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We report on a first next-to-next-to-leading order calculation of the decay constants of the D (D∗)
and B (B∗) mesons using a covariant formulation of chiral perturbation theory. It is shown that, using
the state-of-the-art lattice QCD results on f Ds / f D as input, one can predict quantitatively the ratios of
f D∗

s
/ f D∗ , f Bs / f B , and f B∗

s
/ f B∗ taking into account heavy-quark spin-flavor symmetry breaking effects

on the relevant low-energy constants. The predicted relations between these ratios, f D∗
s
/ f D∗ < f Ds / f D

and f Bs / f B > f Ds / f D , and their light-quark mass dependence should be testable in future lattice QCD
simulations, providing a stringent test of our understanding of heavy quark spin-flavor symmetry, chiral
symmetry and their breaking patterns.

© 2012 Elsevier B.V. Open access under CC BY license.
The decay constants of the ground-state D (D∗) and B (B∗)
mesons have been subjects of intensive study over the past two
decades. Assuming exact isospin symmetry, there are eight inde-
pendent heavy–light (HL) decay constants: f D ( f D∗ ), f Ds ( f D∗

s
),

f B ( f B∗ ), f Bs ( f B∗
s
). In the static limit of infinitely heavy charm

(bottom) quarks, the vector and pseudoscalar D (B) meson decay
constants become degenerate, and in the chiral limit of massless
up, down and strange quarks, the strange and non-strange D (B)
meson decay constants become degenerate. In the real world, both
limits are only approximately realized and, as a result, the degen-
eracy disappears.

The gluonic sector of Quantum ChromoDynamics (QCD) is fla-
vor blind, so the non-degeneracy between the HL decay constants
must be entirely due to finite values of the quark masses in their
hierarchy. A systematic way of studying the effects of finite quark
masses is the heavy-meson chiral perturbation theory (HM ChPT)
[1–3]. The HL decay constants have been calculated up to next-to-
leading order (NLO) in the chiral expansion, and to leading-order
(LO) [4,5] and NLO [6,7] in 1/mH expansion, where mH is the
generic mass of the HL systems. In a recent work, a covariant for-
mulation of ChPT has been employed to study the pseudoscalar
decay constants up to NNLO for the first time and faster conver-
gence compared to HM ChPT was observed [8].

Lattice QCD (LQCD) provides an ab initio method for calculating
the HL decay constants. There exist many n f = 2 + 1 computa-
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tions of the pseudoscalar decay constants, f Ds and f D [9–13], and
f Bs and f B [12,14,15], motivated by the important role they play
in determinations of the CKM matrix elements and in tests of
the standard model (see, e.g., Ref. [16]). On the other hand, for
the vector meson decay constants, most existing simulations are
quenched [17–19], except for Ref. [20] where n f = 2. Simulations
with n f = 2 + 1 are underway [21].

In this Letter, we report on a first next-to-next-to-leading order
(NNLO) covariant ChPT study of the HL pseudoscalar and vector
meson decay constants. We will show that heavy-quark spin-flavor
symmetry breaking effects only lead to small deviations of the
ratios f Bs / f B , f D∗

s
/ f D∗ , and f B∗

s
/ f B∗ , from f Ds / f D . Utilizing the

latest HPQCD data on f Ds and f D [10], and taking into account
heavy-quark spin-flavor symmetry breaking corrections to the rel-
evant low-energy constants (LECs), we are able to make some
highly nontrivial predictions on the other three ratios. The pre-
dicted light-quark mass dependencies of the HL decay constants
are also of great value for future lattice simulations.

The decay constants of the D and D∗ mesons with quark con-
tent q̄c, with q = u,d, s, are defined as

〈0|q̄γ μγ5c(0)
∣∣Pq(p)

〉 = −i f Pq pμ, (1)

〈0|q̄γ μc(0)
∣∣P∗

q (p, ε)
〉 = F P∗

q
εμ, (2)

where Pq denotes a pseudoscalar meson and P∗
q a vector meson.

In this convention, f Pq has mass dimension one and F P∗
q

has mass
dimension two [22]. For the sake of comparison with other ap-
proaches, we introduce f P∗ = F P∗/mP∗ , which has mass dimension
one. Our formalism can be trivially extended to the B meson decay
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Table 1
Numerical values of the isospin-averaged masses [24] and decay constants (in units of MeV) used in the present study. The eta meson mass is calculated using the Gell–
Mann–Okubo mass relation: m2

η = (4m2
K − m2

π )/3. F0 is the average of physical fπ , f K and fη .

m̊D mD �s � m̊B mB �s(B) �(B) mπ mK mη fπ F0

1972.1 1867.2 102.5 142.6 5331.8 5279.3 88.7 47.5 138.0 495.6 566.7 92.4 1.15 fπ
constants and therefore in the following we concentrate on the D
mesons.

