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Abstract The study examined the effects of two different instructional interventions as

support for scientific discovery learning using computer simulations. In two well-known

categories of difficulty, data interpretation and self-regulation, instructional interventions for

learning with computer simulations on the topic ‘‘ecosystem water’’ were developed and

tested using a sample of 124 eighth graders in science classes. The results demonstrate the

effectiveness of instructional support for domain-specific factual, conceptual, and procedural

knowledge acquisition. Students who received either only instructional support for data

interpretation or only for self-regulation achieved the highest learning outcomes. However, a

combination of instructional support for data interpretation and self-regulation seemed

detrimental for knowledge acquisition. Students who received instructional interventions for

both data interpretation and self-regulation also showed the highest values of perceived

cognitive load. High cognitive load could be a reason for why a combination of particular

instructional interventions does not lead to the expected positive learning outcomes.
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Among computer-based learning programs, computer simulations are considered to be the

most technically sophisticated option for offering various benefits for the teaching and

learning of science (Blake and Scanlon 2007). A computer simulation is an interactive

program that contains a model of a natural or artificial system or process (Blake and

Scanlon 2007; de Jong and van Joolingen 1998). It gives learners opportunities to

experiment harmlessly and to simulate processes in an e-learning environment (Urhahne

et al. 2000). Computer simulations provide learners with chances to actively engage in

simulated scenarios. Learners can change given parameters of their own choice and

directly observe the consequences of their manipulations in dynamic output. Knowledge

can be acquired in an interactive and independent manner by individualizing learning

processes and adjusting learning time and speed to current requirements.

Computer simulations fit best with principles of scientific discovery learning. Learners

are asked to infer the characteristics underlying the scenarios when they explore the

principles, concepts, rules, and terms of simulated experiments (van Joolingen et al. 2005).

Learners are required to discover the model behind the simulation (de Jong et al. 1994). In

recent decades, discovery learning has moved away from the concept of pure discovery.

For several years, discovery learning has relied on a more systematic approach adapted

from theories of scientific discovery (Bruner 1961; de Jong and van Joolingen 1998; van

Joolingen and de Jong 1997; van Joolingen et al. 2005). This notion is referred to as

scientific discovery learning (Klahr and Dunbar 1988; Klahr et al. 1993). It presupposes

that students will follow a more or less scientific approach based on problem solving.

Scientific discovery learning is in line with aspects of inquiry learning, including processes

such as predicting (stating a possible simulation outcome), conducting (carrying out the

simulated experiment and collecting data), and reasoning (drawing conclusions about the

simulation outcome; cf. National Research Council 1996; de Jong 2006; Reid et al. 2003).

Empirical studies have pointed out that students frequently encounter problems with

processes of scientific discovery learning (de Jong and van Joolingen 1998; de Jong et al.

1998; Kirschner et al. 2006; Manlove et al. 2006; Rey 2010; Zhang et al. 2004). However,

by providing learning environments for students by using computer simulations, specific

instructional support can foster successful knowledge acquisition (de Jong and van

Joolingen 1998). The aim of this study was to examine students’ awareness of their own

inquiries with computer simulations and to determine what kind of instructional support is

needed to improve learning outcomes. In two categories of scientific discovery learning,

namely, data interpretation and self-regulation, instructional support was given, and we

examined whether they help to increase learners’ domain-specific knowledge.

Theoretical background

There is ample empirical evidence to support the conclusion that pure and independent

exploration of scientific principles, concepts, and rules does not lead to effective learning

outcomes (de Jong and Njoo 1992; Leutner 1993; Mayer 2004; Rieber and Parmley

1995). This phenomenon may be explained by intrinsic problems that learners possess

with discovery learning (de Jong and van Joolingen 1998). Scientific discovery learning

with computer simulations, in particular, requires the ability of self-directed learning as

well as the learner’s awareness about his or her own learning processes. According to de

Jong and van Joolingen (1998), four categories of difficulties that learners may encounter

during scientific discovery learning can be distinguished: generating verifiable hypoth-

eses, designing meaningful experiments, interpreting experimental data, and the self-
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regulation of learning processes (de Jong et al. 1998; Manlove et al. 2006). To improve

their learning outcomes, learners need instructional support in order to overcome these

difficulties (de Jong and van Joolingen 1998; Urhahne and Harms 2006; van Joolingen

et al. 2007).

