
Theoretical Computer Science 242 (2000) 125–142
www.elsevier.com/locate/tcs

A new algorithm for linear regular tree pattern matching

Priti Shankar ∗, Amitranjan Gantait, A.R. Yuvaraj, Maya Madhavan
Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560012, India

Received January 1998; revised July 1998
Communicated by M. Nivat

Abstract

We consider the problem of linear regular tree pattern matching and describe a new solution
based on a bottom up technique. Current bottom up techniques preprocess the patterns and con-
struct a �nite state tree pattern matching automaton for the purpose. Though matching time is lin-
ear in the size of the subject tree, the size of the automaton can be exponential in the sum of the
sizes of all patterns. We show here that the problem can be cast as a parsing problem for a context
free language, and a solution that uses an extension of the LR parsing technique can be devised.
Though the size of the resulting pushdown automaton can be exponential in the pattern size in the
worst case, there are problem instances for which exponential gains in succinctness of representa-
tion are obtained. The technique has been successfully applied to the problem of generation of an
instruction selector in a compiler back end. c© 2000 Elsevier Science B.V. All rights reserved.

Keywords: Tree pattern matching; Regular tree grammars; Retargetable code generation

1. Introduction

The speci�cation of machine architectures using Regular Tree Grammars and
Bottom-Up Rewrite Systems (BURS) has been extremely useful for the purpose of
retargetable code generation [2, 5, 8, 12]. Both speci�cations have been used to generate
�nite state tree pattern matching automata, which function as code generators, when
augmented with actions that emit code. An input subject tree, (in this application, an
intermediate code tree), is traversed by the generated tree automaton, and each time
a match of some pattern in the speci�cation is encountered, an action is executed,
typically, emission of code. Both, top down [1], and bottom up [2, 8, 12] techniques
have been used for preprocessing tree patterns and traversing the subject tree. The
basic techniques for the tools constructed have drawn heavily from the seminal papers

∗ Corresponding author. Tel.: +91 (812) 36441
E-mail address: priti@csa.iisc.ernet.in (P. Shankar).

0304-3975/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved
PII: S0304 -3975(98)00205 -9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81218913?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

126 P. Shankar et al. / Theoretical Computer Science 242 (2000) 125–142

of Ho�man and O’Donnell [9] and Chase [3], who presented solutions to a related
problem, the Linear Tree Pattern Matching Problem. Top down techniques are e�-
cient in space, but matching time is nonlinear, the current best space e�cient technique
having time complexity O(subsize×√

patsize× polylog(patsize)) [4], where patsize is
the total size of all tree patterns, and subsize is the size of the input subject tree.
By contrast, bottom up techniques achieve matching in linear time. However, auxiliary
space required to store each operator table encoding the �nite state tree pattern match-
ing automaton, is exponential in the product of the maximum operator arity, maxarity,
and patsize, each operator requiring one such table. Ferdinand et al. [5] construct a
deterministic �nite tree automaton encoded as a set of compressed decision trees, along
with appropriate index maps. Each decision tree is e�ectively a compressed version of
an operator table. In [2], the approach of [3, 9] has been generalized to handle regular
tree patterns augmented with costs. We show that it is possible to solve the regular
tree pattern matching problem by constructing a pushdown automaton for the purpose.
Though pushdown automata have been used for the problem of table driven code gen-
eration [7], the technique proposed there, cannot be applied in general, to the problem
of regular tree pattern matching. Our approach preprocesses the patterns using a con-
struction technique that is an extension of that used for LR parser construction. We
show that there are problem instances for which exponential gains in succinctness of
representation are obtained using this technique.
Section 2 presents some background, while Section 3 describes the new algorithm.

Section 4 discusses the complexity of the algorithm, and contains results from the
application of this algorithm to a test case.

2. Regular tree pattern matching

Let A be a �nite alphabet consisting of a set of operators OP and a set of terminals T .
Each operator op in OP is associated with an arity, arity(op). Elements of T have arity
0. The set TREES(A) consists of all trees with internal nodes labeled with elements
of OP, and leaves with labels from T . The number of children of a node labeled op is
arity(op). Special symbols called wildcards are assumed to have arity 0. If N is a set
of wildcards, the set TREES(A∪N) is the set of all trees with wildcards also allowed
as labels of leaves.
Below, we present some de�nitions drawn mainly from [2, 5].

De�nition 2.1. A regular tree grammar G is a 4-tuple (N; A; P; S) where
• N is a �nite set of nonterminal symbols
• A=T ∪OP is a ranked alphabet, with the ranking function denoted by arity.
• P is a �nite set of production rules of the form X → t, where X ∈N and t is an
encoding of a tree in TREES(A∪N).

• S is the start symbol of the grammar.

P. Shankar et al. / Theoretical Computer Science 242 (2000) 125–142 127

A tree pattern is represented by the righthand side of a production of P in the grammar
above. A production of P is called a chain rule, if it is of the form A→B, where both
A and B are nonterminals.

