, the MIR  region has also been used in a study

involving principal component analysis (PCA) for rapid identifica-
tion of diesel samples contaminated with raw vegetable oils.

Oliveira et al. [4] showed that the standard ASTM methods
(ASTM 4052, ASTM D 445, ASTM D 4737, ASTM D 93, and ASTM
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 86) recommended by the ANP to determine the quality of
iesel/biodiesel blends are not suitable for detecting the adul-
eration of B2 or B5 blends with vegetable oils. The authors
nvestigated the application of Fourier transform (FT) near infrared
nd FT-Raman spectrometry and multivariate calibration to deter-
ine adulterations of B2 and B5 blends with vegetable oils.
Soares et al. [5] used attenuated total reflection (ATR)-FTIR to

uantify biodiesel adulteration with raw soybean oil. For this pur-
ose, the authors developed multivariate PLS calibration models
ased on middle infrared (MIR) spectroscopy by using two  clas-
ic variable selection methods: forward and stepwise. The results
howed that this variable selection procedure improves not only
he stability of the model with respect to the collinearity in mul-
ivariate spectra but also the interpretability of the relationship
etween the model and the sample composition.

In general, the works reported in the literature use only
uantitative multivariate techniques such as principal component
egression (PCR), or partial least square regression (PLS), or arti-
cial neural network (ANN) to investigate biodiesel blends. Little
esearch has been done to detect adulteration in these blends with
egetable oil using a procedure based on screening analysis [3,6].

The screening method of analysis is a process that identifies a
ompound or group of components in a sample with a minimum
umber of steps and the least manipulation of the sample. Con-
entional laboratory methods that provide detailed qualitative and
uantitative information about samples are being increasingly (but
ot fully) replaced by rapid-response analytical tools providing a
inary yes/no response, to indicate whether the target analytes are
resent above or below a pre-set concentration threshold. More
asically, some important advantages can be achieved by using
creening analysis: reduction of costs, rapidity, simplicity, and min-
mization of errors owing to delays between sampling and analysis
7,8].

Pattern recognition methods such as partial least squares dis-
riminant analysis (PLS-DA) [9] and linear discriminant analysis
LDA) [10] have been applied extensively with screening analysis
11–14]. PLS-DA is based on the standard PLS algorithm and class
abels are used as dependent y vector. In classification problems
nvolving more than two classes, the PLS2 algorithm is generally
sed [9].  For instance, in data sets with four groups, each object is
ssociated with one of the four following vectors [1,0,0,0], [0,1,0,0],
0,0,1,0] and [0,0,0,1], representing the classes 1, 2, 3 and 4, respec-
ively. A value close to zero indicates that the new sample does not
elong to the class under consideration and a value close to one

ndicates that it does. To determine the limit which an object is
onsidered to be in a class or not, a threshold between zero and
ne is determined. When a value above the threshold is predicted,

 sample is considered to belong to the class under study, while a
alue below the threshold indicates that the sample does not.

LDA, as proposed by Fisher [10], seeks a linear combination or
unction, D, of the independent variables to maximize the between-
lass variance relative to the within-class variance. The obtained
atent variable is called a canonical variate. For k classes, k − 1
anonical variates can be calculated. In order to have a well-posed
roblem, the number of training samples must be larger than the
umber of variables to be included in the LDA model. Therefore,
he use of LDA to classify spectral data usually requires appropriate
ariable selection procedures [15–17].  The successive projections
lgorithm (SPA) [18–24] has been adopted for this purpose in the
ases of a number of classification problems, including edible veg-
table oils [20,25], diesel oils [20], Brazilian soils [26], cigarettes
27] and coffee [28] samples. The goal of SPA is to select variables

ith minimum multicollinearity and maximum information. The
rocedure for classification includes two phases. In the first, the
ariables are projected onto a subspace orthogonal to one vari-
ble as the reference, which is selected for each iteration. In the
85 (2011) 2159– 2165

second phase, the best subset of variables is selected in order to
minimize a cost function associated with the average risk G (Eq.
(1)) of misclassification by LDA in a given validation set [19].

