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Abstract

In this paper, rule-based programming is explored in the field of automated generation of chemical
reaction mechanisms. We explore a class of graphs and a graph rewriting relation where vertices
are preserved and only edges are changed. We show how to represent cyclic labeled graphs by
decorated labeled trees or forests, then how to transform trees into terms. A graph rewriting
relation is defined, then simulated by a tree rewriting relation, which can be in turn simulated
by a rewriting relation on equivalence classes of terms. As a consequence, this kind of graph
rewriting can be implemented using term rewriting. This study is motivated by the design of the
GasEl system for the generation of kinetics reactions mechanisms. In GasEl, chemical reactions
correspond to graph rewrite rules and are implemented by conditional rewriting rules in ELAN.
The control of their application is done through the ELAN strategy language.

Keywords: term and graph rewriting, rule-based programming, strategy language, cyclic labeled
graph, automated generation of chemical reaction mechanisms.

1 Introduction

In the context of an industrial application, we have explored the use of rule-
based systems and strategies, for a complex problem of chemical kinetics: the
automated generation of reaction mechanisms [22,7]. In this application, called
GasEl, the representation of the chemical species uses the notion of molecular

1 We thank all participants in the initial GasEl project: members from PROTHEO team,
chemists from DCPR, Nancy and Peugeot Citroën Automobiles that financially supported
this project.
2 Email: Olivier.Bournez@loria.fr
3 Email: Mariana-Liliana.Ibanescu@loria.fr
4 Email: Helene.Kirchner@loria.fr

Electronic Notes in Theoretical Computer Science 147 (2006) 113–134

1571-0661 © 2006 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.06.040
Open access under CC BY-NC-ND license.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81218535?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:Olivier.Bournez@loria.fr
mailto:Mariana-Liliana.Ibanescu@loria.fr
mailto:Helene.Kirchner@loria.fr
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


graph [12], encoded by a term structure called GasEl term introduced in [5] and
studied in [15]. Chemical solutions are modeled as multisets of terms similarly
to [13]. Chemical reactions are expressed by rewriting rules on molecular
graphs, encoded by a set of conditional rewriting rules on GasEl terms [15].
The control of the chemical reactions chaining is easy to describe [5,6,15] using
a strategy language, such as the one offered by the ELAN system [4,16].

In [5] we briefly present the problem of generation of kinetics mechanisms
in the whole context of its use by chemists and industrial partners. We give
a description of the chemical problem complexity and a description of the
computational problems. More details are presented in [15] that extensively
describes the implemented prototype and analyses the qualitative validations
performed with the chemists. However the precise description of transforming
chemical rules into rewriting rules was not formally given in [15], neither the
detailed application of a chemical rule on a molecular solution, nor its formal
correspondence with term rewriting. From this point of view, this article is
an extension of the results presented in chapter 8 of [15].

In this paper, we propose a class of labeled graphs and a graph rewriting
relation well-suited to applications where the sets of vertices are preserved
through transformations. This is also a special kind of hyperedge rewrit-
ing [10,11,14]. We show precisely how to perform this kind of graph rewriting
by encoding the graph structure by terms and the graph rewriting relation
by rewriting modulo a congruence. This is performed in two steps, first by
encoding cyclic labeled graphs into decorated labeled trees or forests, then by
transforming trees into terms. The first transformation relies on the operation
of cutting edges in cycles, which leads to the notions of hidden and revealed
edges [15]. The second transformation amounts to choosing a root in the tree
and ordering the immediate subgraphs of each vertex. We prove that each
labeled graph rewriting step is correctly simulated by a term rewriting step
modulo an equivalence relation on terms, where all terms in the same equiva-
lence class are a representation of the same graph (up to graph isomorphism).
This result justifies the GasEl implementation of chemical rewriting [15], but
is general enough to apply in different contexts.

Implementation of graph rewriting by term rewriting has already been
explored by several authors [3,9,19,21]. Usually labeled graphs are axiomatized
equationally in such a way that graph rewriting becomes rewriting modulo the
axioms. In particular, in [18,19] it is proposed to implement graph rewriting
by multiset rewriting where multisets represent graphs by their adjacency
list [8]. As observed in [19], this is similar in some respects to the algebraic
axiomatization of Raoult and Voisin [21]. The implementation proposed in
this paper, based on what we did in the GasEl project, is in some sense a
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higher level implementation: graphs are not implemented as adjacency lists,
but are rather encoded by terms, so that more structure is preserved.