Example 2.1. Below is an example of a regular tree grammar.

G=({S; R; B}; { := ;+; deref ; sp; c}; P; S);
where P is given by

S→ := (deref (B); R)
S→ := (deref (c); R)
B→ sp
B→R
R→ c
R→B
R→ + (B; R)
R→ + (R; B)
R→ deref (B)
R→ + (R; c)
R→ + (c; R)
R→ + (B; c)

Derivation sequences are de�ned in the usual way. However, we note that the objects
being derived are trees. An X -derivation tree, DX , for G has the following properties:
1. The root of the tree has label X .
2. If X is an internal node, then the subtree rooted at X is one of the following three
types; (For describing trees we use the usual list notation)
• X (DY) if X →Y is a chain rule and DY is a derivation tree rooted at Y .
• X (a) if X → a; a∈T is a production of P.
• X (op(D1; D2; : : : ; Dk)) if X → op(t1; t2; : : : ; tk) is an element of P, Di= Xi if ti=
Xi ∈N , and Di= ti if ti ∈TREES(A∪N).

The language de�ned by the grammar is then the set

L(G)= {t | t ∈TREES(A); and S⇒∗ t}:
Fig. 1 displays a subject tree in L(G) for the grammar in Example 2.1, and a

corresponding S-derivation tree.
The pattern represented by the righthand side of a production used at a particular

node, is said to match at that node. Thus, for the subject tree of Fig. 1, pattern
:= (deref (c); R) matches at node with label := , and pattern +(Bc) matches at node
with label +. The problems of regular tree pattern matching, and �nding S-derivations
are therefore equivalent. The matching problem we will address in this paper is: Given
a regular tree grammar; and a subject tree; �nd a representation of all derivation
trees for the subject tree. In the next section, we describe a solution that constructs a
pushdown automaton to solve the problem.

128 P. Shankar et al. / Theoretical Computer Science 242 (2000) 125–142

Fig. 1. Tree in the language L(G) for the grammar of Example 2.1.along with its derivation tree.

3. The new technique

The idea of using pushdown automata for table driven code generation had been
proposed earlier by Graham and Glanville [7]. However, their approach cannot be
applied in general, to the problem of regular tree pattern matching, as it does not carry
forward all possible choices in order to be able to report all matches. The technique we
describe here can either be viewed as an extension of the LR(0) parsing strategy [6],
or as a restriction of the Earley algorithm [11]. We expand on the former viewpoint
as it allows for a simple description of the technique.
Let G′ be the context free grammar obtained by replacing all righthand sides of

productions of G by postorder listings of the corresponding trees in TREES(A∪N).
Note that G is a regular tree grammar whose associated language contains trees, whereas
G′ is a context free grammar whose language contains strings with symbols from A.
Of course, these strings are just the linear encodings of trees.
For purposes of our algorithm, we need grammars in normal form [2], de�ned below.

De�nition 3.1. A production is said to be in normal form if it is in one of the three
forms below
• A→B1B2 : : : Bkop where A; Bi; i=1; 2; : : : ; k are all nonterminals, and op has arity k.
• A→B, where A and B are nonterminals.
• B→ b, where b is a terminal.

A grammar is in normal form if all its productions are in normal form. Any grammar
can be put into normal form by the introduction of new nonterminals.

P. Shankar et al. / Theoretical Computer Science 242 (2000) 125–142 129

Example 3.1. The grammar of Example 2.1 can be converted into a context free gram-
mar in normal form as follows:

S→YR :=
S→WR :=
Y →B deref
W →C deref
R→C
B→ SP
B→R
R→B
R→BR+
R→RB+
R→B deref
R→RC+
R→CR+
R→BC+
C→ c
SP→ sp

Let post(t) denote the postorder listing of the nodes of a tree t: The following
theorem has an easy inductive proof which is omitted.

Theorem 3.1. A tree t is in L(G) if and only if post(t) is in L(G′). Also any tree
� in TREES(A∪N) that has an associated S-derivation tree in G has an unique
sentential form post(�) of G′ associated with it.

We will show formally that the problem of �nding matches at any node of a subject
tree t is equivalent to that of parsing the string corresponding to the postorder listing
of the nodes of t. Assuming a bottom up parsing strategy is used, parsing corresponds
to reducing the string to the start symbol, by a sequence of shift and reduce moves
on the parsing stack, with a match of pattern p being reported at node j whenever a
production corresponding to pattern p (i.e. with right-hand side a postorder encoding
of p) is used to reduce by at the corresponding position in the string. Thus, in contrast
with earlier methods that seek to construct a tree automaton to solve the problem,
we e�ectively construct a deterministic pushdown automaton for the purpose. We note
that the grammar G′ is in general ambiguous, and �nding all derivation trees in G
corresponds to �nding all derivations in G′.