To construct the relevant Lagrangians in a compact manner, one
introduces the following fields1 and currents as in Ref. [3]:

H = i/d + mP

2mP

(
γ μ P∗

μ + i Pγ 5), (3)

J = 1

2
γ μ(1 − γ5) Jμ, (4)

where P = (D0, D+, D+
s ), P∗

μ = (D∗0, D∗+, D∗+
s ), Jμ =

( J uc
μ , J dc

μ , J sc
μ )T with the weak current J qc

μ = q̄γμ(1 − γ 5)c, mP

is the characteristic mass of the P triplet introduced to con-
serve heavy quark spin-flavor symmetry in the mP → ∞ limit:
m̊D at NLO and mD at NNLO (see Table 1). The covariant deriva-
tive is defined as dμ = ∂μ + Γμ with Γμ = 1

2 (u†∂μu + u∂μu†)

and u2 = U = exp[ iΦ
F0

] with Φ the pseudoscalar octet matrix of
Nambu–Goldstone (NG) boson fields, F0 their decay constant in
the chiral limit. The weak couplings have the following form [3]:

L(1)
w = αTr[ Jb Ha]u†

ab, (5)

L(2)
w = α

Λχ

{
iβ1Tr[ Jb Ha /ωab] + β2

mP
Tr[ Jb∂ν Ha]ων

ab

}
, (6)

L(3)
w = − α

2Λ2
χ

{
bD Tr[ Jb Ha]

(
χ+u†)

ab

+ bATr[ Jb Ha]u†
ab(χ+)cc

}
, (7)

where α is a normalization constant of mass dimension two,
ωμ = u∂μU †, Λχ = 4π F0 is the scale of spontaneous chiral
symmetry breaking, and χ+ = u†χ †u† + uχu with χ = M =
diag(m2

π ,m2
π ,2m2

K − m2
π ). Here and in the following Tr denotes

trace for the Dirac matrices. In Eqs. (5), (6), (7), the superscript in
L denotes the chiral order of the corresponding Lagrangian. Here
we have counted the axial current, the derivative on the NG boson
fields, and their masses as O(p), as usual.

To calculate chiral loops, the following LO Lagrangian is intro-
duced [1–3,23] (in this Letter, only the relevant terms are explicitly
shown):

L(1) = gmP

2
Tr[H̄b Ha /uabγ5]. (8)

It describes the interactions between a pair of HL mesons (P P∗
or P∗ P∗) with a Nambu–Goldstone boson φ = π, K , η. In Eq. (8),
we have introduced mP for the sake of convenience. It should be
taken as m̊D (m̊B ) at NLO and mD (mB ) at NNLO. In the D me-
son sector, gD D∗π ≡ g = 0.60 ± 0.07 [23], while gD∗ D∗π ≡ g∗ is
not precisely known. At the chiral order we are working, one can
take gD D∗φ = gD D∗π . If heavy quark spin-flavor symmetry is ex-
act, gB B∗φ = gB∗ B∗φ = gD∗ D∗φ = gD D∗φ , otherwise deviations are
expected.

The Feynman diagrams contributing to the decay constants up
to NNLO2 are shown in Fig. 1. For the HL pseudoscalar meson de-

1 It should be noted that the heavy–light states in the relativistic formalism have
mass dimension of 1 instead of 3/2 as in the HM formulation.

2 The chiral order of a properly renormalized diagram with L loops, NM (NH )
Nambu–Goldstone boson (HL meson) propagators and Vk vertices from kth-order
Lagrangians is nχ P T = 4L − 2NM − NH + ∑

k kVk .
Fig. 1. Feynman diagrams contributing to the heavy–light (HL) decay constants up
to NNLO: (a) and (b) are LO and NLO tree level diagrams, loop diagrams (c), (d) and
(e) contribute at NLO while diagrams (f), (g) and (h) contribute at NNLO. The solid
lines denote either HL pseudoscalar or HL vector mesons and combinations thereof,
dashed lines represent Nambu–Goldstone bosons, the empty (solid) squares and
empty diamond denote current from the first (third) and second order Lagrangians,
and the solid triangles denote mass insertions of second chiral order (see Ref. [8]).