Section 2 defines the classes of decorated labeled graphs and forests, and
shows how to transform labeled graphs into decorated labeled forests. A
rewriting relation on these structures is defined in Section 3. Section 4 shows
how to transform trees into terms and the rewriting relation on trees into term
rewriting. Section 5 briefly states how these concepts have been implemented
in GasEl.

2 Decorated labeled graphs and forests

A molecular graph [12] is a vertex-labeled and edge-labeled graph, where each
vertex is labeled with an atom and each edge is labeled with the bond type,
as given in Figure 1.
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Fig. 1. A molecular graph

A chemical reaction is expressed as the application of a rewriting rule for
molecular graphs. The chemical reaction from Figure 3 is an example of
applying the rewriting rule from Figure 2 that breaks a simple bond between
two atoms of carbon.

C •
simple

• C −→ C •

simple

��
•

simple

��
C

Fig. 2. Rewriting rule: breaking a simple bond

Our concern is to describe how to implement the labeled graph rewriting
relation by a term rewriting relation. We proceed in two steps: first, we trans-
form graphs into trees, or more precisely into forests, mainly by cutting cycles
and introducing implicit edges also called hidden edges. This transformation
is defined in this section. In the second stage, we will transform trees into
terms by choosing a root and ordering direct subtrees at each vertex.
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CH3 CH3

| |

CH3—C—CH3 −→ CH3—C • + •CH3

| |

CH3 CH3

Fig. 3. A chemical reaction

2.1 Decorated labeled graphs

Let LV and LE be disjoint sets of labels respectively for vertices and edges.
A decorated labeled graph is a labeled graph with a specific set of vertex
labels: new labels are introduced to handle the fact that some cycles are
cut but yet present and encoded through implicit edges, each of them being
numbered by a set of labels LC. The label of a vertex belongs to the set
L′

V = LV ×P(LC ×LE).

Definition 2.1 [Decorated labeled graph] A decorated labeled graph over L =
LV ∪ LE ∪ LC is a structure G = (V, E, lab), such that

(i) (V, E) is a graph: V is the set of vertices and E ⊆ V × V is the set of
edges;

(ii) the function lab : V ∪ E −→ L′
V ∪ LE gives

• the labels for every edge of the graph: lab(e) ∈ LE, ∀e ∈ E, and
• the labels for every vertex of the graph: lab(v) ∈ L′

V , ∀v ∈ V .
The first element of lab(v) is from LV and is called vertex_name. The
second element is a set of pairs from LC × LE, denoted Pv and called
implicit_edges.

The set of decorated labeled graphs over L is denoted by G(L). When V
needs to be explicitly given, it is denoted by GV (L).

Example 2.2 In the molecular graph from Figure 1 two edges are trans-
formed into implicit edges: (i) edge {6,11} labeled with simple is hidden
and the representation from Figure 4 is obtained; (ii) edge {5,6} labeled with
aromatic is hidden and the result is given in Figure 5. Hydrogen atoms are
not represented.

The second graph from Figure 5 is a decorated labeled graph, where

• LV = {C,H,N,O,Cl, . . .},

• LE = {simple, double, triple, aromatic},

• LC = {1, 2, . . .},
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Let (C, Pv) = (C, {(1, simple), (2, aromatic)}) be the vertex label for
node v = 6 in the second decorated labeled graph given in Figure 5:

• the vertex_name of v = 6 is C;

• Pv is the set of implicit_edges of v = 6, namely {(1, simple),(2, aromatic)}:
· (1, simple) is a pair occurring in P6 and P11 and thus encoding a hidden

edge between vertices 6 and 11;
· (2, aromatic) is a pair occurring in P5 and P6 and thus encoding a hidden

edge between vertices 5 and 6.

The labeled graph given in Figure 1 may be considered as an empty deco-
rated labeled graph, i.e. a decorated labeled graph without labels for implicit
edges. In the following we do not make distinction between a labeled graph
and its corresponding empty decorated labeled graph.