Example 3.2. The following are two derivation sequences in G′ for the string w=
c deref sp c + := corresponding to the tree in L(G) displayed in Fig. 1.
S⇒YR :=⇒YBR + :=⇒YBC + :=⇒YBc + :=
⇒Y SPc + :=⇒Y sp c + :=⇒Bderef sp c + :=⇒R deref sp c + :=
⇒C deref sp c + :=⇒ c deref sp c + :=

130 P. Shankar et al. / Theoretical Computer Science 242 (2000) 125–142

Fig. 2. Two S-derivation trees for the tree with postorder encoding c deref sp c + :=.

S⇒WR :=⇒WBC + :=⇒WBc + :=
⇒W SP c + :=⇒W sp c + :=⇒C deref sp c + :=⇒ c deref sp c + :=

The corresponding derivation trees in G are shown in Fig. 2.

3.1. Extension of the LR(0) parsing algorithm

We assume that the reader is familiar with the notions of rightmost derivation se-
quences, handles, viable pre�xes of right sentential forms, and items being valid for
viable pre�xes. De�nitions may be found in [10]. By a viable pre�x induced by an
input string we mean the stack contents that result from processing the input string
during an LR parsing sequence. If the grammar is ambiguous, then there may be sev-
eral viable pre�xes induced by an input string. The key idea underlying the algorithm
is contained in the theorem below:

Theorem 3.2. Let G′ be a normal form context free grammar derived from a regular
tree grammar. Then all viable pre�xes induced by an input string are of the same
length.

Proof. The proof rests on the following four observations.
1. A shift of any symbol is always followed by a reduction.
2. If the symbol shifted is a terminal symbol, then the length of the viable pre�x

remains the same, as the handle is of length 1.

P. Shankar et al. / Theoretical Computer Science 242 (2000) 125–142 131

3. If the symbol is an operator op, then the viable pre�x reduces by length arity(op).
4. Reduction by chain rules does not change the length of the viable pre�x.
The �rst three observations are a consequence of the fact that the grammar is in

normal form, and do not depend on the rightmost derivation sequence used. Therefore
all parsing sequences for an input string yield viable pre�xes of the same length.

In order to apply the algorithm to the problem of tree pattern matching, we need to
re�ne the notion of matching, to one of matching in a left context.

De�nition 3.2. Let G=(N; T; P; S) be a regular tree grammar in normal form, and t
be a subject tree. Then pattern � represented by production X → � matches at node j
in left context �; �∈N∗ if
1. � matches at node j or equivalently, X ⇒ �⇒∗ t′ where t′ is the subtree rooted

at j.
2. If � is not �, then the sequence of maximal complete subtrees of t to the left of

j, listed from left to right is t1; t2; : : : ; tk , with ti having an Xi-derivation tree,16i6k,
where �=X1X2 : : : Xk .
3. The string X1X2 : : : XkX is a pre�x of the postorder listing of some tree in

TREES(A∪N) with an S-derivation.

Example 3.3. Consider the subject tree of Fig. 1. The regular tree grammar correspond-
ing to the context free grammar in Example 3.1 can be easily obtained by converting the
righthand sides of all productions into the appropriate form. Pattern := (Y; R) matches
in left context �. Also pattern c matches in left context YB. This can be deduced by
examining the S-derivation tree on the left, in Fig. 2. Also, pattern +(B; C) matches
in left context W and deref (C) matches in left context �. This can be deduced by
examining the S-derivation tree on the right, in Fig. 2. The following lemma follows
directly from Theorem 3.1. It is useful in proving the theorem that shows that the
pattern matching problem can be cast as a parsing problem.

Lemma 3.1. � is a pre�x of a right sentential form of the context free grammar G′;
if and only if � is a pre�x of the postorder listing of a tree in TREES(A∪N) which
has an S-derivation.

The following theorem forms the basis of our algorithm.

Theorem 3.3. Let G=(N; T; P; S) be a regular tree grammar, and G′ the context
free grammar constructed as before. Let t a subject tree with postorder listing
a1 : : : ajw; ai ∈A; w∈A∗. Then pattern � represented by production X →post(�) of
G′ matches at node j in left context � if and only if there is a rightmost derivation
in the grammar G′ of the form

S⇒∗ �Xz⇒∗ �post(�)z⇒∗ �ah : : : ajz⇒∗ a1 : : : ajz; z ∈A∗

where ah : : : aj is the subtree rooted at node j.

132 P. Shankar et al. / Theoretical Computer Science 242 (2000) 125–142

Proof. (Only if) Assume that � matches in left context �. Then clearly, X⇒post(�)
⇒∗ah : : : aj. Also, if � is not �, and the subtrees t1; : : : ; tk are de�ned as in De�nition 3.2,
each of the complete subtrees ti has an Xi-derivation tree, and hence Xi ⇒∗ post(ti).
By condition 3 of the de�nition, �X is a pre�x of the postorder listing of a tree that
has an S-derivation. From Lemma 3.1, � is a pre�x of a right sentential form of G′.
Thus S⇒∗ �Xz for some z ∈�∗, and thus a derivation sequence of the required form
exists.
(If) Assume that there is a rightmost derivation sequence of the form in the statement

of the theorem, and that �=X1X2 : : : Xk . Let t1; t2; : : : ; tk be the sequence of subtrees
whose postorder encodings are derived by X1; X2; : : : ; Xk ; respectively. These are all
complete subtrees to the left of the subtree rooted at j, and it follows that ti has an Xi
derivation tree, 16i6k. Also, post(�) can be reduced to X , and hence the pattern �
matches at node j. Finally X1X2 : : : XlX is a viable pre�x of G, and by Lemma 3.1, it
is the pre�x of the postorder listing of a tree that has an S-derivation. Thus pattern �
matches in left context �.