cay constants, diagrams (a)–(g) have been calculated in Ref. [8].
However, diagram (h) that contains two new LECs β1 and β2 was
not considered there. Its contribution to the pseudoscalar decay
constant is

Rh
i = α

Λχ

∑
j,k

ξi, j,k

(
gmP

16F 2
0m2

i

)( −1

16π2

)
φh(m2

i ,m2
k

)

with

φh = 4β1
[
m2

k

((
4m2

i − m2
k

)
B̄0

(
m2

i ,m2
i ,m2

k

) + Ā0
(
m2

k

))
+ (

2m2
i − m2

k

)
Ā0

(
m2

i

)] + β2

m2
i

[−2m4
k

(
m2

k − 4m2
i

)

× B̄0
(
m2

i ,m2
i ,m2

k

) − m6
i + (

4m2
i m2

k + 6m4
i − 2m4

k

)
× Ā0

(
m2

i

) + 2
(
5m2

i m2
k + m4

k

)
Ā0

(
m2

k

) + m2
i m4

k

]
,

where ξi, j,k can be found in Table 2 of Ref. [8] with i running
over D and Ds , j over D∗ and D∗

s , and k over π , η, and K . The
functions Ā0 = (−16π2)A0 and B̄0 = (−16π2)B0 with A0 and B0
defined in the appendix of Ref. [8]. It should be noted that at NNLO
the HL meson masses appearing here are the average of the vector
and pseudoscalar HL mesons, i.e. m̊D and m̊B in Table 1. For the
diagrams contributing to the HL vector meson decay constants, the
computation of the corresponding diagrams (a), (b), (e) is the same
as in the case of the pseudoscalar decay constants, keeping in mind
that now α, bD , and bA are all understood to be different from
those in the pseudoscalar sector by heavy-quark spin symmetry
breaking corrections.

The loop diagrams for vector mesons fall into two categories,
depending on whether an HL vector meson (class I) or an HL pseu-
doscalar meson (class II) propagates in the loop. For vector mesons,
the wave function renormalization diagram (f) yields:

R f I,I I

i =
∑

j,k

ξi, j,k

(
1

18F 2
0

)( −1

16π2

)d φ f I,I I
(p2

i ,m2
j ,m2

k )

d p2
i

∣∣∣∣
p2

i =m2
i

,

with
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φ f I = (
g∗)2[

3
(−p2

i + (m j − mk)
2)(−p2

i + (m j + mk)
2)

× B̄0
(

p2
i ,m2

k ,m2
j

) + 3 Ā0
(
m2

j

)(−p2
i + m2

k − m2
j

)
− 3 Ā0

(
m2

k

)(
p2

i + m2
k − m2

j

) + p2
i

(−p2
i + 3m2

k + 3m2
j

)]
,

φ f II = − m2
P

2p2
i

g2[−3
(−2m2

k

(
p2

i + m2
j

) + (
m2

j − p2
i

)2 + m4
k

)

× B̄0
(

p2
i ,m2

k ,m2
j

) + 3 Ā0
(
m2

k

)(
p2

i + m2
k − m2

j

)
+ 3 Ā0

(
m2

j

)(
p2

i − m2
k + m2

j

) + 6p2
i

(
m2

k + m2
j

) − 2p4
i

]
,

where i denotes (D∗, D∗
s ) and j denotes either (D∗, D∗

s ) or (D, Ds).

Diagram (g) yields R gI = 0 and

R gII =
∑

j,k

ξi, j,k

(
αg

72F 2
0m2

i

)( −1

16π2

)
φgII(

m2
i ,m2

j ,m2
k

)

with

φgII = −3
(
(mi − mk)

2 − m2
j

)(
(mi + mk)

2 − m2
j

)
× B̄0

(
m2

i ,m2
j ,m2

k

) + 3 Ā0
(
m2

j

)(
m2

i + m2
j − m2

k

)
+ 3 Ā0

(
m2

k

)(
m2

i − m2
j + m2

k

) − 2m2
i

(
m2

i − 3
(
m2

j + m2
k

))
.