G = 1
Kv

Kv∑

k=1

gk (1)

where gk (risk of misclassification of the kth validation object xk) is
defined as

gk = r2(xk, �Ik)
minIj /=  Ikr2(xk, �Ij)

(2)

In Eq. (2), the numerator r2(xk, �Ik) is the squared Mahalanobis
distance between object xk (of class index Ik) and the sample mean
�Ik of its true class (both row vectors).

In the present paper, an analytical method to detect
the adulteration of diesel/biodiesel blends with raw veg-
etable oils using NIR spectroscopy is proposed. For this,
screening models based on supervised pattern recognition
methods such as PLS-DA and LDA with variable selection
by the SPA are employed. Three different optical paths and
spectral ranges were evaluated: 1.0 mm (8814–3799 cm−1),
10 mm (11,329–5944 cm−1 and 5531–4490 cm−1) and 20 mm
(11,688–5952 cm−1 and 5381–4679 cm−1). The results obtained by
two methods (PLS-DA and LDA/SPA) are assessed in terms of clas-
sification errors in a set of samples not used in the model-building
process (test samples).

2. Experimental

2.1. Samples

One hundred and forty samples of four different classes were
analyzed: diesel free of biodiesel and raw vegetal oil, D (35); blends
containing diesel, biodiesel and raw oils, OBD (38); blends of diesel
and raw oils, OD (35), and conforming samples which are com-
posed by blends containing a fraction of 5% (v/v) of biodiesel, with
variation of ±0.5% (v/v), B5 (32).

Blends were prepared using different oilseeds, animal fat and
their respective esters. The biodiesel (B100) and oil samples were
acquired in the market from different manufactures. B100 samples
were analyzed and they are according to Brazilian specifications. In
order to include variety in the diesel composition, the blends were
taken from different samples of diesel fuel.

A mixture design with a central point for each kind of biodiesel,
including internal points, was  used to prepare the blends. Maxi-
mum and minimum levels of both biodiesel and oil were 0.0% and
10.0% (v/v). The ratio of ester/oil concentration was varied from
0.25 to 6.0.

2.2. NIR spectra measurements

The spectra were recorded by using a FTLA 2000–160 FTIR spec-
trophotometer (Bomem) and three different optical path lengths
(1.0 mm,  10 mm and 20 mm).  Each spectrum was obtained from an
average of 32 scans in the range of 13,988–3799 cm−1 with a res-
olution of 8 cm−1. The background spectra were obtained using a
clean empty cell for each optical path. Temperature was  controlled
at 23 ± 1 ◦C throughout the spectral acquisition process.

2.3. Data analysis and software
The spectra were pre-treated using the Savitzky–Golay [29]
first derivative procedure with a second-order polynomial (7-point
window) and then divided into training, validation and test sets by
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Table  1
Number of training, validation and test samples in each class.

Class Sets

Training Validation Test

D 19 8 8
OBD  20 9 9
OD  19 8 8
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B5 18 7 7

Total 76 32 32

sing the classic Kennard–Stone (KS) algorithm [30]. The KS algo-
ithm was applied to each class separately, as described in Ref.
20]. The number of samples in each set is presented in Table 1.
ll spectral data were mean-centered before modeling procedures.

The training and validation samples were used in the modeling
rocedures (including SPA variable selection for LDA and deter-
ination of factors number in PLS-DA models). In case of SPA, the

alidation samples were employed in order to select the best subset
f wavenumbers by minimising a cost function defined as an aver-
ge risk of misclassification by LDA, as described by Pontes et al.
20]. Therefore, the third set of test samples was used to check the
eneralization ability of the resulting classifier, as recommended
lsewhere [31]. These samples can be deemed independent in that
hey were only used in the final evaluation and comparison of the
lassification models. The threshold value adopted for PLS-DA mod-
ls was 0.5.

Spectrum differentiation, Savitzky–Golay smoothing, principal
omponent analysis (PCA) and PLS-DA were carried out using
nscrambler® X.1 (CAMO S.A.). The KS and LDA-SPA algorithms
ere coded in Matlab® R2010a 7.10.0.499.