Example 3.4. Consider the patterns in Example 3.1. Pattern := (Y; R) matches in left
context �. This corresponds to the derivation sequence S⇒YR :=⇒∗ c deref sp c+ :=.
Pattern C deref also matches in left context �. This corresponds to the derivation
sequence S⇒∗W sp c + :=⇒C deref sp c + :=⇒ c deref sp c + :=:
The direct correspondence between rightmost derivation sequences in G′ matches of

regular tree patterns in G, suggests the possibility of using an LR-like parsing strategy
for pattern matching. Theorem 3.1 asserts that all viable pre�xes are of the same length.
This naturally leads to the idea of building a dfa that recognizes sets of viable pre�xes.
We �rst augment the grammar with the production Z→ S$ to make it LR(0). We next
construct a �nite state automaton which we will call the Auxiliary Automaton(AA) as
follows:

M =(Q;�; �; q0; F);

where each state of Q contains a set of items of the grammar;

�=A∪ 2N
q0 is the start state

F is the state containing the item Z→ S$:

� :Q×�→Q

The precomputation of M is similar to the precomputation of the states of the DFA
for canonical sets of LR(0) items for a context free grammar. However there is one
important di�erence. In the DFA for LR(0) items, transitions on nonterminals are
determined just by looking at the sets of items in any state. Here we have transitions
on sets of nonterminals. These can not be determined in advance, as we do not know
a priori, which patterns are matched simultaneously when matching is begun from a

P. Shankar et al. / Theoretical Computer Science 242 (2000) 125–142 133

given state. Therefore, transitions on sets of nonterminals are added as and when these
sets are determined. Informally, at each step, we compute the set of items generated
by making a transition on some element of A. Because the grammar is in normal form,
each such transition leads to a state, termed a matchset which calls for a reduction by
one or more productions. A reduction involves popping o� a set of handles from the
parsing stack, and making a transition on a set of nonterminals corresponding to the
lefthand sides of all productions by which we have performed reductions, from the state
(called an LCset) that is exposed on stack after popping o� the set of handles. This
gives us, perhaps, a new state, which is then added to the collection if it is not present.
Two tables encode the automaton. The �rst, �A, encodes the transitions on elements

of A. Thus it has, as row indices, the indices of the LCsets, and as columns, elements of
A. The second, �LC , encodes the transitions of the automaton on sets of nonterminals.
The rows are indexed by LCsets, and the columns by indices of sets of nonterminals.
The operation of the parser, which is, in fact, the tree pattern matcher, is described
below.

Algorithm TreeMatcher
Input The input string w= a1a2 : : : an$ representing a postorder listing of the nodes of
the subject tree, and stored in an array a[1 : : : n + 1]. Also the AA M for the normal
form context free grammar corresponding to the regular tree grammar. Let this have
state set Q= {q0; q1; : : : ; qr} with q0 being the start state.
Output A list of pairs (i; m) such that pattern pi matches at node m in left context
induced by the postorder listing of the sequence of complete subtrees to the left of m.

begin
/* Let stack be the parsing stack, initialized to q0, state be the current state of the
parser also initialized to q0, topstack the state currently on top of the stack, and
push and pop the usual stack operations. Let match(state) be the set of patterns
that are matched in that state */
for i=1 to n do

state := �A(state; a[i]);
/* The entry in the table �A directly gives the set m of patterns matched,
match(state),
as well as the matching nonterminal set Sm.*/
if match(state) 6=� then output(i; match(state));
pop(stack) arity(a[i]) times;
state := �LC(topstack; Sm);
output(i; match(state));
/* these matched patterns correspond to chain rules of the form A→B that
are matched*/
push(state)

endfor
end.

134 P. Shankar et al. / Theoretical Computer Science 242 (2000) 125–142

Clearly, the algorithm is linear in the size of the subject tree. It remains to describe
the precomputation of the AA coded by the tables �A and �LC .