Diagram (h) gives

RhI,I I = α

Λχ

∑
j,k

ξi, j,k

(
gmP

144F 2
0m2

i

)( −1

16π2

)
φhI,II(

m2
i ,m2

k

)

with

φhI = 8β1
m2

i

m2
P

g∗

g

[(
6m2

i − 3m2
k

)
Ā0

(
m2

i

) − 3m2
i m2

k − 2m4
i

+ 3m2
k

[(
4m2

i − m2
k

)
B̄0

(
m2

i ,m2
i ,m2

k

) + Ā0
(
m2

k

)]]
,

φhII = 4β1
[
3m2

k

((
4m2

i − m2
k

)
B̄0

(
m2

i ,m2
i ,m2

k

)
+ Ā0

(
m2

k

)) + (
6m2

i − 3m2
k

)
Ā0

(
m2

i

) + 6m2
i m2

k

+ 4m4
i

] + β2

m2
P

[−6m4
k

(
m2

k − 4m2
i

)
B̄0

(
m2

i ,m2
i ,m2

k

)

+ 6
(
3m2

i − m2
k

)(
m2

i + m2
k

)
Ā0

(
m2

i

) + 8m4
i m2

k

+ 21m2
i m4

k + 9m6
i + 6

(
3m2

i m2
k + m4

k

)
Ā0

(
m2

k

)]
.

As explained in Ref. [8], mass insertions in diagrams (c), (d)
generate NNLO contributions. Therefore, using mDs → mD + �s ,
mD∗ → mD +�, and mD∗

s
→ mD +�+�s for the HL meson masses

in diagrams (f), (g), one obtains the full NNLO results of these dia-
grams. The complete NNLO results for the pseudoscalar and vector
HL decay constants are

f i = α̂(1 + Z̃ i/2) + δi + Ti + C̃i + R̃h
i ,

F ∗
i = α

(
1 + (

R̃ f I

i + R̃ f II

i

)
/2

) + δi + R̃ gII

i + Re
i + R̃hI

i + R̃hII

i ,

where α̂ = α/mP and Zi , Ti , and Ci can be found in Ref. [8]. The
“tilde” indicates that one has to perform a subtraction to remove
the power-counting–breaking terms that are inherent of covari-
ant ChPT involving heavy hadrons whose masses do not vanish at
the chiral limit (for details see Refs. [8,23]). Furthermore, a second
subtraction is needed to ensure that heavy-quark spin-flavor sym-
metry is exact in the limit of infinitely heavy quark masses. Details
and consequences for phenomenology will be reported in a sep-
arate work. After these subtractions the results can be expanded
in the inverse heavy–light meson mass. In the limit mP → ∞
Fig. 2. Light-quark mass evolution of f Ds / f D , F D∗
s
/F D∗ , f Bs / f B , and F B∗

s
/F B∗ . The

ratio r = mq/ms is related to the pseudoscalar meson masses at leading chiral order
through m2

π = 2B0msr and m2
K = B0ms(r + 1) with B0 = m2

π /(2mq), where ms is
the physical strange quark mass and mq the average of up and down quark masses.
The vertical dotted lines denote physical mq/ms .

the lowest order HMChPT results are recovered. The covariant ap-
proach, being fully relativistic, sums all powers of contributions in
1/mP , which are of higher order in HMChPT. Such a relativistic
formulation is not only formally appealing. It also converges faster
than non-relativistic formulations, such as HMChPT and HBChPT.
This has been recently demonstrated in the one-baryon sector
and in heavy–light systems for a number of observables (see, e.g.,
Refs. [8,23]). It should be stressed that the loop functions are di-
vergent and the infinities have been removed by the standard MS
procedure, as in Ref. [8].

Now we are in a position to perform numerical studies. We
first fix the five LECs, α, bD , bA , β1, and β2, by fitting the HPQCD
f Ds / f D extrapolations [10]. The results are shown in Fig. 2(a).
The NNLO ChPT fits the chiral and continuum extrapolated lat-
tice QCD results remarkably well, keeping in mind that the HPQCD
extrapolations were obtained using the NLO HMChPT results sup-
plemented with higher-order analytical terms [10].

In addition to providing the NNLO ChPT results that should be
useful for future lattice simulations of the HL decay constants,
a primary aim of the present study is to predict quantitatively
the SU(3) breaking corrections to f D∗

s
/ f D∗ , f Bs / f B , and f B∗

s
/ f B∗

from that of the f Ds / f D . To achieve this, one must take into ac-
count heavy-quark spin-flavor symmetry breaking corrections to
the LECs: α, bD , bA , β1, β2, and gP P∗φ (gP∗ P∗φ ).

The LEC α is only relevant for the absolute value of the decay
constants, therefore it does not appear in the SU(3) breaking ratios.
However, in the Lagrangian of Eqs. (5), (6), one implicitly assumes

heavy-quark spin symmetry, i.e., c′ = f P∗√
mP∗

f P
√

mP
= 1, which affects

the computation of loop diagrams (g) for pseudoscalars and (g), (h)
for vector mesons (see Ref. [8] for details). Recent quenched LQCD
simulations suggest that c′ is within the range of 1.0–1.2 [17,18].
To be conservative we allow c′ to vary within 0.8–1.2. For bD , bA ,
β1, and β2, no LQCD data are available. However, the corrections to
those constants from heavy-quark spin-flavor symmetry breaking
are expected to be � 20%.