Operations of hiding and revealing an edge are now formally described.
They are internal transformations in the set of decorated labeled graphs.

Definition 2.3 [Hide-an-edge] Let G = (V, E, lab) be a decorated labeled
graph over L, c be a fresh label from LC , {u, v} ∈ E an edge of G, and
lab({u, v}) = luv. The decorated labeled graph G1 = (V, E1, lab1) given by

(i) E1 = E − {{u, v}},
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(ii) lab1(e) = lab(e), ∀e ∈ E1,

(iii) lab1(w) = lab(w), for w ∈ V, w �= u, w �= v,

(iv) lab1(w) = (lw, Pw ∪ {(c, luv)}) if (w = u or w = v) and lab(w) = (lw, Pw).

is obtained from G by deleting the edge {u, v} of the graph G and encoding this
edge in the labeling of the graph. The edge {u, v} is hidden in the graph G1.

Definition 2.4 [Hidden edges] Let G = (V, E, lab) be a decorated labeled
graph over L. The set H of hidden edges of the decorated labeled graph G is
the following:

H = {{u, v} | ∃(c, luv) ∈ Pu ∩ Pv}.

Example 2.5 In Figure 5 there is one hidden edge in the first decorated
labeled graph, and there are two hidden edges in the second.

Conversely, hidden edges may be revealed when necessary.

Definition 2.6 [Reveal-an-edge] Let G1 = (V, E1, lab1) be a decorated la-
beled graph over L, u, v ∈ V such that {u, v} ∈ H . The decorated labeled
graph G = (V, E, lab) given by:

(i) E = E1 ∪ {{u, v}},

(ii) lab({{u, v}}) = luv,

(iii) lab(e) = lab1(e), ∀e ∈ E1,

(iv) lab(w) = lab1(w), for w ∈ V, w �= u, w �= v,

(v) lab(u) = (lu, Pu), lab(v) = (lv, Pv) where lab1(u) = (lu, Pu ∪ {(c, luv)} and
lab1(v) = (lv, Pv ∪ {(c, luv)}

is obtained from G1 by adding an edge {{u, v}} to the graph G and making
explicit this edge encoded in the labeling of G1.

In the following, we only consider decorated labeled graphs that have been
obtained from (possibly cyclic) labeled graphs by cutting edges. This class is
characterized using the following well-formedness notion.

Definition 2.7 [Well-formed decorated labeled graph] A decorated labeled
graph G = (V, E, lab) over L is a well-formed decorated labeled graph if the
repeated application of the reveal-an-edge operation leads to an empty deco-
rated labeled graph.

Example 2.8 The decorated labeled graphs given in Figure 5 are well-formed
decorated labeled graphs.

From now on, we suppose that all decorated labeled graphs are well-formed,
unless otherwise specified.
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Let G1 = (V, E1, lab1) be a well-formed decorated labeled graph over L,
and G = (V, E, lab) be the (empty decorated) labeled graph resulting from
the repeated application of the reveal-an-edge operation. The function trans-
forming a well-formed decorated labeled graph G1 into a labeled graph G is
denoted by decoGraph2graph:

decoGraph2graph(G1) = G.

The function decoGraph2graph is surjective but not injective. Two deco-
rated labeled graphs over a fixed set of vertices that produce the same labeled
graph by repeated application of revealing hidden edges and removing empty
decorations, can be considered as equivalent for the following relation:

Definition 2.9 [Equivalent decorated labeled graphs] Let G1 and G2 be two
decorated labeled graphs of GV (L). G1 and G2 are equivalent, denoted G1 ≡
G2, if decoGraph2graph(G1) = decoGraph2graph(G2). We denote the equiv-
alence class of G1 by [G1]≡.

2.2 Decorated labeled forests

The purpose of the previous formal definitions is to describe how to transform
cyclic graphs into trees or forests by hiding edges and maintaining the same
number of connected components.

Definition 2.10 [Decorated labeled forest] A decorated labeled graph G =
(V, E, lab) over L is called a decorated labeled forest, if the underlying graph
(V, E) is a forest, i.e. if it has no cycle. It is a decorated labeled tree, if the
underlying graph (V, E) is a tree, i.e. it is connected and has no cycle.