3.2. Precomputation of tables

We proceed as follows. The start state of the auxiliary automaton contains the same
set of items as would the start state of the dfa for sets of LR(0) items. From each
state, say q, identi�ed to be a state of the auxiliary automaton, we �nd the state entered
on a symbol of A, say a. (This depends only on the set of items in the �rst state.) The
second state, say m (which we will refer to as a matchstate), will contain only complete
items. We then set �A(q; a) to the pair (match(m); Sm), where match(m) is the set of
patterns that match at this point, and Sm is the set of lefthand side nonterminals of the
associated productions of the context free grammar. Next we determine all states that
have paths of length arity(a)+1 to q. We refer to such states as valid left context states,
for q. These are the states that can be exposed on stack while performing a reduction,
after the handle is popped o� the stack. If p is such a state then we compute the state
r corresponding to the itemset got by making transitions on elements of Sm augmented
by all nonterminals that can be reduced to because of chain rules. These new item sets
are computed using the usual rules that are used for computing sets of LR(0) items.
Finally, the closure operation on resulting items completes the new item set associated
with r.
To compute states which have paths of a given length to a speci�ed state, it is useful

to store a function �−1 which for a given state, returns the set of states which have
transitions to this state.
The following function lc(q; a), returns a set of states which have paths of length

arity(a) + 1 to a matchstate q, i.e. are valid left context states for q, given q and a.

function lc(q; a) : set of states
begin
lc := q;
for i=1 to arity(a) + 1 do

lc :=
⋃
p∈lc �

−1(p)
end

Before we describe the preprocessing algorithm, we de�ne certain functions that
operate on sets of items.
The goto operation on a set of items and a symbol is encoded as
goto(itemset; a)= {[A→ �a:�] | [A→ �:a�]∈ itemset}
The reduction operation on a set of complete items itemset1 (representing a match

state)with respect to another set of items itemset2 (representing a valid left context
state), is encoded as the function

function reduction(itemset2; itemset1)
begin

reduction=�

P. Shankar et al. / Theoretical Computer Science 242 (2000) 125–142 135

reduction := reduction∪{[A→ �B:�] | ∃[B→ :]∈ itemset1; and [A→ �:B�]
∈ itemset2}

repeat
reduction := reduction∪{[A→B:�] | ∃[B→C:]∈ reduction and
[A→ :B�]∈ itemset2}

until no change to reduction.
end

The closure operation on a set of items itemset is encoded as follows:

function closure(itemset)
begin

repeat
itemset := itemset ∪{[A→ :�] | [B→ :A�]∈ itemset}

until no change to itemset
closure := itemset

end

De�ne for a pair of item sets itemset1 and itemset2, the function:
ClosureReduction(itemset2; itemset1)= closure(reduction(itemset2; itemset1))
We describe below two preprocessing algorithms. Algorithm Preprocess is an ex-

act algorithm which constructs the auxiliary automaton. We note that in algorithm
Preprocess, each time a transition is added to the automaton, we need to go through
a while loop to check whether any new valid left context states are discovered for
existing match states, and if so, add new transitions. This process is time consuming.
In algorithm SimplePreprocess, we check a necessary condition for a state to be a
valid left context state for a match state, by just inspecting the item sets in the two
states. Thus we do not need the while loop. Simply speaking, we check whether for
each complete item A→ �: in the matchstate, there is an item of the form A→ :� in
the LCstate, and whether there is a tally of such items. If this is the case then we
declare the LCstate to be a valid left context state. More formally, let rhs(m) be the
righthandsides of productions corresponding to complete items in a matchstate m.
De�ne NTSET (p; rhs(m))= {B | B→ :�∈ itemset(p); �∈ rhs(m)}. Then a neces-

sary, but not a su�cient condition for p to be a valid left context state for a match-
state corresponding to a matchset m is NTSET (p; rhs(m))= Sm. (The condition is only
necessary, because there may be another production that always matches in this left
context when the others do, but which is not in the matchset.) We encode the function
validlc(p;m) as follows:

function validlc(p;m) : boolean
begin

if NTSET (p; rhs(m))= Sm then validlc := true else validlc := false
end

For both algorithms we maintain a worklist list, and a set lcsets which �nally
contains all the LCsets.

136 P. Shankar et al. / Theoretical Computer Science 242 (2000) 125–142

Algorithm Preprocess
/* We assume that sets of items represent states and vice versa*/
Input A context free grammar G′ in normal form representing regular tree grammar G.
Output The auxiliary automaton encoded by tables �A and �LC .
begin
lcsets=�;
matchsets=�;
list= closure({[S→ :�] | S→ �∈P});
while1 list is not empty do
delete next element q from list and add it to lcsets
for1 each symbol a∈A such that goto(q; a) is not empty do
m := goto(q; a);
�−1(m)= �−1(m)∪ q;
matchsets :=matchsets∪{m};
�A(q; a) := (match(m); Sm);/*Sm is the set of matching nonterminals*/
for2 each state r in lc(m; a) do

p :=ClosureReduction(r; m);
if p is not in list or lcsets then append p to list;
�LC(r; Sm) := (match(p); p);/*match(p) is the set of matching patterns
corresponding to chain rules*/
�−1(p) := �−1(p)∪{r};

endfor2

endfor1

change := true
while2 change= true do
change := false;
for3 each state m in matchsets do

