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Abstract

Some existence and multiplicity results are obtained for solutions of semilinear elliptic equations with Hardy terms,
Hardy–Sobolev critical exponents and superlinear nonlinearity by the variational methods and some analysis techniques.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction and main results

Consider the following semilinear elliptic problem−4u − µ
u

|x |2
=

|u|
2∗(s)−2

|x |s
u + f (x, u), x ∈ Ω \ {0},

u = 0, x ∈ ∂Ω ,

(1)

where Ω is an open bounded domain in RN (N ≥ 3) with smooth boundary ∂Ω and 0 ∈ Ω , 0 ≤ µ < µ
4
=

(N−2)2

4 ,
0 ≤ s < 2, f ∈ C(Ω × R, R), 2∗(s) =

2(N−s)
N−2 is the Hardy–Sobolev critical exponent and 2∗

= 2∗(0) =
2N

N−2 is
the Sobolev critical exponent. F(x, t) is a primitive function of f (x, t) defined by F(x, t) =

∫ t
0 f (x, s)ds for x ∈ Ω ,

t ∈ R. H1
0 (Ω) = W 1,2

0 (Ω) is the Sobolev space with the norm

‖u‖ =

(∫
Ω

(
|∇u|

2
− µ

u2

|x |2

)
dx
) 1

2

,
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which is equivalent to the usual norm of H1
0 (Ω) due to the Hardy inequality (see Lemma 3.1 in [7]) and

Aµ,s(Ω) = inf
u∈H1

0 (Ω)\{0}

∫
Ω

(
|∇u|

2
− µ

|u|
2

|x |2

)
dx(∫

Ω
|u|2

∗(s)

|x |s dx
) 2

2∗(s)

(2)

is the best Hardy–Sobolev constant which is independent of Ω by Theorem 3.1 in [7], so we denote Aµ,s instead of
Aµ,s(Ω).

Problem (1) in the case s = 0 and µ = 0 has been widely studied since Brezis and Nirenberg (see [1,4,10] and the
references here). In recent years, people have paid much attention to the existence of solutions for singular problems
concerning the operator −∆ −

µ

|x |2
(0 ≤ µ < µ) with Sobolev critical exponents (the case that s = 0) (see [2,5,6,

9,15] and their references). Some authors also studied the singular problems with Hardy–Sobolev critical exponents
(the case that s 6= 0) (see [7,8,11,12,14]). But there are few results dealing with the case 0 ≤ µ < µ, 0 ≤ s < 2 and
the general form f (x, t). In [11,12,14] and so on, the authors only studied the special cases of f (x, t). For example,
in [11], f (x, t) = λ|t |q−1t with suitable q . In the present paper, we use a variational method to deal with problem (1)
with general form and generalize the results in [11].

Due to the lack of compactness of the embeddings in H1
0 (Ω) ↪→ L2∗

(Ω), H1
0 (Ω) ↪→ L2(Ω , |x |

−2dx) and
H1

0 (Ω) ↪→ L2∗(s)(Ω , |x |
−sdx), we cannot use the standard variational argument directly. The corresponding energy

functional fails to satisfy the classical Palais–Smale ((PS) for short) condition in H1
0 (Ω). However, a local (PS)

condition can be established in a suitable range. Then the existence result is obtained via constructing a minimax level
within this range and the Mountain Pass Lemma due to A. Ambrosetti and P.H. Rabinowitz (see also [13]).

Here are the main results of this paper:

Theorem 1. Suppose that N ≥ 3, 0 ≤ µ < µ, 0 ≤ s < 2,

(f1) f ∈ C(Ω × R+, R), and limt→0+
f (x,t)

t = 0, limt→+∞
f (x,t)
t2∗−1 = 0 uniformly for x ∈ Ω , and

(f2) There exists a constant ρ, ρ > 2, such that 0 < ρF(x, t) ≤ f (x, t)t for all x ∈ Ω , t ∈ R+
\ {0}.

Assume that

ρ > max
{

2,
N

√
µ +

√
µ − µ

,
N − 2

√
µ − µ

√
µ

}
4
= r0. (3)

Then problem (1) has at least a positive solution.