The LECs that affect the predicted ratios most prominently turn
out to be g and g∗ , which determine the size of chiral loop contri-
butions. In the present case gD D∗π is determined by reproducing
the D∗ meson decay width. Recent n f = 2 LQCD simulations sug-
gest that gB B∗π is in the range of 0.4–0.6 [25–27]. We therefore
take the central value of 0.516 from Ref. [25] and assign a 20% un-
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Table 2
Ratios of f Ds / f D , f D∗

s
/ f D∗ , f Bs / f B , and f B∗

s
/ f B∗ from different approaches. The

f Ds / f D = 1.164 from the HPQCD Collaboration [10] is used as input in our ap-
proach.

Ref. f Ds / f D f D∗
s
/ f D∗ f Bs / f B f B∗

s
/ f B∗

PDG [24] 1.25(6) – – –
FCM [30] 1.24(4) 1.12 1.19(3) 1.15
RQM [31] 1.15 1.02 1.15 1.15
LFQM [32] 1.18(1.20) 1.14(1.18) 1.24(1.32) 1.23(1.32)

QLQCD [17] 1.10(2) 1.11(3) 1.14(3)(1) 1.17(4)(3)

QLQCD [18] 1.11(1)(1) 1.09(1)(2) 1.13(1)(1) 1.14(2)(2)

LQCD [20] 1.14(2)(2) 1.14(2)(2)

HPQCD [10,14] 1.164(11) 1.226(26)

NNLO ChPT 1.17 1.10(5) 1.24(4) 1.20(4)

certainty. Studies based on QCD sum rules indicate that g and g∗
could differ by 10–20% [28,29]. We take this into account in our
study.

With heavy-quark spin-flavor symmetry breaking effects on the
relevant LECs taken into account as described above, we can now
make predictions for the ratios of f Bs / f B , F D∗

s
/F D∗ , and F B∗

s
/F B∗

and their light-quark mass dependencies. The results are shown in
Figs. 2(b), 2(c), 2(d). The differences between the four ratios are
small, at the order of a few percent. Interestingly, the ratios of the
B meson decay constants are found to be larger than those of their
D counterparts, in agreement with the HPQCD results [10,14]. Fully
dynamical lattice simulations of the vector meson decay constants
should provide a stringent test of our predictions. It should be
stressed that the bands shown in Fig. 2 reflect the estimated effects
of heavy-quark spin-flavor symmetry breaking from the change of
the relevant LECs, in addition to those induced by the covariant
formulation of ChPT, the use of physical mass splittings and differ-
ent gD D∗φ (gB B∗φ ). The same is true for the uncertainties of our
results given in Table 2.

Our predicted ratios at the physical point are compared in Ta-
ble 2 with the results from a number of other approaches, includ-
ing the lattice simulations [17,18,20], the relativistic quark model
(RQM) [31], the light-front quark model (LFQM) [32], and the field
correlator method (FCM) [30].3 Our predictions for the relative
magnitude of the f P∗

s
/ f P∗ vs. f Ps / f P ratios agree with those of

the FCM [30], the RQM [31] and LFQM [32]. It should be noted
that the results in Fig. 2 are obtained with a renormalization scale
of 1 GeV [8]. Uncertainties have been estimated changing this scale
between μ = mD and μ = mB for the calculation of D and B de-
cay constants, respectively. The changes turn out to be small and
are taken into account in the results shown in Table 2.

In summary, we have calculated the pseudoscalar and vec-
tor decay constants of the B and D mesons using a covariant
formulation of chiral perturbation theory up to next-to-next-to-
leading order and found that it can describe well the HPQCD
n f = 2 + 1 data on f Ds / f D . Taking into account heavy-quark spin-
flavor symmetry breaking effects on the relevant LECs, we have
made predictions for the ratios of f Bs / f B , f D∗

s
/ f D∗ , and f B∗

s
/ f B∗

3 It should be mentioned that the NNLO ChPT predictions cover the NLO predic-
tions within uncertainties.
and their light quark mass dependencies that should be testable
in the near future. Our results show that f Bs / f B > f Ds / f D and
f D∗

s
/ f D∗ < f Ds / f D in a large portion of the allowed parameter

space.
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