. Results and discussion

.1. NIR spectra
Fig. 1a–c presents the raw NIR spectra of the 140 samples in the
ange of 13,988–3799 cm−1 for each optical path studied. These NIR
pectra show bands assigned to combinations (4800–4000 cm−1,

Fig. 1. Original NIR spectra of the 140 samples recorded in the (a) 1 mm,  (b) 10 mm
85 (2011) 2159– 2165 2161

7500–6700 cm−1), first overtone (6300–5180 cm−1), second over-
tone (8000–8910 cm−1) and third overtone (11,270–10,360 cm−1,
Fig. 1c) regions of C–H stretching. In addition, the band assigned
to second overtone of the C O appears at about 5500 cm−1 and
C–H stretch plus C O stretch combination bands occur in the
region of 4740–4370 cm−1 [32]. After a preliminary inspection of
the spectra, those regions in which the signal of detector was sat-
urated or poor signal-to-noise ratio were discarded, as indicated
in Fig. 1a–c. The spectral ranges employed were: 8814–3799 cm−1

(1.0 mm),  11,329–5944 cm−1 and 5531–4490 cm−1 (10 mm),
11,688–5952 cm−1 and 5381–4679 cm−1 (20 mm).

3.2. Principal component analysis

Fig. 2 presents the PC2 × PC1 score plot resulting from the appli-
cation of PCA to the derivative spectra using the three optical paths
studied. As can be seen, there is a substantial dispersion and over-
lapping of the classes. More specifically this is true for the 10 mm
optical path (Fig. 2b), where it is not possible to distinguish the
blends (OD, OBD or B5) from conventional diesel samples (D).

3.3. LDA-SPA and PLS-DA classification

The optimum number of variables for the spectral data obtained
using each optical path for LDA-SPA models was  determined from
the minimum of the cost function G [20] displayed in Fig. 3a–c. As
can be seen, well-localized minimums are obtained for twelve, five
and five variables when 1.0 mm,  10 mm and 20 mm  optical paths
were employed, respectively.

The variables selected by SPA for all optical lengths (1.0 mm,
10 mm and 20 mm)  are presented in Fig. 4a–c. It can be observed
that almost all wavenumbers selected are associated to both
C–H stretching (4800–4000 cm−1) and C–H plus C O stretching
(4740–4370 cm−1) combination bands. The isolated wavenumber
selected by SPA at 7491 cm−1 (Fig. 4a) may be associated to sec-

ond combination region of CH stretching. The selected peaks at
5948 cm−1, 5524 cm−1 (Fig. 4b) and 5987 cm−1, 5956 cm−1 (Fig. 4c)
are assigned to second overtone of the C O and first overtone of CH
stretching regions [32].

 and (c) 20 mm optical paths. The regions highlighted in gray were discarded.
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Fig. 2. PC2 × PC1 score plots for the overall data set (140 samples) in the optical path of (a) 1 mm,  (b) 10 mm and (c) 20 mm (*: D; : OBD; : OD and : B5). The percent
variance explained by each PC is indicated in parenthesis.

Fig. 3. Determination of the optimum number of variables in LDA-SPA for the optical path of (a) 1 mm, (b) 10 mm and (c) 20 mm.
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F  (c) 2
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w
t
s

ig. 4. Mean NIR spectra recorded in the optical path of (a) 1 mm,  (b) 10 mm and
iscarded before the modeling procedure.

The LDA models obtained with the variables selected by SPA

ere applied to the classification of the test set. Table 2 presents

he classification errors of the LDA-SPA models applied to the test
et using each optical path.

Fig. 5. DF2 × DF1 score plots for the overall data set (140 samples) using optical pa
0 mm with wavenumbers selected by SPA. The regions highlighted in gray were

These results should be understood as follows: the two  errors

in the OBD row and 1.0 mm optical path OBD column, for instance,
indicate that two OBD samples were incorrectly classified by the
LDA-SPA model using the optical path of 1.0 mm.  One of these

th of (a) 1 mm,  (b) 10 mm and (c) 20 mm (*: D; : OBD; : OD and : B5).
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Table 2
Number of classification errors of the LDA-SPA models in the test set for 1 mm,  10 mm and 20 mm optical lengths. The number of selected wavenumber by SPA is indicated
in  parenthesis. N is the number of test samples in each class.