a := symbol on which m is entered;
for4 each state r in lc(m; a) such that (r; m) has not been processed do
p :=ClosureReduction(r; m);
�LC(r; Sm) := (match(p); p);
if p is not in list or lcsets then append p to list and set change
to true;
if �−1(p) does not contain r then add r to �−1(p) and set change
to true

endfor4

endfor3

endwhile2

endwhile1

end

P. Shankar et al. / Theoretical Computer Science 242 (2000) 125–142 137

Algorithm SimplePreprocess
Input A context free grammar G′=(N; T; P; S) representing a regular tree grammar G
in normal form.
Output The auxiliary automaton represented by tables �A; �LC
begin
lcsets :=�;
matchsets :=�;
list := closure({[S→ :�] | S→ �∈P});
while list is not empty do
delete next element q from list and add it to lcsets;
for each a∈A such that goto(q; a) is not empty do
m := goto(q; a);
�A(q; a) := (match(m); Sm);
if m is not in matchsets then

matchsets :=matchsets∪{m};
for each state r in lcsets do
if validlc(r; m) then
p :=ClosureReduction(r; m);
�LC(r; Sm) := (match(p); p);
if p is not in list or lcsets then append p to list endif
endif

endfor
endif

endfor
for each state t in matchsets do

if validlc(q; t) then
s :=ClosureReduction(q; t);
�LC(q; St) := (match(s); s);
if s is not in list or lcsets then append s to list endif;

endif
endfor

endwhile
end
The algorithms Preprocess and SimplePreprocess create the tables �A and �LC to be

used during matching.

3.3. Correctness of the algorithm

We will now show that the dfa constructed satis�es the property de�ned below.

Property. LR(0) Item [A→ �:�] is valid for viable pre�x =X1X2 : : : Xk in S1S2 : : : Sk
if and only if �(q0; S1S2 : : : Sk) contains [A→ �:�].

138 P. Shankar et al. / Theoretical Computer Science 242 (2000) 125–142

Proof. We give an informal proof that the property is satis�ed, based on the proof
that a similar property (di�ering from the one above only in that the function � is
applied on a single viable pre�x instead of a set of viable pre�xes) holds for a dfa
for canonical set of LR(0) items [10]. The construction using algorithm Preprocess
may be viewed as a subset construction beginning with the LR(0) dfa. We begin with
the start state. Suppose m is a matchstate reached during some point in the algorithm,
with Sm= {X1; X2; : : : ; Xm}. In the LR(0) dfa we would have individual transitions on
X1; X2; : : : ; Xn to di�erent states. Here, we collect the items in all those states into a
single state, and then augment the items with those obtained with the application of
chain rules and got by the closure operation.(This is exactly what ClosureReduction
does given a matchstate and an LCstate). Thus the state we reach in AA on a label
sequence S1S2 : : : Sn is got by merging individual states we would have reached by
following individual viable pre�xes of the form X1X2 : : : Xn in the dfa for LR(0) item
sets induced by the same input string. The property follows from the fact that it holds
for each of the viable pre�xes in the LR(0) automaton.

3.4. Table compression

It is possible to compress the tables by de�ning certain equivalence relations on the
set lcsets.
Let arityset be the set of arities of symbols of A. De�ne a set of equivalence relations

{Ri | i∈ arityset} on the set lcsets as follows.
If p and q are in lcsets, then pRiq if �A(p; a)= �A(q; a) for all a with arity(a)= i.

The table �A now splits into several tables �iA, one for each arity. The rows of the table
�iA correspond to the equivalence classes of Ri. The columns correspond to columns of
Ai where Ai is the set of symbols of A with arity i.
De�ne the set NTi as

NTi= {B | B→ �a∈P; arity(a)= i}

Equivalence relation Ui is de�ned on lcsets as follows. For states p and q, pUiq
if for all nonterminals B in NTi, �LC(p; B)= �LC(q; B). The table �LC now splits into
several tables �iLC , one for each value of arity. The table �

i
LC has one row for each

equivalence class of Ui and a column for each distinct set of matching nonterminals
that is a subset of NTi.
The compression of the tables can be done on line, while the tables are generated,

as the equivalence classes can be computed from the sets of items associated with the
states. Each equivalence relation would need an index map which maps from original
indices to indices in that equivalence class, which are then used to access table entries.
During matching, if the next symbol is in Ai, then table �iA is �rst consulted through
its index map, followed by a lookup of table �iLC .

P. Shankar et al. / Theoretical Computer Science 242 (2000) 125–142 139

4. Complexity of the algorithm

4.1. Auxiliary space complexity

Let lcsets be the set of LC sets, | Ri | (| Ui |) be the number of equivalence classes
of Ri(Ui), and RC i(UC i) the equivalence classes of Ri(Ui), i∈ arityset.
The following maps and tables have to be maintained for use during matching, for

i∈ arityset.
• �iA :RC i×Ai→ (matchsets× 2NTi)
• �i : lcsets→RC i
• �i : lcsets→UC i
• �iLC :UC i× 2NTi → lcsets
It is evident that the sizes of lcsets and matchsets determine the sizes of the tables,
so we �rst compute loose bounds on the sizes of these sets. Let h be the maximum
height of a tree pattern. This, for a regular tree grammar, is the maximum height of
trees in TREES(A) to be considered using the conventional algorithm, to obtain all the
matchsets. Let nLC be the size of the set LCsets, and nM that of matchsets.

