Approximation of the Hilbert Transform on the real semiaxis using Laguerre zeros

M.C. De Bonisa,*, B. Della Vecchiab, G. Mastroiannia

aDipartimento di Matematica, Universit\`a della Basilicata, C\`ida Macchia Romana, 85100 Potenza, Italy
bDipartimento di Matematica, Istituto G. Castelnuovo, Universit\`a di Roma La Sapienza, P.le Aldo Moro 2, 00185 Roma, Italy

Received 4 November 2000; received in revised form 6 June 2001

Abstract

The authors propose two new algorithms for the computation of Cauchy principal value integrals on the real semiaxis. The proposed quadrature rules use zeros of Laguerre polynomials. Theoretical error estimates are proved and some numerical examples are showed. © 2002 Elsevier Science B.V. All rights reserved.

MSC: 65D30; 41A05

Keywords: Hilbert Transform; Orthonormal polynomials; Gaussian quadrature rules; Product quadrature rules

1. Introduction

The Hilbert Transform
\[H(G, t) = \int_0^\infty \frac{G(x)}{x-t} \, dx, \quad t > 0, \]
where the integral is understood in the Cauchy principal value sense, appears in several mathematical problems and is the main part of singular integral equations on \((0, +\infty)\). Therefore, the approximation and/or the numerical evaluation of \(H(G, t)\) is of interest. For the finite interval integration several papers have been appeared in the last decade and many algorithms have been proposed. The interested reader can see for example [2,5,6,12,13,20] and the references given therein. For the unbounded interval the corresponding literature is poor. When the integration interval is the whole real line and

* Corresponding author.
E-mail addresses: mdebonis@pta.unibas.it (M.C. De Bonis), dellavecchia@iamna.iam.na.cnr.it (B. Della Vecchia), mastroianni@unibas.it (G. Mastroianni).
the density function G is piecewise analytic with exponential decay, the SINC method [1] gives satisfactory results. For wider classes of functions (for example the Sobolev spaces) the authors in [7] proposed recently some efficient algorithms based on the zeros of Hermite polynomials.

In this paper we want to study the numerical approximation of $H(G, t)$. Since $G(x) = [e^{x} G(x)] e^{-x} = f(x) e^{-x}$, we can use polynomial approximations of f based on the zeros of Laguerre polynomials. Therefore, in the sequel we will consider the more general integral

$$H(f w_x, t) = \int_{0}^{\infty} f(x) \frac{w_x(x)}{x-t} \, dx,$$

where $w_x(x) = x^\alpha e^{-x}, \, \alpha \geq 0, \, t > 0$, for f belonging to uniform weighted Sobolev type spaces. For the finite interval case, two procedures are used. The first one consists in replacing f by a Lagrange interpolation polynomial. The second one subtracts the singularity and applies an ordinary Gauss quadrature rule using an additional algorithm to control the term of the quadrature sum containing the knot closest to the singularity. For example, in the case of the integral

$$\int_{-1}^{1} \frac{f(x)}{x-t} v^{\alpha, \beta}(x) \, dx, \quad v^{\alpha, \beta}(x) = (1-x)\alpha (1+x)\beta,$$

the mentioned algorithm is based on the fact that, in every closed interval of $(-1, 1)$, the distance of two consecutive zeros of $p_m^{\alpha, \beta}(x) p_{m+1}^{\alpha, \beta}(x)$ ($p_k^{\alpha, \beta}$ kth Jacobi polynomial) is of the order of $1/m$. In the case of Laguerre polynomials a similar property holds only in intervals of type $[0,4\theta m], \, 0 < \theta < 1$ (see the proof of Lemma 2.1). Moreover, because of the “bad” distribution of the largest Laguerre zeros, the Gauss–Laguerre formula does not give a good approximation of the corresponding integral (see for example [15]). According to the above considerations we have to modify the procedures used in the interval $(-1, 1)$ to the case of infinity intervals.

In this paper, we show that, by using “truncated” Gaussian formulas and “truncated” Lagrange interpolating polynomials, the procedures for finite intervals can give efficient and cheap algorithms.

The idea of “truncated” Gaussian formulas was first used in [16]. Here, we give an elementary theoretical motivation and a natural extension of such a procedure (see Section 2).

The paper is organized as follows: in Section 2, we give some results useful in Section 3 and also in different contexts. In Section 3, we give the main results which are proved in Section 4. Finally in Section 5, we show some numerical experiments.

2. Preliminary results and notations

2.1. Orthonormal polynomials

In the following C denotes a positive constant which may assume different values in different formulas. In the sequel, $C \neq C(a, b, \ldots)$ means that C is independent of a, b, \ldots. Moreover, if $A, B > 0$ are quantities depending on some parameters, we write $A \sim B$, iff there exist two positive constants M_1, M_2, independent of the parameters of A and B, such that

$$M_1 \leq \left(\frac{A}{B} \right)^{\pm 1} \leq M_2.$$
Let \(\{ p_m(w_z) \}_{m \in \mathbb{N}} \) be the sequence of the Laguerre orthonormal polynomials with positive leading coefficient, i.e.

\[
p_m(w_z) = \gamma_m(w_z)x^m + \cdots \quad \gamma_m(w_z) > 0,
\]

\[
\int_{\mathbb{R}^+} p_m(w_z,x) p_n(w_z,x) w_z(x) \, dx = \delta_{m,n}.
\]

The zeros \(x_k := x_{m,k}(w_z) \), \(k = 1, \ldots, m \), of \(p_m(w_z) \) satisfy

\[
\frac{C}{m} < x_1 < \cdots < x_m = 4m + 2x + 2 - \mathcal{C}(4m)^{1/3}
\]

and, uniformly in \(k \) and \(m \) [23]

\[
x_k \sim \frac{k^2}{m}, \quad k = 1, \ldots, m.
\]

The distance between two consecutive zeros is estimated as follows:

\[
\Delta x_k := x_{k+1} - x_k \sim \sqrt{\frac{x_k}{4m-x_k}}, \quad k = 0, \ldots, m, \quad x_0 = 0, \quad x_{m+1} = 4m
\]

and

\[
\Delta x_k \sim \Delta x_{k+1}, \quad k = 0, \ldots, m,
\]

uniformly with respect to \(m \) and \(k \). Equivalences (2.3) can be found in [11,14,21].

The following lemma is new and will be useful in the sequel.

Lemma 2.1. Let \(x_{m+1,k}, \ k = 1, \ldots, m+1 \), be the zeros of \(p_{m+1}(w_z) \). Then if \(x_{m+1,k+1}, x_{m,k} \in (0,40m) \), with \(0 < \theta < 1 \) fixed, we have

\[
\frac{1}{x_{m+1,k+1} - x_{m,k}} \leq \mathcal{C} \sqrt{\frac{m}{x_k}}, \quad k = 1, \ldots, m,
\]

where \(\mathcal{C} \) is independent of \(m \) and \(k \).

Now we recall the well-known Gauss quadrature rule:

\[
\int_{0}^{\infty} f(x)w_z(x) \, dx = \sum_{k=1}^{m} \mathcal{\lambda}_k(w_z)f(x_k) \quad \forall f \in \mathbb{P}_{2m-1},
\]

where \(x_k, k = 1, \ldots, m, \) are the Laguerre zeros and \(\mathcal{\lambda}_k(w_z), k = 1, \ldots, m, \) are called Christoffel numbers. We have the following estimate:

\[
\mathcal{\lambda}_k(w_z) \sim w_z(x_k)\Delta x_k
\]

[17], where the constants in “~” are independent of \(m \) and \(k \).