Instructional support to enhance learning with computer simulations can be given on

different occasions during the learning process. Zhang et al. (2004) distinguished three

spheres of learning support in their scheme of scientific discovery learning with computer

simulations: (a) Interpretative support scaffolds learners to access and activate prior

knowledge as well as to generate appropriate hypotheses; (b) Experimental support scaf-

folds learners in designing verifiable scientific experiments, predicting and observing

simulation outcomes, and drawing appropriate conclusions; (c) Reflective support helps

learners to increase their self-awareness of the learning process and supports the activation

of abstract and reflective integration of their discoveries. The four categories of learning

difficulties with computer simulations suggested by de Jong and van Joolingen (1998) can

be integrated (cf. Zhang et al. 2004) in these three spheres. The classification scheme of

Zhang et al. (2004) provides a theoretical framework for our study and is used in the

following to explain different options for instructional support.

Interpretative support scaffolds learners’ awareness about the meaningfulness of the

discovery process. To generate appropriate hypotheses and to construct a coherent

understanding, learners need to activate their prior knowledge. Interpretative support is

intended to foster problem representation, ease access to learners’ prior experiences,

facilitate the use of the computer simulation, and is usually given before the learner starts

to interact with the computer simulation. An effective and supportive intervention, for

example, is to provide accessible domain-specific background information, optionally

available to the learner during problem solving (Leutner 1993; Reid et al. 2003). Concrete

assignments that learners are required to work on with the aid of the computer simulation

are another kind of approved instructional support for knowledge acquisition (de Jong et al.

1998; de Jong 2006; Vreman-de Olde and de Jong 2006). Assignments offer opportunities

to support learners’ goal-setting behaviors (de Jong et al. 1998). They provide learners with

a well-directed inquiry on concrete questions that can be solved by means of the computer

simulation. Thereby, learners can be directed to discover relations between two or more

variables. Worked-out examples can be considered to be another kind of interpretative

support and have been shown to have positive effects on learning outcomes in numerous

studies (e.g., Nerdel and Prechtl 2004; Renkl 2005; Renkl and Atkinson 2002). Worked-out

examples introduce learners to a specific problem, suggest steps for solving this problem,

and describe the solution in detail. In particular, they support learners’ acquisition of

conceptual knowledge as well as problem-solving competencies.

Experimental support scaffolds learners’ processes of scientific inquiry during the

interaction with the computer simulation. This type of support scaffolds learners in their

attempts to design adequate scientific experiments. Effective interventions of experimental

support for knowledge acquisition are the gradual and cumulative introduction of handling

the computer simulation, the explanation of important simulation parameters located in the

computer program, the request to predict a possible simulation outcome by the learner, as

well as the request to describe and to interpret the simulation outcome by the learner

(Urhahne and Harms 2006). The prediction of possible simulation outcomes by the learners

in a study by Lewis Stern, and Linn (1993) tended to lead to higher knowledge gains than

in a control group. Through the gradual and cumulative introduction of a computer sim-

ulation, learners receive all necessary and relevant information to handle the simulation

and work on assignments. Thereby, highly informative computer simulations obtain a
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structure of increasing complexity (White 1998), which helps to avoid a possible cognitive

overload due to an overabundance of information. Further experimental support can be

given by describing and justifying the simulation outcome. A study by Moreno and Mayer

(2005) indicated higher domain-specific knowledge acquisition as a result of justifying

one’s own simulation outcome.

Reflective support scaffolds the integration of new information as a result of discoveries

after the interaction with the computer simulation. This kind of support helps to increase

learners’ self-awareness of the learning process and reflective abstraction as well as the

integration of information discovered using the computer simulation. This can be achieved,

for instance, by means of an instructional approach that scaffolds learners’ metacognitive

knowledge by prompting reflective processes. White (1998) examined whether a reflective

assessment tool could aid learners while assessing and justifying their own inquiries. After

carrying out computer-simulated experiments, students were provided with the opportunity

to discuss their own as well as their schoolmates’ inquiries. The reflective support led to

positive effects in conceptual knowledge acquisition (White and Frederiksen 1998).

For study purposes, we focused on learners’ difficulties in data interpretation and self-

regulated learning. In a review, de Jong and van Joolingen (1998) indicated that particular

instructional interventions for supporting data interpretation and self-regulation were

effective for learning with computer simulations. Similarly, Urhahne and Harms (2006)

inferred in a literature review that particular instructional support for data interpretation

and self-regulation showed high effectiveness with regard to knowledge acquisition. In

addition, no detrimental effects on learning outcomes could be found when learning with

computer simulations was supported by instructional interventions for data interpretation

and self-regulation (Urhahne and Harms 2006).