Corollary 1. Suppose that N ≥ 4, 0 ≤ µ ≤ µ − 1, 0 ≤ s < 2. Assume that (f1) and (f2) hold. Then problem (1) has
at least a positive solution.

Theorem 2. Suppose that N ≥ 3, 0 ≤ µ < µ, 0 ≤ s < 2,

(f3) f ∈ C(Ω × R, R), and lim|t |→0
f (x,t)

t = 0, lim|t |→∞
f (x,t)
|t |2∗−1 = 0 uniformly for x ∈ Ω , and

(f4) There exists a constant ρ, ρ > 2, such that 0 < ρF(x, t) ≤ f (x, t)t for all x ∈ Ω and t ∈ R \ {0}.

Assume that (3) holds. Then problem (1) has at least two distinct nontrivial solutions.

Corollary 2. Suppose that N ≥ 4, 0 ≤ µ ≤ µ − 1, 0 ≤ s < 2. Assume that (f3) and (f4) hold. Then problem (1) has
at least two distinct nontrivial solutions.

Remark 1. Theorem 1 generalizes Theorem 1.1 in [11] where the author only studied the special situation that
f (x, t) = λ|t |q−2t with r0 < q < 2∗. There are functions f satisfying the assumptions of our Theorem 1 and
not satisfying those in [6,7,11,12]. For example, let

f (x, t) = g(x)|t |k−2t + α|t |l−2t

for (x, t) ∈ Ω × R, where g(x) > 0, g ∈ L∞(Ω), α > 0 and r0 < k < l < 2∗. Then f satisfies the conditions of
Theorem 1, while it doesn’t satisfy the conditions of Theorem 1.1 in [11] and others.
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2. Proof of theorems

It is obvious that the values of f (x, t) for t < 0 are irrelevant in Theorem 1, and we may define

f (x, t) = 0 for x ∈ Ω , t ≤ 0.

In order to study the existence of positive solutions for (1) we shall firstly consider the existence of nontrivial solutions
to the problem

−4u − µ
u

|x |2
=

(u+)2∗(s)−1

|x |s
+ f (x, u), x ∈ Ω \ {0}, u = 0, x ∈ ∂Ω . (4)

The energy functional corresponding to (4) is given by

I (u) =
1
2

∫
Ω

(
|∇u|

2
− µ

u2

|x |2

)
dx −

1
2∗(s)

∫
Ω

(u+)2∗(s)

|x |s
dx −

∫
Ω

F(x, u)dx, u ∈ H1
0 (Ω).

By the Hardy and Hardy–Sobolev inequalities (see Lemma 3.2 in [7]) and (f1), I ∈ C1(H1
0 (Ω), R). Now it is well

known that there exists a one to one correspondence between the weak solutions of problem (4) and the critical points
of I on H1

0 (Ω). More precisely we say that u ∈ H1
0 (Ω) is a weak solution of problem (4), if for any v ∈ H1

0 (Ω), there
holds

〈I ′(u), v〉 =

∫
Ω

(
∇u∇v − µ

uv

|x |2

)
dx −

∫
Ω

(u+)2∗(s)−1

|x |s
vdx −

∫
Ω

f (x, u)vdx = 0.

Let {un} be a sequence in H1
0 (Ω) and c ∈ R. {un} is called to be a (PS)c sequence in H1

0 (Ω) if I (un) →

c, I ′(un) → 0 in (H1
0 (Ω))∗ as n → ∞. We say I satisfies (PS)c condition if any (PS)c sequence {un} ⊂ H1

0 (Ω) has
a convergent subsequence.

Lemma 1. Assume (f1) and (f2) hold. Suppose c ∈ (0, 2−s
2(N−s) A

N−s
2−s
µ,s ), then I satisfies (PS)c condition.