Example 2.11 The decorated labeled graph given in Figure 5 is a decorated
labeled tree.

Definition 2.12 [forest2graph] Let F be a decorated labeled forest over
L. In this specific case, the function decoGraph2graph (revealing all hidden
edges) is denoted forest2graph.

If the operation hide-an-edge given in Definition 2.3 is applied repeatedly
until all edges are hidden, we get something which is similar to an adjacency
list [8]. Seen as a multiset of vertices, this also corresponds to the representa-
tion of graphs proposed in [19]. Here, we do not perform this operation until
all edges are hidden, but only until no cycle remains.

Definition 2.13 [graph2forest] Let G = (V, E, lab) be a labeled graph over
L and H be a subset of edges. The operation transforming G into a deco-
rated labeled forest F , hiding the edges from the set H ⊆ E, is denoted by
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graph2forest:

F ∈ graph2forest(G, H).

Let us remark that graph2forest is a relation, but is not a function.
However if the set H is ordered, if the set LC of labels for implicit edges is
fixed and if the operations hide-an-edge are applied in the order given on H ,
then graph2forest becomes a function. Let us notice also that the support
graph of F , the decorated labeled forest, is a spanning forest of the graph G.

The following diagram summarizes the different transformations:

G

graph2forest

��

(empty decorated) labeled graph

F

forest2graph

��

decorated labeled forest

Notice that a (connected) graph may be represented by an exponential
number of decorated labeled trees or forests: let us assume that the (con-
nected) graph has m edges and that no more than κ edges are hidden, where
κ is the cyclomatic number (the minimal number of edges to be hidden to get
a tree or a forest). Then the graph corresponds to at most m!/(κ!(m− κ)!) =
O(2m) decorated labeled trees or forests: we need to choose κ hidden edges
among the m edges. Notice that, it we consider connected graphs whose cyclo-
matic number κ stay bounded by some constant κ0, this number of decorated
labeled trees is polynomial in m (in O(mκ0)).

The hide-an-edge operation gives a partial order on decorated labeled
forests: if F2 is obtained from F1 by hiding an edge, then F1 < F2 (and
H1 ⊂ H2). Dually, F1 is obtained from F2 by revealing the edge.

Using this relation we define the notion of minimally hidden forest, corre-
sponding to a forest F obtained by hiding in a graph G the smallest number
of edges, in order to get in F the same number of connected components as
in G (which is equivalent to have a maximal number of revealed edges).

Definition 2.14 [Minimally hidden forest] Let G = (V, E, lab) be a labeled
graph, and F ∈ graph2forest(G, H). F is a minimally hidden forest for G
if F is minimal with respect to the partial order on decorated labeled forests
given by the hide-an-edge operation.

F is not a minimally hidden forest for G if there exists a hidden edge that
can be revealed in order to get a decorated labeled graph which is still a forest
(no cycle is formed): in other words, ∃F1 : F1 < F .

Informally, extending the order given by hide-an-edge operation to deco-
rated labeled graphs and starting from a graph G one can hide edges in order
to cut cycles, until a forest is obtained. Indeed this is a minimal one, since
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hiding more edges gives again a forest. This process is depicted as follows to
get Fmin, the minimally hidden forest:

G < G1 < · · · < Gκ

=

Fκ
︸︷︷︸

< Fκ+1 < · · · < Fm

Fmin

We define a transformation on forests in order to obtain minimally hidden
forests.

Definition 2.15 [merge] Let F be a decorated labeled forest. If F is not a
minimally hidden forest (there exists a hidden edge that can be revealed in
order to get a smaller forest) then one such hidden edge is revealed. This
operation of revealing hidden edges is applied repeatedly until a minimally
hidden forest Fmin is obtained. We denote this transformation by merge:

F �→merge Fmin

Proposition 2.16 If F �→merge Fmin then Fmin < F .

3 Rewriting decorated labeled graphs

In this section, we define a rewrite relation where the set of vertices is un-
changed and only edges are removed or added. In the context of chemistry,
this is natural and motivated by the chemical law of the conservation of the
mass. However the point of view adopted here is abstract and not restricted
to chemical rewriting. This is also known and studied as hyperedge rewrit-
ing [10,14,11].