To enhance the effectiveness of data interpretation, it seems helpful to offer learners

feedback about implemented actions (Lin and Lehmann 1999; Moreno 2004). Differen-

tiated feedback from the computer program about the simulation outcome can support

learners’ knowledge acquisition. In a study by Moreno (2004), knowledge retention and

transfer were promoted as learners received either task-related explanatory feedback or

corrective feedback from the computer program. Other studies have substantiated the

assumption that learners’ descriptions and interpretations of the simulation outcome lead to

more effective knowledge acquisition. Lin and Lehmann (1999) conducted a study in

which learners were requested to justify the simulation outcome after they made use of

computer-simulated experiments. This kind of instructional support led to a significant

improvement of knowledge application on a transfer task. In 19 cited studies on learning

mathematics and computer science, Webb (1989) found that giving explanations was

positively related to achievement, whereas receiving explanations had few positive effects

on achievement.

Learning with computer simulations puts high demands on learners’ self-regulation

abilities. It implies that learners can acquire new contents in an autonomous and mean-

ingful way. Computer-based learning environments should be appropriately structured to

enable self-regulated learning processes. Questions of instructional design are critical when

learners should not be overloaded with information (Sweller 2005). In cognitive load

theory, Sweller (2005) connected the instructional design of learning environments to the

limited capacity of human working memory. Although the number of elements that can be

simultaneously processed in human working memory is limited (Miller 1956), too much

information can result in cognitive overload. Inadequately designed learning environments

may induce a high working memory load that can be detrimental to learning (Kirscher et al.

2006).
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Self-regulated learning might be efficiently promoted by self-reflective tasks. Such

reflective self-assessment, a method to improve awareness about one’s own inquiry, has

positive effects on knowledge acquisition (White and Frederiksen 1998). After learners had

carried out computer-simulated experiments, they were requested to reflect on their own

and their schoolmates’ inquiries with regard to given criteria (White and Frederiksen

1998). The method supported learners in the self-reflection phase (Zimmermann et al.

1996; Zimmermann and Tsikalas 2005) and proved to be effective with respect to con-

ceptual knowledge acquisition.

The impact of particular instructional interventions that have called upon learners’

reflective activities, such as justifications for simulation outcomes, as well as hints or tasks

to encourage reflection about one’s own inquiry have been examined less systematically.

However, these instructional interventions possess the potential to enhance simulation-

based learning. Hence, instructional interventions to support data interpretation and self-

regulation were analyzed, developed, and tested. It was assumed that the instructional

interventions for data interpretation and self-regulation when learning with computer

simulations could effectively foster domain-specific knowledge acquisition.

Aim and hypotheses

The aim of the study was to determine what kind of instructional support for data inter-

pretation and for self-regulation when learning with computer simulations is useful for

increasing learners’ domain-specific knowledge. Subsequent hypotheses regarding

instructional support for data interpretation and self-regulated learning were pursued:

The first hypothesis argued that learners’ self-generated explanations of the simulation

outcome would be more effective than explanatory feedback of the computer program, and

this in turn would be more effective than no feedback at all (Chi et al. 1989, 1994; Lin and

Lehmann 1999; Moreno 2004).

The second hypothesis proposed that reflecting on the learning process would lead to

higher knowledge gains than no reflection on simulated experiments (White and Freder-

iksen 1998).

The third hypothesis argued that a combination of instructional interventions for data

interpretation and self-regulation would show cumulative effects on knowledge gains as

long as cognitive load was not too high (Sweller 2005).

Method

Participants

The sample consisted of 124 eighth grade secondary school students from six different

classes in northern Germany. The ages of the 69 girls and 55 boys ranged from 13 to

16 years (M = 14.50, SD = 0.23). The number of students in the different classes varied

between 18 and 24. The distributions of the girls and boys in the six classes were similar.

Before the study, the students had received no formal instruction on the water-ecological

topic to be investigated. However, the participants had advanced skills in handling the

computer program and had received formal instruction on the mathematical contents that

were necessary to understand the graphical relations of the computer simulation. All

students participated in the study voluntarily.
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Material

Content

The topical framework ‘‘relationships between organisms’’ was selected to test the

instructional interventions for data interpretation and self-regulation. Relationships

between living organisms are an important issue in science teaching at all class levels

because food chains and food webs are crucial for the comprehension of more complex

concepts in biology. The concrete topic of the computer simulation ‘‘population dynamics

and predator–prey relationships’’ is considered to be a relevant and difficult part of science

education (Finley et al. 1982) and is an integral component of the current biology cur-

riculum for eighth graders in German secondary schools. Students frequently display

problems in understanding predator–prey relationships (Gallegos et al. 1994). For example,

they often reveal difficulties in understanding the two-sided dependency of predator and

prey (Griffiths and Grant 1985). Computer simulations as educational tools for modeling

dynamic predator–prey relationships have been established to facilitate visualizations of

how various factors of population dynamics interact (Cook 1993; van Joolingen et al. 1997;

Lutterschmidt and Schaefer 1997).