Proof. Suppose that {un} is a (PS)c sequence in H1
0 (Ω). By (f2), we have

c + 1 + o(1)‖un‖ ≥ I (un) −
1
θ
〈I ′(un), un〉

=

(
1
2

−
1
θ

)
‖un‖

2
+

(
1
θ

−
1

2∗(s)

)∫
Ω

(u+
n )2∗(s)

|x |s
dx −

∫
Ω

(
F(x, un) −

1
θ

f (x, un)un

)
dx

≥

(
1
2

−
1
θ

)
‖un‖

2,

where θ = min{ρ, 2∗(s)}. Hence we conclude {un} is a bounded sequence in H1
0 (Ω). By the continuity of embedding,

we have ‖un‖
2∗

2∗ ≤ C1 < ∞. Going if necessary to a subsequence, one can get thatun → u weakly in H1
0 (Ω),

un → u in Lγ (Ω), 1 < γ < 2∗,

un → u a.e. in Ω ,

as n → ∞. By (f1), for any ε > 0 there exists a(ε) > 0 such that

| f (x, t)t | ≤
1

2C1
ε|t |2

∗

+ a(ε) for (x, t) ∈ Ω × (0, +∞).

Set δ =
ε

2a(ε)
> 0. When E ⊂ Ω , mes E < δ, we get∣∣∣∣∫

E
f (x, un)undx

∣∣∣∣ ≤

∫
E

| f (x, un)un|dx

≤

∫
E

a(ε)dx +
1

2C1
ε

∫
E

|un|
2∗

dx
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≤ a(ε)mes E +
1

2C1
εC1

< ε.

Hence
{∫

Ω f (x, un)undx, n ∈ N
}

is equi-absolutely-continuous. It follows easily from Vitali Convergence Theorem
that ∫

Ω
f (x, un)undx →

∫
Ω

f (x, u)udx, (5)

as n → ∞. Using the same method, we can prove that∫
Ω

F(x, un)dx →

∫
Ω

F(x, u)dx, (6)

as n → ∞. Let vn = un − u, since I ′(un) → 0 in
(
H1

0 (Ω)
)∗, we obtain

‖un‖
2
−

∫
Ω

(u+
n )2∗(s)

|x |s
dx −

∫
Ω

f (x, un)undx = o(1).

From the Brezis–Lieb Lemma in [3] and (5), we have

‖vn‖
2
+ ‖u‖

2
−

∫
Ω

(v+
n )2∗(s)

|x |s
dx −

∫
Ω

(u+)2∗(s)

|x |s
dx −

∫
Ω

f (x, u)udx = o(1), (7)

and

lim
n→∞

〈I ′(un), u〉 = ‖u‖
2
−

∫
Ω

(u+)2∗(s)

|x |s
dx −

∫
Ω

f (x, u)udx = 0. (8)

It follows from (8) that

I (u) =

(
1
2

−
1

2∗(s)

)∫
Ω

(u+)2∗(s)

|x |s
dx +

1
2

∫
Ω

f (x, u)udx −

∫
Ω

F(x, u)dx .

From (f2), we conclude that

I (u) ≥ 0. (9)

Since I (un) → c(n → ∞), together with the Brezis–Lieb Lemma and (6), we obtain

I (un) =
1
2
‖vn‖

2
+

1
2
‖u‖

2
−

1
2∗(s)

∫
Ω

(v+
n )2∗(s)

|x |s
dx −

1
2∗(s)

∫
Ω

(u+)2∗(s)

|x |s
dx −

∫
Ω

F(x, u)dx + o(1)

= I (u) +
1
2
‖vn‖

2
−

1
2∗(s)

∫
Ω

(v+
n )2∗(s)

|x |s
dx + o(1)

= c + o(1).

Therefore, one gets that

I (u) +
1
2
‖vn‖

2
−

1
2∗(s)

∫
Ω

(v+
n )2∗(s)

|x |s
dx = c + o(1). (10)

From (7) and (8), we have

‖vn‖
2
−

∫
Ω

(v+
n )2∗(s)

|x |s
dx = o(1),

then ‖vn‖
2

→ 0 as n → ∞. Otherwise, there exists a subsequence (still denoted by vn) such that

lim
n→∞

‖vn‖
2

= k, lim
n→∞

∫
Ω

(v+
n )2∗(s)

|x |s
dx = k, (11)
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where k is a positive constant. By (2), we deduce that

‖vn‖
2

≥ Aµ,s

(∫
Ω

(v+
n )2∗(s)

|x |s

) 2
2∗(s)

for all n ∈ N ,

then k ≥ Aµ,sk
2

2∗(s) , i.e., k ≥ (Aµ,s)
N−s
2−s , which, together with (10) and (11), shows that

I (u) = c −
1
2

k +
1

2∗(s)
k ≤ c −

2 − s
2(N − s)

A
N−s
2−s
µ,s < 0,

which contradicts (9). Therefore, we get

‖vn‖
2

→ 0 as n → ∞.