Lemma 4.1. nLC + nM62|NT | × (maxarity−1)× h.

Proof. Consider a node in any derivation tree for a subject tree of height bounded by h.
The number of maximal complete subtrees to the left of the node represents the length
of a path in the auxiliary automaton, encoding a set of viable pre�xes induced by the
pre�x of the input postorder string ending at the postorder predecessor of the terminal
or operator associated with the node. The edges of this path are labelled by matching
nonterminal sets. The maximum length of any such path is (maxarity− 1)× h. Since
each edge on the path may be labeled by a set of matching nonterminals, the a bound
on the total number of states of the auxiliary automaton is 2|NT | × (maxarity−1)× h.

A relevant question that arises is: Are there any gains in succinctness of representa-
tion that arise from using a pushdown automaton instead of a �nite state tree pattern
matching automaton? The following theorem answers the question.

Theorem 4.1. There exist families of languages for which the input patterns have
height h; the �nite state tree tree pattern matching automaton has number of states
O(22

h
); whereas the auxiliary automaton has size O(2h+2).

Proof. We modify slightly, the family of balanced binary tree patterns described in [9],
which constitute a worst case input instance for algorithms that construct bottom up
�nite state tree pattern matching automata. Let Pij; i¿0; 16j62

i be a class of balanced
binary tree patterns of height i with all internal nodes labeled a∈OP. There are two
nonterminals, S, the start symbol, and V . In Pij, all the leaves are labeled V , except
the jth leaf from the left which is labeled b. From the set of tree patterns of height

140 P. Shankar et al. / Theoretical Computer Science 242 (2000) 125–142

i, we construct a set of tree patterns of height i + 1 as follows:

Ri+1j = op(lj; Pij); lj ∈T; 16j62i :

To these patterns, we add the patterns b and c. There will be a total of 2i+2 + i
normalized productions. Example 4.1 below shows the set of unnormalized produc-
tions for the case i=3. For each subset of patterns, containing distinct elements
{Pij1 ; Pij2 ; : : : ; Pijk}; jl ∈{1; 2; : : : ; 2i}; i6l6k, there is a subject tree for which exactly
this set of patterns matches at the root. This is just the binary tree of height i with
a at all internal nodes, a b at each leaf position jl and c at every other leaf. Thus a
�nite state tree pattern matching automaton contains at least 22

i
states. However, each

pattern Pij matches in a di�erent left context and therefore no two or more patterns
can appear together in any matchset associated with the LR automaton. The number
of matchstates and LCstates are both O(2i+2) in this case.

Example 4.1. The regular tree grammar (not in normal form) below, illustrates the
case i=3. The number of normalized productions is 35.

S→ op(l1; a(a(a(b; V); a(V; V)); a(a(V; V); a(V; V))))
S→ op(l2; a(a(a(V; b); a(V; V)); a(a(V; V); a(V; V))))
S→ op(l3; a(a(a(V; V); a(b; V)); a(a(V; V); a(V; V))))
S→ op(l4; a(a(a(V; V); a(V; b)); a(a(V; V); a(V; V))))
S→ op(l5; a(a(a(V; V); a(V; V)); a(a(b; V); a(V; V))))
S→ op(l6; a(a(a(V; V); a(V; V)); a(a(V; b); a(V; V))))
S→ op(l7; a(a(a(V; V); a(V; V)); a(a(V; V); a(b; V))))
S→ op(l8; a(a(a(V; V); a(V; V)); a(a(V; V); a(V; b))))
V → c
V → b

4.2. Time complexity

We next estimate the time complexity of our algorithm.
We estimate the complexity of Algorithm SimplePreprocess as the auxiliary space

bounds estimated above hold for this algorithm as well.
The while loop is executed |lcsets| times. Within the while loop the �rst for loop is

executed |A| times, the complexity of each execution being bounded by |lcsets|×|NT |×
patsize assuming that a ClosureReduction operation and computation of validlc each
take time |NT |patsize and that all set and table entry operations take constant time.
The last for loop is executed |matchsets| times for each execution of the while loop,
the complexity of each execution being bounded by |NT | × patsize. The �rst for loop
dominates the execution within the while. Hence the overall time complexity is bounded
by |lcsets|2× |A| × |NT | × patsize.