Computer program

A water-ecological computer program containing a computer simulation as well as

instructional interventions for data interpretation and self-regulation were developed and

tested in pilot studies. Twenty-eight biology teachers were interviewed for the develop-

ment of the computer program. The interview data pointed out that from the teachers’

perspective, ‘‘external influences on water’’ were perceived as the most important aspects

of the water ecosystem. For this reason, the computer program ‘‘SimBioSee’’, containing

ecological fundamentals and a computer simulation on the predator–prey relationship

between the two domestic fish species ‘‘pike’’ and ‘‘rudd’’, was designed. The computer

program itself is divided into four sequential parts: an introduction, information pages, a

worked-out example, and a computer simulation. At the beginning, learners receive an

introduction to the computer program and the computer simulation in the form of a manual.

Information pages as a kind of interpretative support (Zhang et al. 2004) permit learners to

have permanent access to (water-) ecological fundamentals during their interactions with

the computer program by means of a navigation bar and linked headlines. Offering learners

permanent access to information such as domain-specific facts, concepts, principles, or

terms during their interactions with the computer program may have positive effects on

knowledge acquisition (Leutner 1993), whereas providing this information beforehand

seems less effective (Elshout and Veenman 1992; Leutner 1993). Furthermore, a worked-

out example is integrated into the computer program as well. Worked-out examples as

instructional support have shown positive effects on knowledge acquisition (Atkinson et al.

2000). For novice learners in particular, applied worked-out examples are effective for

increasing problem solving skills (Biesinger and Crippen 2010; Kalyuga et al. 2001;

Yaman et al. 2008). The worked-out example is followed by a detailed description of

problem-solving processes with the aid of the computer simulation. Learners obtained the

problem’s solution as an image of the simulation outcome with a verbal description and a

biological interpretation.

The computer simulation, which is integrated into the computer program, is presented as

a diagram containing the numbers of predators and prey as dependent variables and time as
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the independent variable (see Fig. 1). For each of the two selected species, the numbers of

fish are presented as different colored curves. Parameters for modifying the curves are

located on the left side of the diagram. Transparent curves in the diagram represent the

initial conditions and allow for easy comparisons with the simulation outcome.

Assignments

A number of concrete assignments have to be solved using the computer simulation. The

basic frame of the assignments, administered on paper, is aligned with a POE (predict–

observe–explain) strategy (White and Gunstone 1992). At the beginning, learners are asked

to predict possible consequences of external influences on the water ecosystem. After

carrying out the computer-simulated experiment, they are asked to compare the simulation

outcome with the prediction. At the end and depending on the treatment condition, each

assignment is extended by requesting or referring to a description and a biological inter-

pretation of the simulation outcome. In addition, the contents of an assignment are dis-

played next to the computer simulation below the navigation bar (see Fig. 1). An example

of an assignment is given in the ‘‘Appendix’’.

Fig. 1 Displayed screen of the computer simulation in the computer program ‘‘SimBioSee’’. On the left is
the navigation bar with linked headlines to information sides presented accordingly on the right. There is an
additional field containing an assignment below the navigation bar. The displayed simulation outcome on
the right illustrates the number of each fish species depending on time. The red curve shows the number of
predators (pikes) and the blue curve displays the number of prey (rudds). Through changing parameters
located to the left of the diagram, the curves can be modified. The simulation outcome can be compared with
the lighter colored initial conditions of the curves. (Color figure online)
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Independent variables

The independent variables used in the study were instructional support for data interpre-

tation and for self-regulation. They are described in the following.

Support for data interpretation

As an instructional intervention to support data interpretation, learners either (a) were

requested to describe and scientifically interpret the simulation outcome (Lin and Lehmann

1999) or (b) received a description and biological interpretation of the simulation outcome

from the computer program (Moreno 2004). In the solution condition in which participants

were asked to generate a solution, learners were requested to describe and to interpret their own

simulation outcome in written form on their assignment (see ‘‘Appendix’’). In the solution

condition that was given to them, a description and biological interpretation of the simulation

outcome after conducting an experiment appeared on the computer screen (see Fig. 2). In the

no solution condition, students received no instructional support for data interpretation.

Support for self-regulation

As an instructional intervention to support self-regulation, learners were asked to assess

and reflect on their own inquiry (White and Frederiksen 1998; Zimmermann and Tsikalas

2005). Self-assessment and reflection were done with the aid of a reflective assessment tool

integrated into the computer program but in a separate area. It was used after learners had

finalized all given assignments. According to the ThinkerTools Curriculum (White and

Frederiksen 1998; White et al. 1999), learners were initially required to assess their own

inquiry with a 5-point rating scale. Predetermined questions referring to different phases of

the inquiry cycle were intended to aid learners’ self-assessments. Subsequently, learners

were prompted to justify their assessments in written form (see Fig. 3). Half of the students

received this kind of instructional intervention, whereas the other half of the students did

not get instructional support for self-regulation.