This proves un → u in H1
0 (Ω) as n → ∞.

From the discussion above, I satisfies (PS)c condition. �

From Lemma 2.2 in [11], we know that Aµ,s is attained when Ω = RN by the functions

yε(x) =

[
2ε(N−s)(µ−µ)

√
µ

] √
µ

2−s

|x |
√

µ−
√

µ−µ

(
ε + |x |

(2−s)
√

µ−µ
√

µ

) N−2
2−s

for all ε > 0. Moreover, the functions yε(x) solve the equation

−∆u − µ
u

|x |2
=

|u|
2∗(s)−2

|x |s
u, in RN

\ {0}.

Let

Cε =

(
2ε(N − s)(µ − µ)

√
µ

) N−2
2(2−s)

, Uε(x) =
yε(x)

Cε

.

Define a cut-off function ϕ ∈ C∞

0 (Ω) such that ϕ(x) = 1 for |x | ≤ R, ϕ(x) = 0 for |x | ≥ 2R, 0 ≤ ϕ(x) ≤ 1, where
B2R(0) ⊂ Ω . Set uε(x) = ϕ(x)Uε(x), vε(x) = uε(x)/(

∫
Ω |uε|

2∗(s)
|x |

−sdx)1/2∗(s), so that
∫
Ω |vε|

2∗(s)
|x |

−sdx = 1.
Then we can get the following results by the method used in [7]:

Aµ,s + C2ε
N−2
2−s ≤ ‖vε‖

2
≤ Aµ,s + C3ε

N−2
2−s , (12)

and 

C4ε

√
µ

2−s q
≤

∫
Ω

|vε|
qdx ≤ C5ε

√
µ

2−s q , 1 ≤ q <
N

√
µ +

√
µ − µ

,

C4ε

√
µ

2−s q
| ln ε| ≤

∫
Ω

|vε|
qdx ≤ C5ε

√
µ

2−s q
| ln ε|, q =

N
√

µ +
√

µ − µ
,

C4ε

√
µ(N−q

√
µ)

(2−s)
√

µ−µ ≤

∫
Ω

|vε|
qdx ≤ C5ε

√
µ(N−q

√
µ)

(2−s)
√

µ−µ ,
N

√
µ +

√
µ − µ

< q < 2∗.

(13)

Moreover, we can obtain∫
Ω

|vε|
2∗

dx ≤ C6(2Aµ,s)
N

N−2 , for ε → 0+. (14)

In fact, since H1
0 (Ω) ↪→ L2∗

(Ω) and (12) holds, one can deduce∫
Ω

|vε|
2∗

dx ≤ C7

(∫
Ω

|∇vε|
2dx

) 2∗

2
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= C7

(
Aµ,s + C8ε

N−2
2−s

) N
N−2

≤ C6(2Aµ,s)
N

N−2 (ε → 0+).

Lemma 2. Suppose that 0 ≤ µ < µ, 0 ≤ s < 2. Assume that (f1), (f2) and (3) hold. Then there exists u0 ∈ H1
0 (Ω),

u0 6≡ 0, such that

sup
t≥0

I (tu0) <
2 − s

2(N − s)
A

N−s
2−s
µ,s .

Proof. We consider the functions

g(t) = I (tvε) =
t2

2
‖vε‖

2
−

t2∗(s)

2∗(s)
−

∫
Ω

F(x, tvε)dx,

g̃(t) =
t2

2
‖vε‖

2
−

t2∗(s)

2∗(s)
.