2.2. Functional spaces

In the sequel we consider the following set of continuous functions on \(\mathbb{R}^+ = (0, +\infty) \) (\(f \in C^0(\mathbb{R}^+) \)):

\[
W_0 := W_0(w_z) := \left\{ f \in C^0(\mathbb{R}^+) : \lim_{x \to 0} \vert (fw_z)(x) \vert = 0 = \lim_{x \to \infty} \vert (fw_z)(x) \vert \right\}, \quad \alpha \geq 0
\]
with the norm
\[\| f \|_{W_0} := \| fw_0 \| := \max_{x \geq 0} |(fw_0)(x)|. \]

The above two limit relations are crucial for the polynomial approximation of \(f \in W_0 \); otherwise the Weierstrass theorem is not true in \(W_0 \). If \(z = 0 \) (i.e. \(w_0(x) = e^{-x} \)) we assume \(f \) continuous in every interval \([0, b], b < \infty\), with
\[\lim_{x \to \infty} |f(x)e^{-x}| = 0 \]
and we use the previous norm. In the sequel we will use the following notation:
\[\| fw_yVT \|_{[a, b]} := \max_{x \in [a, b]} |(fw_yVT)(x)|. \]

Moreover, we denote by \(W_r = W_r(w_yVT) \), \(r \geq 1 \), the Sobolev-type space defined by
\[W_r := \{ f \in W_0: \| f^{(r)} \|_{W_0} < \infty \}, \quad \varphi(x) = \sqrt{x}, \]
equipped with the norm
\[\| f \|_{W_r} := \| fw_yVT \| + \| f^{(r)} \|_{W_0}. \]

Now we recall that, for all polynomials \(P_m \) of degree \(m = 1, 2, \ldots \) and for every \(\delta \in \mathbb{R}^+ \), the following inequality:
\[\max_{x \geq 2(\lambda+2)(1+\delta)} |P_m x^2 e^{-\lambda x}| \leq C e^{-A m} \max_{0 \leq x \leq 2(\lambda+2)+1} |P_m x^2 e^{-\lambda x}|, \quad \lambda > 0, \tag{2.7} \]
holds, where the constants \(C \) and \(A \) depend on \(\delta \) but not on \(m \) and \(P_m \).

Estimate (2.7) can be deduced easily from [10].

If we want to use the zeros \(x_1 < \cdots < x_m \) of the \(m \)th Laguerre polynomial \(p_m(w_yVT) \) to compute \(H(w_yVTf; t) \), the following results will be useful.

For every fixed \(t > 0 \) choose \(\vartheta \in (0, 1) \) such that \(t + 1 \leq 4\vartheta m \). Then let \(x_j, j = j(m) \) be the zero of \(p_m(w_yVT) \) defined by
\[x_j := \min_{k=1, \ldots, m} \{ x_k \geq 4\vartheta m \}. \]

If \(\Psi \in C^\infty \) is an arbitrary nondecreasing function such that
\[\Psi(x) := \begin{cases} 0, & x \leq 0, \\ 1, & x \geq 1, \end{cases} \]
we construct the function
\[f_j(x) := f_{j(m)}(x) := f(x) - \Psi \left(\frac{x - x_j}{x_{j+1} - x_j} \right) f(x) := f(x)(1 - \Psi_j(x)). \tag{2.8} \]

From (2.8) it follows that \(f_j(x) = f(x) \) if \(x \leq x_j \), \(f_j(x) = 0 \) if \(x \geq x_{j+1} \) and in addition \(f_j \in W_0 \) if \(f \in W_0 \). Now denote by \(E_M(f)_w_yVT = \inf_{P \in P_M} \|f - P\|_w_yVT \), \(f \in W_0 \), the best uniform weighted approximation error of the function \(f \). We recall that if \(f \in W_r \), then the Favard inequality (see [8])
\[E_M(f)_w_yVT \leq \frac{C}{\sqrt{M}} E_M^{-1}(f')_w_yVT_{2^{1/2}} \leq \frac{C}{(\sqrt{M})^r} \|f^{(r)}\|_w_yVT \tag{2.9} \]
holds.

Then we can state the following:
Proposition 2.1. For all function $f \in W_0$, we have
\[
\| (f - f_j)w_x \| \leq C [E_M(f)w_x + e^{-bm}\|fw_x\|]
\] (2.10)
and
\[
E_m(f_j)w_x \leq C [E_M(f)w_x + e^{-bm}\|fw_x\|],
\] (2.11)
where $M \sim m$ and b, C are positive constants independent of m, f and f_j.

From Proposition 2.1 we deduce two facts which will be useful to construct our approximations of $H(w_xf_t)$.

Proposition 2.2. For all functions $f \in W_r(w_x)$ and for all $t \in (0, 4\delta m - 1)$, we have
\[
|H(w_x[f - f_j], t)| \leq C \left[\| f^{(r)}w_x \| \log m + e^{-Am}\|fw_x\| \right],
\]
where C and A are positive constants independent of m and f.

It is easy to prove that if
\[
|f(x)w_x(x)| \leq C\|fw_x\|e^{-\lambda x}, \quad x > x_0, \quad \lambda > 0, \quad C \neq C(f),
\]
then, for $f \in W_0$ and some $x_0 > 0$, we get
\[
|H(w_x[f - f_j], t)| \leq C e^{-4\lambda \delta m}\|fw_x\|,
\]
where $t + 1 < 4\delta m$ and C is independent of m and f.

Now denote by $L_{m+1}(w_\gamma f)$ the Lagrange polynomial interpolating the function f at the zeros of $(4m - x)p_m(w_\gamma, x)$. Letting $u_\beta(x) = x^{\beta}e^{-x/2}$, $-1 < \beta < 1$, denote by $W_r(u_\beta)$, $r \geq 0$, the corresponding Sobolev space. In [17] the authors proved that the estimate
\[
\|f - L_{m+1}(w_\gamma f)u_\beta\| \leq C E_m(f)u_\beta\log m, \quad C \neq C(m, f)
\]
holds true for every $f \in W_0(u_\beta)$ if and only if the parameters $\beta, \gamma > -1$ satisfy the relation
\[
2\beta - \frac{\gamma}{2} \leq \gamma \leq 2\beta - \frac{1}{2}.
\] (2.13)
Notice that the extra point $4m$ is necessary for the validity of (2.12). If we do not use such point the log m factor in (2.12) is replaced by $m^{1/6}$. Now if $x_j := x_{j,m}(w_\gamma) := \min_k \{x_k(w_\gamma) \leq 4\delta m\}, \quad \vartheta \in (0, 1)$ and $f_j(x) := f(x) - f(x) \Psi((x - x_j)/(x_{j+1} - x_j))$, we have the truncated formula
\[
L_{m+1}(w_\gamma f_j, x) = \sum_{k=1}^{j} \frac{4m - x}{4m - x_k} p_m(w_\gamma, x_k) f(x_k).
\]
In [18] the following proposition has been proved:

Proposition 2.3. For every $f \in W_0(u_\beta)$, we have
\[
\|f - L_{m+1}(w_\gamma f_j)u_\beta\| \leq C \{E_m(f)u_\beta\log m + e^{-Am}\|fu_\beta\|\},
\]
with $M \sim m$ and A and C independent of m and f, if and only if (2.13) holds true.
We note that, by (2.12), the choice of \(0 < \theta < 1 \) realizes only an economy in computation and not an improvement of the interpolatory process.

3. An algorithm for the computation of \(H(f w, t) \)

The previous propositions suggest to propose the following algorithm. For each \(t > 0 \), we choose an integer \(m > 0 \) and \(\vartheta \in (0, 1) \) such that \(t + 1 < 4\vartheta m \). If \(x_k := x_{m,k}(w) \), \(k = 1, \ldots, m \), are the zeros of \(p_m(w) \), by the previous definitions of \(x_j, j = j(m) \) and \(f_j \), we can write

\[
H(w f, t) = H(w f_j, t) + H(w [f - f_j], t) := H(w f_j, t) + F_m(t).
\]

In virtue of Proposition 2.2, we neglect the term \(F_m(t) \) and approximate \(H(w f_j, t) \).