Dependent variable

The students’ domain-specific knowledge gain was the dependent variable in the study

operationalized by means of a domain-specific knowledge test.

Knowledge test

A paper-and-pencil test was developed and tested in two prior investigations to assess three

types of students’ domain-specific knowledge. The different knowledge types can be

defined as follows: Factual knowledge consists of ‘‘knowing that’’ or can be described as

knowledge about domain-specific fundamentals (Anderson and Krathwohl 2001). Con-

ceptual knowledge is more complex and organized than factual knowledge and includes

knowledge about categories and classifications as well as the relations between them

(Anderson and Krathwohl 2001). Procedural knowledge consists of ‘‘knowing how’’ or

knowledge of the steps required to attain various goals (Byrnes and Wasik 1991). In total,

the knowledge test is comprised of 16 multiple-choice items. Factual knowledge was

measured using five items, conceptual knowledge was measured using seven items, and

procedural knowledge was assessed using four items. Each item could be answered by
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means of the computer program. Sample items of each knowledge category are shown in

Table 1. A subsequent factor analysis revealed that the three knowledge types did not

represent single factors but were highly interrelated. For this reason, the results of the

knowledge test were summed into one construct. Cronbach’s alpha for the knowledge test

was .68 for the first posttest and .76 for the second posttest.

Perceived cognitive load

Perceived cognitive load during the learners’ interaction with the computer program was assessed

through a self-report paper-and-pencil test instrument according to Urhahne (2002) by making

use of a 5-point rating scale. In contrast to the most commonly used instrument by Paas (1992), the

questionnaire by Urhahne (2002) contains eight items instead of only one (de Jong 2010). This

allows for a broader differentiation regarding participants’ perceived cognitive load and an

estimation of the questionnaire’s reliability. Cronbach’s alpha for perceived cognitive load was

.86 in the first session and also .86 in the second session. A sample item is ‘‘How often did you

have the impression that the program offered too much information?’’

Procedure

The study was conducted during regular science lessons in six different classes. Three days

before the first use of the computer program in the first session, every participant had to

Fig. 2 Description and biological interpretation of a simulation outcome as an instructional intervention for
data interpretation given by the computer program ‘‘SimBioSee’’
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take the pretest, which was comprised of factual, conceptual, and procedural knowledge

questions. Learning with the computer simulation ‘‘SimBioSee’’ was repeatedly done on

two different days with a 10-day interval in between. The time span between the sessions

was expected to reduce the influence of Posttest 1 on learners’ answer patterns on Posttest

2. During each learning phase, every student worked alone on four different assignments

for 60 min on a single laptop. The participants followed a POE strategy to complete the

assignments with the aid of the computer simulation. After that, every student filled out the

paper-and-pencil knowledge posttest. All items on the knowledge test could already be

answered by means of the computer program after the first learning phase. The adminis-

tration and the items on the knowledge test were the same in each session. Students

required approximately 20 min to take the posttest. About 5 min immediately after the

posttest, the participants assessed their perceived cognitive load during the learning pro-

cess. Each session in the classes lasted up to 90 min.

Design

The study was based on a repeated measures 3 9 2 factorial design. As students required

different introductions to handle the instructional interventions appropriately, groups were

built on the class level. Thereby, students who were required to describe and interpret their

Fig. 3 Displayed screen of a section of the reflective assessment tool integrated into the computer program.
After learners had conducted all computer-simulated experiments, they were required to assess their own
inquiry on a 5-point scale. Afterwards, they had to explain their score based on their inquiry and why this
score seemed to be appropriate
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own simulation outcome could be introduced more extensively than students who received

the description and interpretation from the computer program. The instructional inter-

ventions for data interpretation and self-regulation were completely crossed and created six

experimental conditions including a control group in which learners did not receive

instructional support for data interpretation or for self-regulation (see Table 2). The six

groups varied with respect to the instructional interventions for data interpretation and self-

regulation. All participants worked on the same assignments in their own classrooms in the

presence of the biology teacher and the examiner. The laptops were all of the same type

and provided by the Institute for Science and Mathematics Education. Except for the

instructional interventions that were tested, the computer program ‘‘SimBioSee’’ was the

same in each condition. During the sessions, learners did not exchange any information.

The learners who participated in all three testing time points were equally distributed

among the six research conditions. Results of a Chi-square test revealed no signifi-

cant differences between the numbers of participants in the experimental groups, v2(2) =

.79, ns.

Table 1 Sample items for measuring factual, conceptual, and procedural knowledge

Factual knowledge Conceptual knowledge Procedural knowledge

What is plankton? If predators in a lake become
extinct, what implications could
this have for the prey?