True class N ∅ = 1 mm ∅ = 10 mm ∅ = 20 mm
LDA-SPA model (12) LDA-SPA model (5) LDA-SPA model (5)

D OBD OD B5 D OBD OD B5 D OBD OD B5

D 8 – – – – – – – – – – – –
OBD 9  – 2 1 1 – 2 – 2 – 1 1 –
OD  8 1 – 1 – – – – – – – – –
B5  7 – – – – – – – – – – – –

Table 3
Number of classification errors of the PLS-DA models in the test set for 1 mm,  10 mm and 20 mm optical lengths. The number of latent variable in each PLS-DA model is
indicated in parenthesis. N is the number of test samples in each class.

True class N ∅ = 1 mm ∅ = 10 mm ∅ = 20 mm
PLS-DA model (7) PLS-DA model (16) PLS-DA model (8)

D OBD OD B5 D OBD OD B5 D OBD OD B5

D 8 – – – – – – – – – – – –

s
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OBD  9 – 3 1 2 – 

OD  8 1 – 1 – – 

B5  7 – – – – – 

amples was classified as belonging to the OD class and one was
lassified as belonging to the B5 class.

The best result for the LDA/SPA models was obtained with the
0 mm optical path, which correctly classified 31 of the 32 test sam-
les. This outcome corresponds to a correct prediction rate of 97%.
ll conforming samples, which are composed of blends containing

 fraction of 5% (v/v) of biodiesel (B5 authentic), were correctly
lassified in their own class. The sample that was misclassified
OBD classified as OD) is a blend containing a fraction of 8% (v/v)
f used sunflower oil and a fraction of 2% (v/v) of its corresponding
iodiesel.

The satisfactory classification performance of LDA-SPA is fur-
her demonstrated by Fig. 5a–c, which presents the scores of the
rst two discriminant functions (DF2 × DF1) for the overall data set
sing the three optical paths (1.0 mm,  10 mm and 20 mm).  It is pos-
ible to observe that B5 authentic and pure diesel (D) samples are
eparated from samples contaminated with vegetable oil (OD and
BD) along the DF2 direction. DF1 clearly distinguishes B5 samples

rom D and OD class (Fig. 5a–c).
PLS-DA models were also built for the four classes (D, OBD,

D and B5) using the spectral data obtained with optical paths of
he 1.0 mm,  10 mm and 20 mm.  The resulting classification errors
btained in the test set are presented in Table 3.

The PLS-DA method classified satisfactorily the samples for all
ptical paths studied. In particular, the best result was obtained
sing the 10 mm  optical path, which correctly classified all samples

n the test set.
Tables 2 and 3 reveal that the use of LDA-SPA models provided

 better classification of the spectral data obtained using 1.0 mm
nd 20 mm optical paths, when compared with the PLS-DA. For the
0 mm optical path, however, the best results were obtained from
LS-DA which achieved a correct prediction rate of 100% in the test
et.

. Conclusions

This paper presented a method based on screening analysis for
etection of adulteration in diesel/biodiesel blends employing NIR
pectrometry and multivariate classification such as PLS-DA and

DA-SPA.

A PCA study applied to the different optical paths (1.0 mm,
0 mm and 20 mm)  revealed a substantial overlapping among all
lasses. In contrast, LDA with wavenumbers selected by SPA was

[
[

– – – – 2 2 –
– – – – – – –
– – – – – – –

able to identify raw oil contamination and illegal blends of diesel
containing raw oil instead of biodiesel.

The LDA-SPA models provided a better classification perfor-
mance using the data obtained from the 1.0 mm and 20 mm optical
paths, when compared with the PLS-DA. More specifically, the data
set recorded using a 20 mm optical path achieved a correct predic-
tion rate of 97%. Using the 10 mm optical path, however, the best
results were obtained from PLS-DA which correctly classified all
samples in the test set.

The results obtained in this investigation suggest that the pro-
posed method is a promising alternative to detect adulteration in
diesel/biodiesel blends. It is worth noting that the method is based
solely on spectroscopic measurements and chemometric tech-
niques. Moreover, after the screening models have been obtained,
the proposed methodology can be applied to new samples in a fast
and straightforward manner.
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