Since \(f_j(t) = f(t) \), when \(t + 1 < 4\vartheta m \leq x_j \), by Gauss formula, \(H(w f_j, t) \) can be written for \(x_k \neq t \) as follows:

\[
\int_0^\infty f_j(x) \frac{w(x)}{x - t} \, dx = f(t) \left[\int_0^\infty \frac{w(x)}{x - t} \, dx - \sum_{k=1}^m \frac{\lambda_k(w)}{x_k - t} \right] + \sum_{k=1}^j \frac{f(x_k)}{x_k - t} \\lambda_k(w) + e_m(f_j, t),
\]

where \(e_m(f_j, t) \) is the remainder term.

Now letting

\[
A_m(t) := \int_0^\infty \frac{w(x)}{x - t} \, dx - \sum_{k=1}^m \frac{\lambda_k(w)}{x_k - t},
\]

\[
\Phi_m(f, t) := f(t) A_m(t) + \sum_{k=1}^j \frac{f(x_k)}{x_k - t} \\lambda_k(w),
\]

\[
\rho_m(f, t) := e_m(f_j, t) + F_m(t),
\]

we can write

\[
\int_0^\infty f(x) \frac{w(x)}{x - t} \, dx = \Phi_m(f, t) + \rho_m(f, t),
\]

which holds for \(x_k \neq t \) obviously.

First, we remark that the second summation in \(\Phi_m(f, t) \) has only \(j \) terms and, for a suitable choice of \(\vartheta \), \(j \) may have order \(m/2 \). Hence we avoid the computation of \(m/2 \) evaluations of the function with the relative products \(\lambda_k(w) f(x_k) \), \(k = j + 1, \ldots, m \).

If \(|x_k - t| \) is not “too small”, the computation of \(A_m(t) \) is not difficult.

Unfortunately the relation \(t \neq x_k \), \(k = 1, \ldots, m \), is not always valid. But even when \(t \neq x_k \), \(k = 1, \ldots, m \), the point \(t \) could be too close to one of the Laguerre zeros and this produces numerical instability. On the other hand the only term in (3.2) causing numerical instability is

\[
\frac{\lambda_{x_d}(w)}{x_d - t},
\]

where \(x_d \) is a zero closest to \(t \). Following an argument in [19,4], we now introduce an algorithm in order to control such term.
For every fixed \(t \), choose \(m_0 = m_0(t) \in \mathbb{N} \) such that for \(m \geq m_0 \), we have \(x_{m,d} \leq t \leq x_{m,d+1} \) for some \(d \in \{1, 2, \ldots, m - 1\} \).

Moreover, because of the interlacing properties of the zeros \(x_{m+1,k} \), \(k = 1, \ldots, m + 1 \), of \(p_{m+1}(w) \), we have

\[
\begin{array}{cccc}
& x_{m,d-1} & x_{m+1,d} & x_{m,d} & x_{m+1,d+1} & x_{m,d+1} \\
\end{array}
\]

Thus, two cases are possible:

(a) \(x_{m+1,d+1} \leq t \leq x_{m,d+1} \)

or

(b) \(x_{m,d} \leq t \leq x_{m+1,d+1} \).

In case (a),

- if \(t < (x_{m+1,d+1} + x_{m,d+1})/2 \), then we use the quadrature rule \(\Phi_m(f) \);
- if \(t \geq (x_{m+1,d+1} + x_{m,d+1})/2 \), then we use the quadrature rule \(\Phi_{m+1}(f) \).

Similarly in case (b).

Thus, for every fixed \(t \), we have defined the numerical sequence \(\{\Phi_{m^*}(f, t)\} \), \(m^* \in \{m, m+1\} \).

Moreover, the algorithm for the choice of \(m^* \) is based on Lemma 2.1 and it assures that a knot of \(p_{m^*}(w) \) closest to \(t \) is sufficiently far from \(t \). In fact, for \(t + 1 < 4\theta m, 0 < \theta < 1 \) fixed, there follows:

\[
|x_{m^*,d} - t| \geq C \frac{\sqrt{xd}}{m}.
\]

In particular, if for any \(m \), we choose

\[
t = t_k = \frac{x_k + x_{k+1}}{2}, \quad k = 1, \ldots, m - 1,
\]

then we can evaluate \(H(f w_{2,t}) \) with the required accuracy and we can reconstruct the function \(H(f w_{2,t}) \) in the interval \((0, 4\theta m)\), by means of suitable interpolating splines.

The next theorem deals with the convergence of the numerical sequence \(\{\Phi_{m^*}(f, t)\} \).

Theorem 3.1. Let \(t > 0, m \in \mathbb{N} \) and \(0 < \theta < 1 \). Then we have

\[
\sup_{0 < t \leq 4m\theta - 1} |\Phi_{m^*}(f, t)| \leq C_\theta \|f w_z\| \log m, \quad f \in W_0,
\]

and for all \(f \in W_r \) we get

\[
|\rho_{m^*}(f, t)| = |H(f w_{2,t}) - \Phi_{m^*}(f, t)| \leq C \left\{ \frac{\|f^{(r)} w_z\|}{(\sqrt{m})^r} \log m + e^{-\theta m} \|f w_z\| \right\}.
\]

where \(C \) and \(A \) are positive constant independent of \(m, t \) and \(f \).

Theorem 3.1 ensures that, apart of the \(\log m \) factor, quadrature formula \(\Phi_{m^*}(f, t) \) is stable and converges to \(H(w_{2,t}) \) like the best polynomial approximation.

However, Theorem 3.1 holds under the condition \((t + 1)/4\theta < m, \theta \in (0, 1) \). Hence when \(t \) is “large”, then the computation of the products \(\lambda_k(w) f(x_k) \) is expensive i.e. if \(t = 10000 \) and \(\theta = \frac{1}{4} \) then \(m \geq 10000 \). If it happens, we choose \(m \) and \(\theta \) such that \(t > x_{j+1} + 1 \). Consequently \(f_j(x), \)
$f_j(x)/(x - t)$ and $f(x)$ are similarly smooth. Then applying the ordinary Gauss formula to the function $G_j(x) = f_j(x)/(x - t)$ we get

$$H(w_z f, t) = \sum_{k=1}^j \lambda_k(w_z) \frac{f(x_k)}{x_k - t} + e^*_m(f, t),$$

(3.5)

where

$$e^*_m(f, t) = F_m(t) + R_m(G_j)$$

with $R_m(G_j)$ being the error of the Gauss quadrature formula relative to the function G_j and $F_m(t)$ as above.

Obviously, the above quadrature formula is stable (apart of the log m factor) and the remainder term can be estimated as follows:

$$|\rho^*_m(f, t)| \leq \mathcal{C} \left\{ \frac{1}{(\sqrt{m})^{\nu}} \left\| (G^{(r)}_j \phi^r w_z) \right\| + e^{-A_m \| f w_z \|} \right\}, \quad t < 40m - 1,$$

(3.6)

where \mathcal{C} and A are positive constant independent of m, t and f.

Finally by using formulas (3.1) and (3.5) we obtain an efficient procedure to compute $H(w_z f, t)$ with $t > 0$ in a wide range.

4. Product formulas

In this section, we want to find an approximation of $H(w_z f, t)$ by replacing the function f by an algebraic polynomial. We recall that the only known convergent polynomial procedure in W_0 is the sequence of means of the la Vallée–Poussin [22]. However such procedure cannot be used in practice because it requires the analytic computation of the Fourier coefficients. On the other hand, if we approximate such coefficients by a quadrature rule, the de la Vallée–Poussin operator is transformed into a discrete operator whose behaviour is unknown. Then by Proposition 2.3, it seems natural to replace the function f_j by its Lagrange interpolating polynomial.