Note that limt→+∞ g(t) = −∞, g(0) = 0, g(t) > 0 for t → 0+, so supt≥0 g(t) is attained for some tε > 0. Since

0 = g′(tε) = tε

(
‖vε‖

2
− t2∗(s)−2

ε −
1
tε

∫
Ω

f (x, tεvε)vεdx
)

,

we have

‖vε‖
2

= t2∗(s)−2
ε +

1
tε

∫
Ω

f (x, tεvε)vεdx ≥ t2∗(s)−2
ε .

Therefore, one gets

tε ≤ ‖vε‖
2

2∗(s)−2
4
= t0

ε .

By (f1), it is easy to verify that

| f (x, t)| ≤ εt2∗
−1

+ d(ε)t, d(ε) > 0.

Hence, we obtain

‖vε‖
2

≤ t2∗(s)−2
ε + ε

∫
Ω

|tε|2
∗
−2

|vε|
2∗

dx + d(ε)

∫
Ω

|vε|
2dx .

By (12)–(14), when ε is small enough, we conclude that

t2∗(s)−2
ε ≥

Aµ,s

2
. (15)

On the one hand, from (12) we claim that

‖vε‖
2(N−s)

2−s ≤ A
N−s
2−s
µ,s + C9ε

N−2
2−s . (16)

In order to prove this, we first prove the following inequality:

(a + b)λ ≤ aλ
+ λ(a + 1)λ−1b, a > 0, 0 ≤ b ≤ 1, λ ≥ 1. (17)

In fact, set

h(x) = (a + x)λ − aλ
− λ(a + 1)λ−1x, a > 0, 0 ≤ x ≤ 1, λ ≥ 1.

Clearly, h′(x) < 0, x ∈ (0, 1), so h(b) ≤ h(0) = 0, then (17) holds. Let a = Aµ,s , b = C3ε
N−2
2−s , λ =

N−s
2−s , then (16)

holds.



L. Ding, C.-L. Tang / Applied Mathematics Letters 20 (2007) 1175–1183 1181

On the other hand, the function g̃(t) attains its maximum at t0
ε and is increasing in the interval [0, t0

ε ], together with
(12), (15) and (16) and F(x, t) ≥ C10|t |ρ which is directly got from (f2), we deduce that

g(tε) ≤ g̃(t0
ε ) −

∫
Ω

F(x, tεvε)dx

=
2 − s

2(N − s)
‖vε‖

2(N−s)
2−s −

∫
Ω

F(x, tεvε)dx

≤
2 − s

2(N − s)
A

N−s
2−s
µ,s + C11ε

N−2
2−s −

∫
Ω

F(x, tεvε)dx

≤
2 − s

2(N − s)
A

N−s
2−s
µ,s + C11ε

N−2
2−s − C10

∫
Ω

tρε |vε|
ρdx

≤
2 − s

2(N − s)
A

N−s
2−s
µ,s + C11ε

N−2
2−s − C10

(
Aµ,s

2

) ρ

2∗(s)−2
∫
Ω

|vε|
ρdx,

where C11 = C9
2−s

2(N−s) . Furthermore, from (13), we get∫
Ω

|vε|
ρdx ≥ C4ε

√
µ(N−ρ

√
µ)

(2−s)
√

µ−µ .

By (3), we obtain that

N − 2
2 − s

>

√
µ(N − ρ

√
µ)

(2 − s)
√

µ − µ
.

Choosing ε small enough, we have

sup
t≥0

I (tvε) = g(tε) <
2 − s

2(N − s)
A

N−s
2−s
µ,s . �

Proof of Theorem 1. Let X = H1
0 (Ω). From the Hardy and Hardy–Sobolev inequalities, we can easily get:

‖u‖
2
L2 ≤ C‖u‖

2
;

∫
Ω

|u|
2∗(s)

|x |s
dx ≤ C‖u‖

2∗(s)
; ‖u‖

2∗

2∗ ≤ C‖u‖
2∗

for ∀u ∈ X. (18)

It follows from (f1) that

∃δ1 > 0 such that | f (x, t)| < t2∗
−1 for t > δ1;