Example 3.1 The following rules encode generic chemical reactions of hydro-
carbon molecules, in a specific range of temperature (oxidizing pyrolysis) [15]:

(i) unimolecular initiation (ui)

1[C] •
simple

• 2[x] −→ 1[C] •

simple

��
•

simple

��
2[x](1)

(ii) combination (co)

1[x] •

simple

��
•

simple

��
2[y] −→ 1[x] •

simple
• 2[y](2)
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(iii) oxidation (ox)

• double • •
simple

•
simple

•

simple

��
−→ •

simple

�� simple
•

simple
• • double •

1[O] 2[O] 3[H] 4[C] 5[C] 1[O] 2[O] 3[H] 4[C] 5[C]

(3)

(iv) disproportionation (di)

•

simple

��
•

simple
•

simple
•

simple

��
−→ •

simple
• • double •

1[x] 2[H] 3[y] 4[z] 1[x] 2[H] 3[y] 4[z]

(4)

3.1 Rules for decorated labeled graphs

Let XV and XE be sets of variables for respectively vertices and edges labels,
and XC be a set of variables for implicit edge labels; let X = XV ∪ XE ∪ XC .
A decorated labeled graph with variables is a decorated labeled graph (as in
Definition 2.1) such that each label of a vertex belongs to the set (LV ∪XV )×
P((LC ∪XC)× (LE ∪XE)) and each label of an edge belongs to LE ×XE . The
set of decorated labeled graphs with variables is denoted by G(L,X ).

A decorated labeled graph with no variable, i.e. a decorated labeled graph
belonging to G(L), is said to be closed.

Definition 3.2 [Label substitution] Let G ∈ GV (L,X ) be a decorated labeled
graph with variables. A label substitution σ is an application from XV to
LV , from XE to LE and from XC to LC. The result of applying the label
substitution σ to the labeled graph G, denoted σG, is the closed labeled graph
over L where each vertex, edge or implicit edge variable x is replaced by σ(x).

A rewriting rule is a pair of decorated labeled graphs with variables, as for
instance those given in example 3.1. We require that the set of the vertices
of both graphs coincide, and that every vertex has the same vertex_name in
both sides.

Definition 3.3 [Decorated labeled graph rewriting rule] A decorated graph
rewriting rule is an oriented pair of decorated labeled graphs with variables,
denoted gl → gr, such that gl, gr ∈ GV (L,X ) for some V and such that vertices
have the same vertex_name in gl and gr.

As usual, gl and gr are respectively called left and right-hand side of the
rule.

Definition 3.4 [Decorated labeled graph rewriting system] A decorated la-
beled graph rewriting system is a set RG of decorated labeled graph rewriting
rules.
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3.2 Rewriting relation for decorated labeled graphs

Let us now turn to the definition of the rewriting relation on decorated labeled
graphs. We need to precisely define the following steps: isolate a subgraph,
find a substitution and a morphism from the left-hand side of a rule to this
subgraph, instantiate the right-hand side by the substitution and plug it into
the context. The usual notions of subgraphs and morphisms must be adapted
in our context to take into account implicit edges. The key is simply to define
the notion of connected vertices, just by saying that two vertices are connected
either directly by an edge or indirectly by a hidden edge.

Definition 3.5 [Connected vertices] Let G = (V, E, lab) be a decorated la-
beled graph, with hidden edges H . The vertices u, v ∈ V are connected in G
if either

• {u, v} ∈ E, or

• {u, v} ∈ H , i.e. ∃(c, luv) ∈ Pu ∩ Pv, c ∈ LC , luv ∈ LE .

We denote this relation by connectedG(u, v). When u, v ∈ V are connected in
G, labelG(u, v) is defined as lab({u, v}) in the first case, and luv in the second
case.

Definition 3.6 [Subgraph of a decorated labeled graph] A decorated labeled
graph G1 = (V1, E1, lab1) is a subgraph of a decorated labeled graph G =
(V, E, lab), denoted by G1 � G, if decoGraph2graph(G1) is a subgraph 5 of
decoGraph2graph(G).