Following notations in Section 2, we consider the integral $H(u_\beta f, t)$, $u_\beta = x^\beta e^{-x/2}$. We introduce the weight $u_\beta = x^\beta e^{-x/2}$ only for homogeneity with notations of Proposition 2.3. By dilation, it is possible to obtain, analogous results using the weight $w_\beta = x^\beta e^{-x}$ and the interpolating polynomial $L_{m+1}(w_\beta f, f_j)$. Then $H_m(f, t)$ can be written as

$$H_m(f, t) = \sum_{k=1}^j \frac{f(x_k)}{4m - x_k} A_k(t),$$

(4.1)

where

$$A_k(t) := \int_0^\infty (4m - x)/k(w_\gamma, x) \frac{u_\beta(x)}{x - t} \, dx$$
with $x_k := x_{m,k}(w_\gamma)$ and
\[
\ell_k(w_\gamma, x) := \frac{p_m(w_\gamma, x)}{p'_m(w_\gamma, x_k)(x - x_k)} = \ell_k(w_\gamma) \sum_{i=0}^{m-1} p_i(w_\gamma, x_k) p_i(w_\gamma, x).
\]
Then
\[
A_k(t) = \ell_k(w_\gamma) \sum_{i=0}^{m-1} p_i(w_\gamma, x_k) \int_0^{\infty} (4m - x) p_i(w_\gamma, x) \frac{\mu_\beta(x)}{x - t} \, dx
\]
and the computation of the last integrals is not difficult even if expensive. Now for the sequence \{\(H_m(f)\)\} we state the following.

Theorem 4.1. Let \(H_m(f) := H(L_{m+1}(w_\gamma; f) u_\beta),\) with \(\gamma\) satisfying condition (2.13). Then, for all \(f \in W_r\), we have
\[
\sup_{t+1 \leq 40m} |H(f u_\beta, t) - H_m(f, t)| \leq \mathcal{C} \frac{\|f\|_{W_r}}{(\sqrt{m})^r} \log^2 m,
\]
where \(0 < \theta < 1\) is fixed and \(\mathcal{C}\) and \(A\) are positive constant independent of \(m, t\) and \(f\).

Theorem 4.1 shows that \(H_m(f)\) is a stable formula (apart of the \(\log^2 m\) factor) and convergent for all \(f \in W_r(w_\gamma),\) but it costs more than the previous procedure. On the other hand, as mentioned in the introduction, \(H(w_\gamma; f)\) often appears as the main part of singular integral equations and, by a collocation method, it can be replaced by \(H_m(f)\). So we have to compute the values \(f(x_i)\) \((i \leq 4\theta m - 1)\) by solving a system of linear equations.

5. Proofs

We recall some relations which will be useful in the sequel (see [20]):
\[
p'_m(w_\gamma, x) = -\sqrt{m} p_{m-1}(w_{x+1}, x) \tag{5.1}
\]
and
\[
p^2_m(w_\gamma, x) e^{-x} \left(x + \frac{1}{m}\right)^{x+1/2} \sqrt{4m - x + (4m)^{1/3}} \sim \left(\frac{x - x_d}{x_d - x_{d+1}}\right)^2, \tag{5.2}
\]
where \(x \in [0, 4m]\) and \(x_d\) is a zero of \(p_m(w_\gamma)\) closest to \(x\), i.e.
\[
|x_d - x| = \min_{k=1,\ldots,m} |x - x_k|.
\]
Moreover, for any \(x, y \in [\mathcal{C}/m, 4\theta m]\) and \(|x - y| \leq \mathcal{C} \sqrt{x/m}\), the following equivalence
\[
w_\gamma(x) \sim w_\gamma(y) \tag{5.3}
\]
holds (see [8, Lemma 4.1]).
Proof of Lemma 2.1. Let \(Q_{2m+1}(x) = p_m(w_z,x) p_m(w_z,x) \). Since the zeros of \(p_m(w_z) \) interlace with the zeros of \(p_{m+1}(w_z) \), then \(Q_{2m+1}'(x_{m+1,k+1}) > 0, \ Q_{2m+1}'(x_{m,k}) < 0 \) and
\[
0 < Q_{2m+1}'(x_{m+1,k+1}) - Q_{2m+1}'(x_{m,k}) = (x_{m+1,k+1} - x_{m,k}) Q_{2m+1}''(\xi_k),
\]
where \(x_{m,k} < \xi_k < x_{m+1,k+1} \). Consequently, by (5.1), we get
\[
\frac{1}{x_{m+1,k+1} - x_{m,k}} < \frac{|Q_{2m+1}''(\xi_k)|}{|Q_{2m+1}'(x_{m+1,k+1})|} = \sqrt{m} \left[\frac{p_{m-2}(w_z,2)p_m(w_z) + 2p_{m-1}(w_z,1)p_m(w_z,1) + p_m(w_z)p_{m-1}(w_z,2)(\xi_k)}{p_m(w_z,1)p_m(w_z)(x_{m+1,k+1})} \right].
\]
By (5.2), with \(d = k \) and \(x = \xi_k \), the numerator is equivalent to
\[
\left(\frac{x_{m,k} - \xi_k}{\Delta x_k} \right)^2 \frac{1}{w_z(\xi_k)^{3/2} \sqrt{4m - \xi_k}}.
\]
By (5.2), with \(d = k \) and \(x = x_{m+1,k+1} \), the denominator is equivalent to
\[
\left(\frac{x_{m+1,k+1} - x_{m,k}}{\Delta x_k} \right)^2 \frac{1}{w_z(x_{m+1,k+1})x_{m+1,k+1} \sqrt{4m - x_{m+1,k+1}}}
\]
Then, using (5.3), \(x_{m,k} < \xi_k < x_{m+1,k+1} \) and \(x_{m+1,k+1}, x_{m,k} \leq 4\theta m, 0 < \theta < 1 \), we get
\[
\frac{1}{x_{m+1,k+1} - x_{m,k}} \sim \left(\frac{x_{m,k} - \xi_k}{x_{m+1,k+1} - x_{m,k}} \right)^2 \sqrt{\frac{m}{x_k}} \leq C \sqrt{\frac{m}{x_k}},
\]
which proves the lemma.

Proof of Proposition 2.1. Using definition (2.8), we have
\[
\| (f - f_j) w_z \| \leq \| f w_z \|_{[4\theta m, \infty)}.
\]
Recalling inequality (2.7), with \(\lambda = 1 \) and \(\delta = 1 \), and letting \(M = [m\theta/2] \), with \(m > 2(z + 1)/\theta \), for \(P_M \in P_M \), it results
\[
\max_{x \geq 4\theta m \geq M(z+1)} |P_M(x)w_z(x)| \leq C \| w_z P_M \|, \tag{5.4}
\]
where \(C \) and \(b \) are positive constant independent of \(M \) and \(P_M \). Consequently
\[
\| f w_z \|_{[4\theta m, \infty)} \leq \| (f - P_M) w_z \| + \| P_M w_z \|_{[4\theta m, \infty)} \leq \| (f - P_M) w_z \| + e^{-bm} \| P_M w_z \|.
\]
Taking the infimum on \(P_M \), we get
\[
\| f w_z \|_{[4\theta m, \infty)} \leq C(E_M(f)w_z + e^{-bm} \| f w_z \|) \tag{5.5}
\]
and (2.10) follows.
To prove (2.11), using definition (2.8), for an arbitrary \(P_M \), with \(M = [m\theta/2] \), we can write
\[
f_j(x) - P_M(x) = f(x) - P_M(x) - f(x)\Phi\left(\frac{x-x_j}{x_{j+1}-x_j}\right)
\]
and
\[
\|(f_j - P_M)w_2\| \leq \|(f - P_M)w_2\| + \|fw_2\|_{[4\theta m, \infty)}.
\]
Taking the infimum on \(P_M \) and using (5.5), we get
\[
E_m(f_j)w_2 \leq E_M(f_j)w_2 \leq C(E_M(f)w_2 + e^{-bn}\|fw_2\|)
\]
and the proof is complete. \(\square \)