P. Shankar et al. / Theoretical Computer Science 242 (2000) 125–142 141

4.3. Discussion

A comparison of the space requirements of the scheme based on the LR parsing
technique, with those of conventional techniques, suggests that the former is likely to
have advantages in cases where operators have large arities and when the transition
function of the tree automaton is not total. Though Lemma 4.1 indicates that the size
of the LR tables can be polynomial (of degree h) in the maximum size of an operator
table, it is not clear at this point as to what kinds of input instances elicit worst case
behaviour. Experimentation with some actual problem instances is necessary to examine
the e�ciency of this algorithm. Ferdinand et al. [5] point out that in many cases, tables
generated by the technique of Chase do not �t into main memory, and propose storing
them as decision tables. Such compression techniques result in considerable savings
in space when tables are sparse. However, at matching time, a linear number of extra
array accesses are needed for each dimension. The LR based scheme requires a constant
number of array accesses per node.
Our bottom up tree pattern matcher, performs pattern matching by visiting nodes of

the subject tree in postorder. The LR based strategy has the property that if the subject
tree is not in the language de�ned by the regular tree grammar, then it will detect so
at the �rst symbol at which the postorder listing ceases to be a pre�x of a valid listing.
(This problem is not encountered in code generation applications, as the input tree is
assumed to be in the language.) This is called the valid pre�x property. Bottom up
parsers based on �nite tree automata do not have this property. For the problem of
simple tree pattern matching, all subject trees are in the language generated by the
grammar, so this problem does not arise.
We have run this algorithm on a speci�cation consisting of the tree patterns encoding

the instruction set of the MC68030 machine(without costs) [6]. Both Preprocess and
SimplePreprocess were run on the input, the latter producing just one extra state.
Details are given below:
Number of normalized productions: 176, Number of nonterminals: 32
Number of operators of arity 1: 12, Number of operators of arity 2: 15, Number of
symbols of arity 0: 19
Size of LCsets: 348, Size of matchsets: 144
Total table size: 5.6K
The same problem instance was run through an algorithm that constructs a �nite

state tree pattern matching automaton using the technique of Chase [13], with states
augmented with costs, setting all costs to 0. The total table size including index maps
was around 7.7K. Thus for this instance, the sizes seem to be comparable. Prepro-
cessing times were also comparable. More experimentation is necessary to check the
e�ciency of this technique, both for precomputation as well as matching.
It appears possible to modify the preprocessor to work in an incremental manner,

with respect to pattern additions and deletions. Also states could be augmented with
cost information at code generator construction time, so that locally optimal code can
be generated, as is the case for tree automata augmented with costs. Future work on
application to code generation will concentrate on these problems.

142 P. Shankar et al. / Theoretical Computer Science 242 (2000) 125–142

Finally, it must be pointed out that the algorithm suggested in this paper performs
a slightly re�ned version of pattern matching, in that some contextual information can
be carried along. This might be useful in applications that require tree matches in
speci�ed contexts. Di�erent kinds of linearization strategies for the subject tree may
be employed, depending on the type of contextual information to be stored, the main
strategy requiring very little modi�cation.

References

[1] A.V. Aho, M. Ganapathi, E�cient tree pattern matching: an aid to code generation, in: Proc. 12th ACM
Symp. on Priciples of Programming Languages, 1985, pp. 334–340.

[2] A. Balachandran, D.M. Dhamdhere, S. Biswas, E�cient retargetable code generation using bottom up
tree pattern matching, Comput. Lang. 3 (15) (1990) 127–140.

[3] D. Chase, An improvement to bottom up tree pattern matching, in: Proc. 14th Ann. ACM Symp. on
Principles of Programming Languages, 1987, pp. 168–177.

[4] M. Dubiner, Z. Galil, E. Magen, Faster tree pattern matching, in: Proc. 31st IEEE FOCS ’90, 1990.
[5] C. Ferdinand, H. Seidl,, R.Wilhelm, Tree automata for code selection, Acta Inform. 31 (1994) 741–760.
[6] A. Gantait, A new algorithm for tree pattern matching and its application to retargetable code generation,

M.E. Project Report, Department of Computer Science and Automation, Indian Institute of Science,
Bangalore, December 1996.

[7] R.S. Glanville, S.L. Graham, A new method for compiler code generation, in: Proc. 5th Ann. ACM
Symp. on Principles of Programming Languages, 1978, pp. 231–240.

[8] P.Hatcher, T. Christopher, High-quality code generation via bottom-up tree pattern matching, in: Proc.
13th ACM Symp. on Principles of Programming Languages, 1986, pp. 119–130.

[9] C. Ho�mann, M.J. O’Donnell, Pattern matching in trees, J. ACM 29 (1) (1982) 68–95.
[10] J. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-

Wesley, Reading, MA, 1979.
[11] Maya Madhavan, Optimal regular tree pattern matching using pushdown automata, MSc(Engineering)

Thesis, Dept. of Computer Science and Automation. Indian Institute of Science, Bangalore, 1998.
[12] E. Pelegri Llopart, S. Graham, Optimal code generation for expression trees: An application of BURS

theory, in: Proc. 15th Annual ACM Symp. on Principles of Programming Languages, 1988, pp. 294–308.
[13] S. Ravi Kumar, Retargettable code generation using bottom up tree pattern matching, M.E Project

Report, Department of Computer Science and Automation, Indian Institute of Science, Bangalore, 1992.