∀ε > 0, ∃0 < δ2 < δ1, such that | f (x, t)| < εt for 0 < t < δ2;

∃M1 > 0, | f (x, t)| ≤ M1 for all t ∈ [δ2, δ1]

for all x ∈ Ω . Therefore, we deduce that

| f (x, t)| ≤ εt + t2∗
−1

+ M1 ≤ εt + (1 + M1δ
1−2∗

2 )t2∗
−1

for all t ∈ R+ and for x ∈ Ω . Then one gets

|F(x, t)| ≤
1
2
ε|t |2 + C12|t |2

∗

(19)

for all t ∈ R and for x ∈ Ω , where C12 =
1
2∗ (1 + M1δ

1−2∗

2 ). By (18) and (19) we have

I (u) =
1
2
‖u‖

2
−

1
2∗(s)

∫
Ω

(u+)2∗(s)

|x |s
dx −

∫
Ω

F(x, u)dx

≥
1
2
‖u‖

2
−

C
2∗(s)

‖u+
‖

2∗(s)
−

ε

2
‖u‖

2
L2 − C12‖u‖

2∗

2∗

≥
1
2
‖u‖

2
−

C
2∗(s)

‖u+
‖

2∗(s)
−

Cε

2
‖u‖

2
− CC12‖u‖

2∗
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for ε small enough. So there exists β > 0 such that I (u) ≥ β for all u ∈ ∂ Br = {u ∈ H1
0 (Ω), ‖u‖ = r}, where r > 0

small enough. By Lemma 2 there exists u0 ∈ H1
0 (Ω), u0 6≡ 0, such that

sup
t≥0

I (tu0) <
2 − s

2(N − s)
A

N−s
2−s
µ,s .

It follows from the nonnegativity of F(x, t) that

I (tu0) =
1
2

t2
‖u0‖

2
−

1
2∗(s)

t2∗(s)
∫
Ω

(u+

0 )2∗(s)

|x |s
dx −

∫
Ω

F(x, tu0)dx

≤
1
2

t2
‖u0‖

2
−

1
2∗(s)

t2∗(s)
∫
Ω

(u+

0 )2∗(s)

|x |s
dx,

limt→+∞ I (tu0) → −∞. Hence we can choose t0 > 0 such that ‖t0u0‖ > r and I (t0u0) ≤ 0. Applying the Mountain
Pass Lemma in [13], there is a sequence un ⊂ X satisfying

I (un) → c ≥ β and I ′(un) → 0,

where

c = inf
h∈τ

max
t∈[0,1]

I (h(t)),

τ = {h ∈ ([0, 1], X)|h(0) = 0, h(1) = t0u0}.

Note that

0 < β ≤ c = inf
h∈τ

max
t∈[0,1]

I (h(t)) ≤ max
t∈[0,1]

I (t t0u0) ≤ sup
t≥0

I (tu0) <
2 − s

2(N − s)
A

N−s
2−s
µ,s .

Now Lemma 1 suggests {un} ⊂ H1
0 (Ω) has a convergent subsequence, still denoted by {un}. Assume that {un}

converges to u ⊂ H1
0 (Ω). From the continuity of I ′ we know that u is a weak solution of problem (4). Then

〈I ′(u), u−
〉 = 0 where u−

= min{u, 0}; thus u ≥ 0. Moreover, we can get that u is a nonnegative solution of
(1). By the Strong Maximum Principle, we get that u is a positive solution of problem (1), so Theorem 1 holds. �

Proof of Theorem 2. By Theorem 1 problem (1) has a positive solution u1. Set g(x, t) = − f (x, −t) for t ∈ R. It
follows from Theorem 1 that the equation

−4u − µ
u

|x |2
=

|u|
2∗(s)−2

|x |s
u + g(x, u)

has at least a positive solution v. Let u2 = −v, then u2 is a solution of

−4u − µ
u

|x |2
=

|u|
2∗(s)−2

|x |s
u + f (x, u).

It is obvious that u1 6= 0, u2 6= 0 and u1 6= u2. So equation (1) has at least two nontrivial solutions. Therefore,
Theorem 2 holds. �
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