Proof of Proposition 2.2. For \(t + 1 \leq 4\theta m \), \(0 < \theta < 1 \), we have the following decomposition:
\[
|H([f - f_j]w_2, t)| \leq \int_{x_j}^{x_{j+1}} \left| \frac{f(x)w_2(x)}{x - t} \right| \, dx + \left| \int_{x_{j+1}}^{\infty} \frac{f(x)w_2(x)}{x - t} \, dx \right| := A_1 + A_2. \tag{5.6}
\]
We have
\[
A_1 \leq \|fw_2\|_{[x_j, x_{j+1}]} \left(\int_{x_j}^{x_{j+1}} \frac{dx}{x - t} \right) \leq C\|fw_2\|_{[4\theta m, \infty)}. \tag{5.7}
\]
To estimate \(A_2 \), we can write
\[
A_2 \leq \int_{x_{j+1}}^{\infty} f(x)x^{x-1}e^{-x} \, dx + t \int_{x_{j+1}}^{\infty} \frac{f(x)w_2(x)}{x(x-t)} \, dx = A_2' + A_2''. \tag{5.8}
\]
Integrating by part, we get
\[
A_2' = \left[\frac{(fw_2)(x_{j+1})}{x_{j+1}} + (x-1) \int_{x_{j+1}}^{\infty} \frac{fw_2(x)}{x^2} \, dx + \int_{x_{j+1}}^{\infty} \frac{f'(x)}{x} \sqrt{xw_2(x)} \frac{dx}{x^{3/2}} \right] \leq C \left(\|fw_2\|_{[4\theta m, \infty)} + \|f'\phi w_2\|_{[4\theta m, \infty)} \right). \tag{5.9}
\]
On the other hand, we have
\[
A_2'' \leq \|fw_2\|_{[4\theta m, \infty)}t \int_{x_{j+1}}^{\infty} \frac{dx}{x(x-t)} = \|fw_2\|_{[4\theta m, \infty)} \log \frac{x_{j+1}}{x_{j+1} - t}
\]
\[
\leq C\|fw_2\|_{[4\theta m, \infty)} \log m. \tag{5.10}
\]
Combining (5.9) and (5.10) with (5.8), it follows
\[
A_2 \leq \left| \int_{x_{j+1}}^{\infty} \frac{f(x)w_2(x)}{x - t} \, dx \right| \leq C \left(\|fw_2\|_{[4\theta m, \infty)} \log m + \|f'\phi w_2\|_{[4\theta m, \infty)} \sqrt{m} \right). \tag{5.11}
\]
Thus, using (5.7) and (5.11) into (5.6), we deduce
\[
|H([f - f_j]w_2, t)| \leq C \left(\|fw_2\|_{[4\theta m, \infty)} \log m + \frac{\|f'\phi w_2\|_{[4\theta m, \infty)}}{\sqrt{m}} \right)
\]
and applying (5.5), we get
\[
\begin{align*}
|H([f - f_j]_{w_z}, t)| & \leq \mathcal{C}[E_M(f)_{w_z} + e^{-b_m \|f_{w_z}\|}] \log m \\
& + \frac{\|f - P_Mf\|_{[40m, \infty)}}{\sqrt{m}} + \frac{\|P_M'\|_{[40m, \infty)}}{\sqrt{m}},
\end{align*}
\]
where \(P_M \) is the polynomial of best approximation of \(f \) of degree \(M = \lfloor m/2 \rfloor \). Now we recall the following inequality (see [20])
\[
\frac{\|f - P_Mf\|_{[0, \infty)}}{\sqrt{m}} \leq \mathcal{C}E_M(f)_{w_z} + \frac{1}{\sqrt{m}}E_{M-1}(f')_{w_{z+1/2}}.
\]
Moreover, using (2.7) and then the Bernstein inequality, we have
\[
\frac{\|P_M'\|_{[0, \infty)}}{\sqrt{m}} \leq \mathcal{C}e^{-b_m \|P_M'\|_{[0, \infty)}} \leq \mathcal{C}e^{-b_m \|P_M\|_{[0, \infty)}} \leq \mathcal{C}e^{-b_m \|f_{w_z}\|}.
\]
Thus, we get
\[
|H([f - f_j]_{w_z}, t)| \leq \mathcal{C} \left(E_M(f)_{w_z} \log m + e^{-b_m \|f_{w_z}\|} + \frac{1}{\sqrt{m}}E_{M-1}(f')_{w_{z+1/2}} \right).
\]
Finally, by using the Favard inequality
\[
E_M(f)_{w_z} \leq \frac{\mathcal{C}}{\sqrt{m}}E_{M-1}(f')_{w_{z+1/2}} \leq \frac{\mathcal{C}}{(\sqrt{m})} \|f^{(r)}\|_{[0, \infty)} \]
the proposition follows. \(\square \)

In order to prove Theorems 3.1 and 4.1 and inequality (3.6) we need the following lemmas.

Lemma 5.1. Let \(w_z(x) = x^{z}e^{-x}, \ z > 0 \), and let \(\{G_m\} \) be a sequence of functions belonging to \(W_1 \). Then, for arbitrary positive \(a \) and \(a' \) such that \(a' < a \), we have
\[
\sup_{0 \leq \xi \leq a'} \left| \int_0^a \frac{w_z G_m(x)}{x - t} \, dx \right| \leq \mathcal{C}_x \left[\|w_z G_m\|_{[0, a]} \log(am) + \frac{1}{\sqrt{m}} \|G_m'\|_{[0, a]} \right],
\]
where \(\mathcal{C}_x \) depends only on \(x \).

Proof. Let \(t = 0 \). Then
\[
\int_0^a G_m(x)xz-1e^{-x} \, dx = \left\{ \int_0^{1/m} + \int_{1/m}^a \right\} G_m(x)xz-1e^{-x} \, dx := A_1 + A_2.
\]
Integrating by part, we have
\[
A_1 = \frac{1}{2z}(G_m w_z) \left(\frac{1}{m} \right) + \frac{1}{2} \int_0^{1/m} (w_z G_m)(x) \, dx - \frac{1}{\sqrt{m}} \int_0^{1/m} (w_z G_m')(x) \, dx,
\]
where
Consequently
\[|A_1| \leq \left(\frac{1}{2} + \frac{1}{2m} \right) \| w_2 G_m \|_{[0,1/m]} + \frac{2}{2m} \| G_m' \varphi w_2 \|_{[0,1/m]} \tag{5.15} \]

Moreover
\[|A_2| \leq \int_{1/m}^a \left(w_2 G_m \right)(x) \frac{dx}{x} \leq \| w_2 G_m \|_{[1/m,a]} \log (am) \tag{5.16} \]

Using (5.15) and (5.16) in (5.14), we get
\[\left| \int_0^a G_m(x) x^{2-1} e^{-x} \, dx \right| \leq 2 \| w_2 G_m \|_{[0, a]} \log (am) + \frac{2}{2m} \| G_m' \varphi w_2 \|_{[0, a]} \]

Now, we assume \(0 < t \leq 1 < a \) and we use the following decomposition
\[\int_0^a (w_2 G_m)(x) \frac{dx}{x - t} = \left\{ \int_0^{2t} + \int_{2t}^a \right\} (w_2 G_m)(x) \frac{dx}{x - t} := I_1 + I_2. \tag{5.17} \]