How many variables should you change
simultaneously in conducting a
computer-simulated experiment?

(a) Small animals and
algae floating freely in
the water

(a) The number of prey won’t
increase

(a) One variable. Thus you can retrace
the simulation outcome based on the
impact of this variable

(b) Plants attached to the
floor of the body of
water

(b) The number of prey could
increase and will decrease
subsequently

(b) Two variables. Thus it will be
possible to compare the impact of these
two variables

(c) Small animals and
algae living on the floor
of the body of water

(c) The number of prey could
increase up to the capacity limit

(c) All variables simultaneously. A
simulation offers this opportunity in
order to save time while conducting
experiments

(d) Plant remains floating
freely in the water

(d) The number of prey could
increase but not up to the
capacity limit

(d) All variables under investigation

(e) Decomposed nutrients
floating freely in the
water

(e) The number of prey will
increase beyond the capacity
limit

(e) All variables offered by the computer
simulation

Note The correct answer for each item is written in italics

Table 2 Distribution of participants in the control and experimental conditions

Self-regulation Data interpretation

No solution
(NS)

Given solution
(GiS)

Generated solution
(GeS)

No reflective support
(NR)

n = 20
(NS/NR, control)

n = 18
(GiS/NR)

n = 21
(GeS/NR)

Reflective support
(R)

n = 18
(NS/R)

n = 24
(GiS/R)

n = 23
(Ges/R)
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Results

Knowledge gains

Domain-specific knowledge gains were examined with respect to the instructional inter-

ventions of data interpretation and self-regulation. A multivariate repeated measures

analysis of variance (MANOVA) for the dependent variable domain-specific knowledge

with the two instructional interventions as between-subjects factors and the testing time

points as a within-subjects factor showed a significant main effect of testing time points,

F(2, 117) = 74.24, p \ .001, g2 = .56. This means that the learners showed significant

knowledge gains from the pretest to the posttests across the conditions (see Table 3).

Furthermore, a significant interaction of instructional support for data interpretation and

instructional support for self-regulation was detected, F(2, 118) = 4.44, p \ .05, g2 = .07.

This means that the conditions profited differently from the provided instructional support.

In particular, the participants of the conditions NS/R and GeS/NR who received either only

instructional support for data interpretation or only instructional support for self-regulation

showed the highest knowledge gains. Comparatively low knowledge gains over the two

testing time points were shown by learners in the GeS/R condition who were requested to

describe and to interpret their own simulation outcome and who had to reflect on their

scientific discovery learning. Except for the participants in the GeS/R condition who

received instructional support for data interpretation as well as instructional support for self-

regulation, the learners in the remaining conditions showed a significant knowledge increase

from the pretest to Posttest 1. With the exception of the control group (NS/NR), learners in

all other conditions showed significant knowledge gains from the pretest to Posttest 2.

Subsequent analyses were computed to reveal whether the knowledge gains of the

instructional support conditions were higher than those of the control group, which did not

receive support for data interpretation or for self-regulation. Five repeated measures

analyses of variance were conducted whereby comparisons were made in pairs between

one of the experimental conditions and the control group (NS/NR) across the three mea-

surement points. The conditions with the given solution and no reflective support (GiS/NR),

F(1, 36) = 4.63, p \ .05, g2 = .11, the given solution and reflective support (GiS/R), F(1,

42) = 5.68, p \ .05, g2 = .12, and the generated solution and no reflective support (GeS/

NR), F(1, 39) = 9.06, p \ .01, g2 = .19, performed significantly better than the control

group. No significant differences could be found between the control group and the con-

dition with no solution and reflective support (NS/R), F(1, 36) = .42, ns, g2 = .01, as well

as the condition with the generated solution and reflection (GeS/R), F(1, 41) = .24, ns,

g2 = .01.

Furthermore, we analyzed whether the instructional interventions for data interpretation

and self-regulation had an effect on knowledge acquisition when pretest scores were taken

into account as a covariate. Pretest results were additionally recognized as there appeared

to be significant differences between the conditions, F(5, 118) = 2.51, p \ .05. For this

reason, analyses of covariance (ANCOVA) with Posttest 1 as the dependent variable and

the pretest results as a covariate were performed. The ANCOVA revealed no significant

main effects of instructional support for data interpretation, F(2, 117) = 1.74, ns, g2 = .03,

and instructional support for self-regulation, F(1, 117) = .69, ns, g2 = .01. However, a

significant interaction between instructional support for data interpretation and instruc-

tional support for self-regulation could be detected, F(2, 117) = 16.98, p \ .001, g2 = .23.