We have
\[|I_1| \leq w_2(t) \left| \int_0^{2t} \frac{G_m(x) - G_m(t)}{x - t} \, dx \right| + \| w_2 G_m \|_{[0,2t]} \int_0^{2t} \frac{|w_2(x) - w_2(t)|}{w_2(x) |x - t|} \, dx \]
\[\leq \int_0^2 A_{u/2\sqrt{t}} G_m(t) \frac{w_2(t)}{u} \, du + \mathcal{C}_2 \| w_2 G_m \|_{[0,2]} \]
\[\leq \int_0^{1/\sqrt{m}} \left| \frac{w_2(t)}{u} \int_{t-(u/2)\sqrt{t}}^{t+(u/2)\sqrt{t}} G_m'(y) \, dy \right| \, du + \mathcal{C}_2 \| w_2 G_m \|_{[0,2]} \log m + \mathcal{C}_2 \| w_2 G_m \|_{[0,2]} \]
\[\leq \int_0^{1/\sqrt{m}} \frac{1}{u \sqrt{t}} \left| \int_{t-(u/2)\sqrt{t}}^{t+(u/2)\sqrt{t}} G_m'(y) \sqrt{y} w_2(y) \, dy \right| \, du + \mathcal{C}_2 \| w_2 G_m \|_{[0,2]} \log m \]
\[\leq \mathcal{C}_2 \left(\frac{1}{\sqrt{m}} \| G_m' \varphi w_2 \|_{[0,2]} + \| w_2 G_m \|_{[0,2]} \right) \log m. \tag{5.18} \]

In order to estimate \(I_2 \), we first assume \(2t < 1/m \). We write
\[|I_2| \leq \left| \int_{2t}^{1/m} G_m(x) \frac{w_2(x)}{x - t} \, dx \right| + \left| \int_{1/m}^a G_m(x) \frac{w_2(x)}{x - t} \, dx \right| := I_2' + I_2''. \tag{5.19} \]

It is easy to see that
\[I_2'' \leq \| w_2 G_m \|_{[1/m,a]} \log ma. \tag{5.20} \]

Moreover, since \(x \geq 2t \) implies \(x - t \geq x/2 \), it results that
\[I_2' \leq \left| \int_{2t}^{1/m} G_m(x) \frac{w_2(x)}{x} \, dx \right| + \left| t \int_{2t}^{1/m} G_m(x) \frac{w_2(x)}{x(x - t)} \, dx \right| \]
\[\leq \left| \frac{1}{2} \int_{2t}^{1/m} G_m(x) e^{-x} \, dx \right| + \left(2t \int_{2t}^{\infty} \frac{dx}{x^2} \right) \| w_2 G_m \|_{[2t,1/m]}. \]
Integrating by part, we deduce

$$I_2' \leq C_x \left(\| w_x G_m \|_{2, \lambda, 1/m} + \frac{1}{m} \| w_x G_m \|_{2, \lambda, 1/m} + \frac{1}{\sqrt{m}} \| G_m' \varphi w_x \|_{2, \lambda, 1/m} \right).$$

(5.21)

Thus, using (5.20) and (5.21) in (5.19), for $2t < 1/m$, we get

$$I_2 \leq C_x \left(\| w_x G_m \|_{2, \lambda, 1/m} \log(am) + \frac{1}{\sqrt{m}} \| G_m' \varphi w_x \|_{2, \lambda, 1/m} \right).$$

(5.22)

Now, if $2t \geq 1/m$, we have

$$I_2 \leq \| w_x G_m \|_{0, a} \int_{1/m}^{a} \frac{dx}{x} = \| w_x G_m \|_{0, a} \log(am).$$

(5.23)

Then, combining (5.18), (5.22), (5.23) with (5.17), we get

$$\int_0^a (w_x G_m)(x) \frac{dx}{x-t} \leq C_x \left(\| w_x G_m \|_{0, a} \log(am) + \frac{1}{\sqrt{m}} \| G_m' \varphi w_x \|_{0, a} \right),$$

(5.24)

where $0 \leq t \leq 1$ and C_x depends only on x.

By the decomposition $[0, t - 1/m] \cup [t - 1/m, t + 1/m] \cup [t + 1/m, a]$, the case $1 < t \leq a'$ is easy and we leave the detail to the reader. □

We recall that if a function g is such that $g^{(i)}(x) \geq 0$, $i = 0, 1, \ldots, 2m - 1$, $m > 1$, for $x \in [0, x_d]$, $d = 2, \ldots, m$, then

$$\sum_{i=1}^{d-1} \lambda_i(w_x) g(x_i) \leq \int_0^{x_d} g(x) w_x(x) \, dx \leq \sum_{i=1}^{d} \lambda_i(w_x) g(x_i).$$

(5.25)

If $(-1)^i g^{(i)}(x) \geq 0$, $i = 0, 1, \ldots, 2m - 1$, $m > 1$, for $x \in [x_d, \infty)$, $d = 1, \ldots, m - 1$, then

$$\sum_{i=d+1}^{m} \lambda_i(w_x) g(x_i) \leq \int_{x_d}^{\infty} g(x) w_x(x) \, dx \leq \sum_{i=d}^{m} \lambda_i(w_x) g(x_i)$$

(see [3, Proof of Lemma 5.1 (b) p. 271–272]).

Letting

$$A_{m^*}(t) = \int_0^\infty \frac{w_x(x)}{x-t} \, dx - \sum_{k=1}^{m} \frac{\lambda_k(w_x)}{x_k-t},$$

we prove the following:

Lemma 5.2. Let $0 < t \leq 40m$, with $0 < \theta < 1$, then

$$A_{m^*}(t) \leq C w_{3}(t)$$

(5.27)

hold, where C is a positive constant independent of m and f and $m^* \in \{m, m+1\}$.
Proof. Consider the case \(x_{d-1} < x_d \leq t < x_{d+1} \), \(d \in \{2, \ldots, m-1\} \). By using (5.25) and (5.26), we have

\[
A_{m^*}(t) \leq \frac{\lambda_{d-1}(w_2)}{t - x_{d-1}} + \int_{x_{d-1}}^{x_{d+1}} \frac{x^2 e^{-x}}{x - t} \, dx := A + B. \tag{5.28}
\]

Since \(t - x_{d-1} \geq (x_d - x_{d-1}) = \Delta x_{d-1} \), by (2.3), (2.6) and (5.3), we deduce

\[
|A| \leq C w_2(x_{d-1}) \leq C w_2(t). \tag{5.29}
\]

To estimate \(B \), we note that

\[
B = \int_{x_{d-1}}^{x_{d+1}} \frac{w_2(x) - w_2(t)}{x - t} \, dx + w_2(t) \int_{x_{d-1}}^{x_{d+1}} \frac{dx}{x - t} \leq C w'_2(\xi) \Delta x_d + w_2(t) \log \frac{x_{d+1} - t}{t - x_{d-1}}.
\]

Since \(x_{d+1} - t \sim t - x_{d-1} \), using (5.3) it follows

\[
B \leq C w_2(t). \tag{5.30}
\]

Thus, replacing (5.29) and (5.30) into (5.28), we prove the lemma.

Proof of Theorem 3.1. We first prove inequality (3.3). We note that

\[
|\Phi_{m^*}(f,t)| \leq |f(t)||A_{m^*}(t)| + \sum_{k=1}^{j} \left| \frac{f(x_k)}{|x_k - t|} \lambda_k(w_2) \right| := A + B. \tag{5.31}
\]

Since \(|x_{m^*,d} - t| \geq \Delta x_{m^*,d} \), recalling Lemma 5.2 we get

\[
A \leq C \|f w_2\|. \tag{5.32}
\]

To estimate \(B \), by (2.6) we have

\[
B \leq \sum_{k=1}^{j} \frac{\Delta x_k}{|x_k - t|} |f(x_k)w_2(x_k)| \leq \|f w_2\|_{10,40m} \sum_{k=1}^{j} \frac{\Delta x_k}{|x_k - t|}.
\]

Taking into account that \(|x_{m^*,d} - t| \geq \Delta x_{m^*,d} \), we have

\[
\frac{\Delta x_k}{|x_k - t|} \sim \frac{1}{|d - k| + 1}
\]

and then

\[
B \leq C \|f w_2\| \log m. \tag{5.33}
\]

Combining (5.32) and (5.33) with (5.31), (3.3) follows.