The results of the ANCOVA for Posttest 2 were along the same lines: A significant

interaction between instructional support for data interpretation and instructional support
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for self-regulation occurred, F(2, 117) = 5.81, p \ .01, g2 = .09. No main effects could be

found for instructional support for data interpretation, F(2, 117) = 1.89, ns, g2 = .03, and

instructional support for self-regulation, F(1, 117) = .23, ns, g2 = .00.

Perceived cognitive load

An analysis of variance for the first session with perceived cognitive load as the dependent

variable and the instructional interventions as independent variables revealed significant

main effects for instructional support for data interpretation, F(2, 118) = 4.85, p \ .01,

g2 = .08, and for instructional support for self-regulation, F(1, 118) = 18.39, p \ .001,

g2 = .14, as well as a significant interaction effect, F(2, 118) = 10.57, p \ .001, g2 = .15.

Furthermore, no significant main effect for instructional support for data interpretation, F(2,

112) = 0.56, ns, g2 = .01, but a significant effect for instructional support for self-regu-

lation, F(1, 112) = 9.98, p \ .01, g2 = .08, as well as a significant interaction effect, F(2,

112) = 11.49, p \ .001, g2 = .17, could be found for the second posttest. The lowest scores

of perceived cognitive load belonged to the learners of the conditions NS/NR, NS/R, and

GeS/NR (see Table 4). For participants in the GeS/NR condition, a slight decrease in

perceived cognitive load appeared from the first to the second session. Learners in the GiS/NR

condition reported less cognitive load after the second session than after the first session

with the computer program. After both sessions, learners in the NS/NR and NS/R conditions

showed similar cognitive load scores. Learners in the GeS/R condition perceived the highest

amount of cognitive load. In this condition, the learning gains were at the lowest level.

Discussion

Scientific discovery learning with computer simulations offers learners the opportunity to

explore causal interrelations in dynamic systems in an active and self-regulated way.

However, instructional support for learning with computer simulations is said to be useful for

optimizing learners’ interactions with the computer program and for enhancing knowledge

acquisition. In this study, the focus was on the use of instructional interventions for data

interpretation and self-regulation and their impact on learning outcomes. Apart from the

control condition in which learners received no instructional support for data interpretation

or for self-regulation, a significant domain-specific knowledge increase was observed after

two learning sessions. More detailed analyses revealed differential effects of the instruc-

tional interventions for data interpretation and for self-regulation on knowledge acquisition.

Table 4 Perceived cognitive load scores in sessions 1 and 2

Condition Session 1 Session 2

M SD M SD

No solution/no reflective support (NS/NR, control) 2.23 0.57 2.23 0.54

No solution/reflective support (NS/R) 2.32 0.62 2.36 0.79

Given solution/no reflective support (GiS/NR) 2.35 0.36 2.60 0.63

Given solution/reflective support (GiS/R) 2.43 0.68 2.39 0.75

Generated solution/no reflective support (GeS/NR) 2.14 0.48 1.94 0.42

Generated solution/reflective support (GeS/R) 3.23 0.72 3.10 0.80
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The best learning outcomes were found for learners who received either only instructional

support for data interpretation or only instructional support for self-regulation. The learners’

descriptions and interpretations of their own simulation outcome or the reflection of their

own learning process turned out to be most effective. Getting a description and interpretation

of the simulation outcome from the computer program and additionally reflecting on one’s

inquiry appeared effective as well. However, learners who were requested to describe, to

interpret, and additionally to reflect on their own simulation outcomes had the smallest

knowledge gains. It appears that a certain amount of instructional support can help learners to

improve their performance in a multimedia learning environment. Beyond this point, the

well-meant instructional interventions seem to have counter effects.

The hypothesis of a positive influence of instructional support for data interpretation on

knowledge acquisition was partially supported. Describing and scientifically interpreting

their own simulation outcome turned out to be the most effective instructional intervention

for learners. It was more successful than receiving a justification for the simulation outcome

or no further request to deal with the simulation results. Similar findings were obtained by

Moreno and Mayer (2005), who showed the effectiveness of justifying the simulation out-

come. Self-explanations can be induced by describing and interpreting one’s own simulation

outcome biologically. Chi and Bassok (1989) and Chi et al. (1994) have called this phe-

nomenon the self-explanation effect. Self-explanation of new learning contents leads to

better learning outcomes. In accordance, in a meta-analysis, Webb (1989) showed that when

the learner was asked to provide elaborate explanations, positive effects on learning out-

comes occurred, as opposed to when the learner received elaborative explanations. In

addition, Wong et al. (2002) found positive effects for acquiring conceptual knowledge about

a geometric theorem by eliciting self-explanations. The self-explanation effect is considered

to be an active knowledge constructing process (Chi et al. 1994; Tajika et al. 2007; Wong

et al. 2002). Generating explanations stimulates a deeper understanding and leads to higher

learning outcomes because new information is suitably embedded into pre-existing

knowledge structures. The self-explanation effect could be a reason for why describing and

interpreting one’s own simulation outcome led to higher knowledge gains than receiving the

simulation result from the computer program or getting no support for data interpretation.