Now we estimate (3.4). We recall that

\[
|\rho_{m^*}(f,t)| \leq |e_{m^*}(f_j,t)| + |F_{m^*}(t)|. \tag{5.34}
\]

Since the estimate of \(F_{m^*}(t) \) is in Proposition 2.2, it remain to estimate \(e_{m^*}(f_j,t) \) with \(0 < t \leq 40m - 1 \). To this end, we write

\[
|e_{m^*}(f_j,t)| \leq \left| \int_{0}^{4m} \frac{f_j(x) - P_m(x)}{x - t} w_2(x) \, dx \right| + \left| \int_{4m}^{\infty} \frac{P_m(x)}{x - t} w_2(x) \, dx \right| + |\Phi_{m^*}(f_j - P_m,t)| := I_1 + I_2 + I_3, \tag{5.35}
\]
where $P_m \in \mathbb{P}_m$ is the polynomial of best approximation of f_j. To estimate I_1 we use Lemma 5.1 with $a' = 4\theta m - 1$ and $a = 4m$ to obtain

$$I_1 \leq C \left[\left\| (f_j - P_m)w_x \right\| \log m + \frac{\| (f_j - P_m)' \varphi w_x \|}{\sqrt{m}} \right]$$

by which, in virtue of (5.12), it follows

$$I_1 \leq C \left[E_m(f_j)w_x \log m + \frac{1}{\sqrt{m}} E_{m-1}(f_j)'w_{x/2} \right].$$

Then, applying (2.11) and (2.9), for all $f \in W_r$ and $M = [m\theta/2]$, we deduce

$$I_1 \leq C \left(\frac{\sqrt{m}}{\sqrt{M}} \right) E_{M-r}(f^{(r)})w_{x/2} \log m + C e^{-bm} \| f w_x \|$$

$$\leq C \left[\frac{1}{(\sqrt{m})^r} \| f^{(r)} \varphi w_x \| \log m + e^{-bm} \| f w_x \| \right].\quad (5.36)$$

To estimate I_2 we use (5.11), with $f = P_m$, and we obtain

$$I_2 \leq C \left[\| P_m w_x \|_{[40m, \infty]} \log m + \frac{\| P_m' \varphi w_x \|_{[40m, \infty]}}{\sqrt{m}} \right].$$

Using (2.7) and the Bernstein inequality, we deduce

$$I_2 \leq C e^{-bm} \| f w_x \|.\quad (5.37)$$

Finally, to estimate I_3 we use (3.3), (2.11) and (2.9) to obtain

$$I_3 \leq C E_m(f_j)w_x \log m \leq C [E_m(f)w_x + e^{-bm} \| f w_x \|] \log m$$

$$\leq C \left[\frac{\| f^{(r)} \varphi w_x \|}{(\sqrt{m})^r} + e^{-bm} \| f w_x \| \right] \log m.\quad (5.38)$$

Combining (5.36), (5.37) and (5.38) with (5.35), the proof is complete. \qed

Proof of (3.6). In [16] has been proved that, for all $G \in W_r$ it results

$$\left| \int_0^\infty G(x)w_x(x) \, dx - \sum_{k=1}^j \lambda_k(w_x) G(x_k) \right| \leq C \left(\frac{\sqrt{m}}{\sqrt{M}} \right) \int_0^\infty | G^{(r)}(x) | \varphi'(x)w_x(x) \, dx$$

$$\leq C e^{-Am} \int_0^\infty | G(x)w_x(x) | \, dx.$$

Letting $G_j = f_j(x)/(x-t)$, estimate (3.6) easily follows. \qed

Proof of Theorem 4.1. We have

$$| H(fu_\beta, t) - H_m(f, t) | = \left| \int_0^\infty \frac{[f - L_{m+1}(w_x, f)](x)}{x-t} u_\beta(x) \, dx \right|$$

$$\leq | F_m(t) | + \left| \int_0^\infty \frac{[f - L_{m+1}(w_x, f)](x)}{x-t} u_\beta(x) \, dx \right|$$

$$:= A + B.\quad (5.39)$$
Since A has been estimated in Proposition 2.2, we have to estimate B. To this end we write

$$B \leq \left| \int_0^{8m} \frac{f_j - L_{m+1}(w_j, f_j)}{x-t} u_\beta(x) \, dx \right| + \left| \int_{8m}^{\infty} \frac{L_{m+1}(w_j, f_j)}{x-t} u_\beta(x) \, dx \right|$$

$$:= A_1 + A_2.$$ \hfill (5.40)

To estimate A_2 we use (5.11) with $f = L_{m+1}(w_j, f_j)$ and with the same condition on t. Since condition (2.13) is satisfied, we have

$$A_2 \leq C \left[\|L_{m+1}(w_j, f_j)u_\beta\|_{[8m, \infty)} \log m + \|L'_{m+1}(w_j, f_j)\phi u_\beta\|_{[8m, \infty)} / \sqrt{m} \right].$$

Using (2.7), the Bernstein inequality and (2.12),

$$A_2 \leq C e^{-b m} \|f_\beta\|$$

easily follows, where C and b are independent of m and f.

To estimate A_1 we use Lemma 5.1, with $a' = 40m - 1$ and $a = 8m$, and we obtain

$$A_1 \leq C \left[\|(f_j - L_{m+1}(w_j, f_j))u_\beta\| \log m + \|(f_j - L_{m+1}(w_j, f_j))'\phi u_\beta\| / \sqrt{m} \right] := A_1' + A_1''.$$ \hfill (5.42)

By (2.10), Proposition 2.3 and (2.9), we have

$$A_1'' \leq C \left[\left\| \frac{f_j(r) \varphi u_\beta}{(\sqrt{M})^r} \right\| \log^2 m + e^{-4m} \|f_\beta\| \right].$$ \hfill (5.43)

Moreover, using [20, Corollary 3.7 with $s = r$ and $r = 1$], it results

$$A_1' \leq C \left[\left\| \frac{f_j(r) \varphi u_\beta}{(\sqrt{M})^r} \right\| \log m \right].$$

It remains to estimate the norm at the right-hand side. Since $f_j(x) = 0$ for $x \geq x_{j+1}$, we can write

$$\|f_j(r) \varphi u_\beta\| \leq \|f_j(r) \varphi u_\beta\|_{[0,x_j]} + \|f_j(r) \varphi u_\beta\|_{[x_j,x_{j+1}]}.$$}

Letting $I_j := [x_j,x_{j+1}]$ and $|I_j| := x_{j+1} - x_j$, we have

$$f_j(r) = f(r) - \sum_{k=0}^{r} \binom{r}{k} f(k) \Psi_{j}^{(r-k)}$$

and

$$|\Psi_{j}^{(r-k)}(x)| \leq S |I_j|^{k-r},$$

where $S := \max_i \|\Psi_{j}^{(i)}\|$ and $I_j^{-1} \sim 1$. Then, recalling (5.3), it results

$$\|f_j(r) \varphi u_\beta\|_{I_j} \sim (\varphi u_\beta)(x_j) ||f_j||_{I_j} \leq C \|f(r) \varphi u_\beta\|_{I_j} + C(\varphi u_\beta)(x_j) \sum_{k=0}^{r} \binom{r}{k} |I_j|^k \|f(k)\|_{I_j}.$$
it follows
\[\| f^{(r)} \|_{L^p} \leq C(\| f \|_{L^p} + \| f^{(r)} \|_{L^p}) \]
and then
\[A_1'' \leq \frac{C}{\sqrt{m}} (\| f \|_{L^p} + \| f^{(r)} \|_{L^p}) \log m. \]
(5.44)
Combining (5.43) and (5.44) with (5.42), we get
\[A_1 \leq \frac{C}{\sqrt{m}} \| f \|_{L^p} \log^2 m \]
and the proof is complete. \(\square \)

6. Numerical evaluations

In this section, we show some approximate values for the integral \(H(fw, t), \ t \in \mathbb{R}^+ \), obtained by using the algorithms described in Sections 3 and 4.