The hypothesis of a positive influence of instructional support for self-regulation could

also be partially supported. The request to reflect on one’s own inquiry as well as the

simulation outcomes after conducting computer-simulated experiments had positive effects

on students’ domain-specific knowledge acquisition. Through reflection, learners were

becoming aware of their own learning processes (van den Boom et al. 2004) and this might

have contributed to more effective knowledge acquisition.

No cumulative effects concerning data interpretation and self-regulation could be found.

A combination of instructional support for data interpretation and self-regulation did not

lead to higher knowledge gains than supporting the learners with only one of these

interventions. The research results show that a combination of instructional support for

data interpretation and self-regulation can even have a negative impact on acquiring

domain-specific knowledge. Learners who described, interpreted, and reflected on their

own simulation outcome showed the lowest knowledge gains on the posttests.

The view on learners’ perceived cognitive load offers an explanation for the reduced

effectiveness of this combination (Sweller et al. 1998). By providing instructional support

for learning with computer simulations, cognitive load is usually reduced (Leutner 1993).

However, learners who described, interpreted, and reflected on their own simulation out-

come assessed their perceived cognitive load much higher than learners in the other con-

ditions. When the cognitive load is so high, less learning can be expected. The increased
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cognitive load could be a reason for why this specific combination of instructional inter-

ventions for data interpretation and self-regulation led to lower knowledge gains.

Learners in all six conditions were requested to work on concrete and well-structured

assignments according to the inquiry cycle. By working through the assignments, learners

focused on acquiring relevant fundamentals (Vreman-de Olde and de Jong 2006) on the

topic of the water ecosystem. These fundamentals, to be discovered by means of the

assignments and the computer simulation, were later tested by the knowledge posttest. It

can be assumed that working on the assignments had a positive impact on students’

knowledge acquisition (de Jong et al. 1994). Furthermore, it can be expected that offering

learners permanent access to domain-specific information during the learning phases may

have had positive effects on learners’ knowledge acquisition (Leutner 1993). Additionally,

the worked-out example integrated into the computer program may also have influenced

the knowledge acquisition of learners as learning from worked-out examples is supposed to

be effective for learning outcomes (Schworm and Renkl 2006). Therefore, the experi-

mental conditions tested whether they performed better than the control condition with

only basic support. It turned out that three of the five experimental conditions performed

better than the control condition in which learners received no support for data interpre-

tation or for self-regulation. The results demonstrate that instructional support is useful in

different phases of the learning process and that an optimal result can be achieved only by

the right amount and proper orchestration of the support processes. The question that needs

to be answered by further research is how much instructional support for data interpretation

and for self-regulation is required to adequately foster learners on the one hand and to

avoid simultaneously overloading them on the other hand.

The present study involved secondary school students possessing a small amount of prior

knowledge about ecology and learning with scientific discovery simulations. It is possible that

several of these learners could have been overstrained by learning about the complex concept

of the relationship between two species by conducting experiments via a computer simulation

and additionally accomplishing the particular instructional interventions for data interpreta-

tion and for self-regulation. It can be assumed that prior knowledge may have an influence on

participants’ abilities to work on the instructional interventions as well. Concerning this

matter, particular instructional support for data interpretation and for self-regulation can cause

a reversal effect on knowledge acquisition, especially for learners with a large amount of prior

knowledge (cf. Kalyuga 2007). To draw a conclusion about this phenomenon, further

investigations with undergraduate students may provide meaningful results.

In conclusion, we were able to show that particular instructional interventions for data

interpretation and self-regulation can effectively support learning with scientific computer

simulations. Supporting learning with computer simulations with only one instructional

intervention—either for data interpretation or for self-regulation—proved to be especially

effective. In this regard, having learners describe and biologically interpret their own

simulation outcome seems to be the most effective instructional intervention concerning

domain-specific knowledge acquisition. The learners’ opportunity to assess their own

inquiry and additionally to reflect about their own simulation outcomes showed positive

learning effects as well. However, the results indicate that ‘‘too much’’ instructional

support can even constrain knowledge acquisition when learning with computer simula-

tions. Consequently, an appropriate instructional design should be chosen to avoid cog-

nitively overloading learners and to support effective knowledge acquisition.
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[Instructional support for learning with computer simulations]. Unterrichtswissenschaft, 34, 358–377.
Urhahne, D., Prenzel, M., von Davier, M., Senkbeil, M., & Bleschke, M. (2000). Computereinsatz im
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