The density functions we choose are representatives of the functional spaces (e.g. Sobolev spaces) on which we want to test our method, i.e. we do not exclude the integrals could be better calculated otherwise.

In the following examples we apply our rules taking \(\theta = \frac{1}{4} \) and, as we can see, we obtain the same precision with a number of points \(j \) that is only a little bit more than half of the total.

Table 1

<table>
<thead>
<tr>
<th>(m)</th>
<th>(j)</th>
<th>(\phi_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(t = 0.1)</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>1.2593</td>
</tr>
<tr>
<td>17</td>
<td>10</td>
<td>1.259397</td>
</tr>
<tr>
<td>34</td>
<td>21</td>
<td>1.259397171</td>
</tr>
<tr>
<td>68</td>
<td>41</td>
<td>1.25939717184125</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>(m)</th>
<th>(j)</th>
<th>(H_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(t = 0.1)</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>1.2</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>1.25</td>
</tr>
<tr>
<td>32</td>
<td>19</td>
<td>1.259</td>
</tr>
<tr>
<td>64</td>
<td>39</td>
<td>1.259397</td>
</tr>
<tr>
<td>128</td>
<td>78</td>
<td>1.259397171</td>
</tr>
<tr>
<td>256</td>
<td>156</td>
<td>1.25939717184125</td>
</tr>
</tbody>
</table>
number \(m \). Since the exact values of the integrals is not known, the results on the last line of our tables are thought to be exact to the number of figures shown. Moreover, in all the tables we have reported only the digits which are correct according to these exact values.

Example 1. We want to evaluate the following integral:

\[
\int_{0}^{\infty} \frac{\cos(\log(1 + x))}{x - t} e^{-x} \, dx.
\]

Since the function \(f(x) = \cos(\log(1 + x)) \) is a very smooth function, we obtain very accurate results. In Table 1, we approximate the above integral by using the quadrature formula (3.2). We can see that, for different values of the parameter \(t \), we need only 41 points to obtain the machine precision.

In Table 2 we show the corresponding results obtained by using the quadrature formula (4.1).

| Table 3 |
| \(\beta = 1 \) |
| \(t = 0.1 \) | \(t = 1.5 \) | \(t = 5 \) |
| \hline
<table>
<thead>
<tr>
<th>(m)</th>
<th>(j)</th>
<th>(\Phi_m)</th>
<th>(m)</th>
<th>(j)</th>
<th>(\Phi_m)</th>
<th>(m)</th>
<th>(j)</th>
<th>(\Phi_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>10</td>
<td>2.12</td>
<td>17</td>
<td>10</td>
<td>-0.8</td>
<td>20</td>
<td>12</td>
<td>-0.36</td>
</tr>
<tr>
<td>35</td>
<td>21</td>
<td>2.12</td>
<td>34</td>
<td>21</td>
<td>-0.8</td>
<td>41</td>
<td>25</td>
<td>-0.36</td>
</tr>
<tr>
<td>70</td>
<td>43</td>
<td>2.124</td>
<td>68</td>
<td>41</td>
<td>-0.849</td>
<td>83</td>
<td>50</td>
<td>-0.36</td>
</tr>
<tr>
<td>140</td>
<td>85</td>
<td>2.1242</td>
<td>137</td>
<td>83</td>
<td>-0.8497</td>
<td>166</td>
<td>101</td>
<td>-0.3639</td>
</tr>
</tbody>
</table>

| Table 4 |
| \(\beta = 2 \) |
| \(t = 0.5 \) | \(t = 1.5 \) | \(t = 10 \) |
| \hline
<table>
<thead>
<tr>
<th>(m)</th>
<th>(j)</th>
<th>(\Phi_m)</th>
<th>(m)</th>
<th>(j)</th>
<th>(\Phi_m)</th>
<th>(m)</th>
<th>(j)</th>
<th>(\Phi_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>13</td>
<td>-0.7731</td>
<td>17</td>
<td>10</td>
<td>-0.777</td>
<td>17</td>
<td>10</td>
<td>-0.084</td>
</tr>
<tr>
<td>43</td>
<td>26</td>
<td>-0.773199</td>
<td>34</td>
<td>21</td>
<td>-0.77779</td>
<td>35</td>
<td>21</td>
<td>-0.084478</td>
</tr>
<tr>
<td>87</td>
<td>53</td>
<td>-0.77319989</td>
<td>68</td>
<td>41</td>
<td>-0.7777965</td>
<td>71</td>
<td>43</td>
<td>-0.0844782</td>
</tr>
<tr>
<td>175</td>
<td>106</td>
<td>-0.773199894</td>
<td>137</td>
<td>83</td>
<td>-0.77779651</td>
<td>143</td>
<td>87</td>
<td>-0.08447825</td>
</tr>
</tbody>
</table>

| Table 5 |
| \(\beta = 3 \) |
| \(t = 1.5 \) | \(t = 5 \) | \(t = 500 \) |
| \hline
<table>
<thead>
<tr>
<th>(m)</th>
<th>(j)</th>
<th>(\Phi_m)</th>
<th>(m)</th>
<th>(j)</th>
<th>(\Phi_m)</th>
<th>(m)</th>
<th>(j)</th>
<th>(\Phi_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>10</td>
<td>-0.588</td>
<td>20</td>
<td>12</td>
<td>-0.1</td>
<td>16</td>
<td>10</td>
<td>-0.0011</td>
</tr>
<tr>
<td>34</td>
<td>21</td>
<td>-0.58811</td>
<td>41</td>
<td>25</td>
<td>-0.129981</td>
<td>32</td>
<td>19</td>
<td>-0.001179</td>
</tr>
<tr>
<td>68</td>
<td>41</td>
<td>-0.5881136</td>
<td>83</td>
<td>50</td>
<td>-0.129981197</td>
<td>64</td>
<td>39</td>
<td>-0.001179098</td>
</tr>
<tr>
<td>137</td>
<td>83</td>
<td>-0.588113675254</td>
<td>166</td>
<td>101</td>
<td>-0.1299811973714</td>
<td>128</td>
<td>78</td>
<td>-0.0011790988199</td>
</tr>
</tbody>
</table>
We can note that formula H_m needs a greater number of points to obtain the machine precision. Moreover, it has a more expensive computational cost than Φ_m.

Example 2. Now we evaluate the following integral:

$$\int_0^\infty \frac{dx}{(1 + x^2)^\beta(x - t)}, \quad \beta = 1, 2, 3.$$

If $\beta = 1$, then the function $f(x) = e^x/(1 + x^2) \in W_4$ and the theoretical error goes like $m^{-2} \log m$; if $\beta = 2$, then the function $f(x) = e^x/(1 + x^2)^2 \in W_8$ and the theoretical error goes like $m^{-4} \log m$; if $\beta = 3$, then the function $f(x) = e^x/(1 + x^2)^3 \in W_12$ and the theoretical error goes like $m^{-6} \log m$. In Tables 3–5 we can see that the numerical results agree with the theoretical ones.

All the computations were done in double precision arithmetic on a Digital Ultimate Workstation 533 au².

References