The decorated labeled graph decomposition in two subgraphs is based on
an edge partition for both the explicit and implicit edges.

Definition 3.7 [Decorated graph decomposition in two subgraphs] Let G =
(V, E, lab) be a decorated labeled graph, E = E1 ∪ E2 an edge partition and
H = H1 ∪ H2 a hidden edge partition. The graph G is decomposed in two
decorated labeled subgraphs, G1 = (V, E1, lab1) and G2 = (V, E2, lab2), such
that

• vertex_nameG1
(v) = vertex_nameG2

(v) = vertex_nameG(v), ∀v ∈ V ,

• P 1
u = {(c, luv) ∈ Pu | {u, v} ∈ H1}, and

• P 2
u = {(c, luv) ∈ Pu | {u, v} ∈ H2},

where P i
u is denoting the set of implicit_edges of u in Gi, for i = 1, 2.

We denote this decomposition by G = G1 
 G2.

5 The notion of subgraph is the usual component-wise inclusion.
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Example 3.8 In Figure 6 is given a decomposition of a simple graph G where
E1 = {{1, 2}}, E2 = {{1, 3}} and H1 = ∅, H2 = H = {{2, 3}}. When edge
partitions are E1 = ∅, E2 = E = {{1, 2}, {1, 3}} and H1 = H = {{2, 3}},
H2 = ∅ the same graph is decomposed as given in Figure 7.

1[C]
•

•
simple �������� •

simple��������

2[C] 3[C]

(1, simple) (1, simple)

= 1[C]
•

•
simple���� •
2[C] 3[C]


 1[C]
•

• •
simple��������

2[C] 3[C]

(1, simple) (1, simple)

Fig. 6. Decomposition when E = {{1, 2}} ∪ {{1, 3}} and H = ∅ ∪ {{2, 3}}

1[C]
•

•
simple �������� •

simple��������

2[C] 3[C]

(1, simple) (1, simple)

= 1[C]
•

• •
2[C] 3[C]

(1, simple) (1, simple)


 1[C]
•

•
simple���� •

simple����

2[C] 3[C]

Fig. 7. Decomposition when E = ∅ ∪ {{1, 2}, {1, 3}} and H = {{2, 3}} ∪ ∅

A decorated labeled graph morphism preserves vertices and connected ver-
tices.

Definition 3.9 [Decorated labeled graph morphism] Let G1 = (V1, E1, lab1)
and G2 = (V2, E2, lab2) be two decorated labeled graphs. A morphism from
G1 to G2 is an injective function f : V1 −→ V2 such that:

(i) f is preserving the vertex labels in decoGraph2graph(G1):
∀v ∈ V1 : f(v) ∈ V2 and vertex_nameG2

(f(v)) = vertex_nameG1
(v),

(ii) f is preserving the connected relation and edge labels:
∀u, v ∈ V1, connectedG1

(u, v) ⇒ connectedG2
(f(u), f(v)) and

labelG1
(u, v) = labelG2

(f(u), f(v)).

The image of G1 by the morphism f is a subgraph of G2 and is denoted by
f(G1) = (V2, f(E1), f(lab1)):

• f(E1) = {{f(u), f(v)} | connectedG1
(u, v) and {f(u), f(v)} ∈ E2},

• H(f(G1)) = {{f(u), f(v)} | connectedG1
(u, v) and {f(u), f(v)} ∈ H2}.
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Example 3.10 If G1 is the graph 1[C] •
simple

• 2[C] and G2 is

1[C]
•

•
simple �������� •

simple��������

2[C] 3[C]

(1, simple) (1, simple)

then f1 = {1 �→ 1, 2 �→ 2} and f2 = {1 �→ 2, 2 �→ 3} are two of the six
morphisms from G1 to G2.

Definition 3.11 [Decorated labeled graph rewriting relation] Let RG be a
decorated labeled graph rewriting system in GW (L,X ). The decorated labeled
graph rewriting relation associated to the rewriting system RG on GV (L) is
denoted −→RG and is defined by: for every decorated labeled graphs G1, G2 ∈
GV (L), the decorated labeled graph G1 rewrites to G2, denoted G1 −→RG G2,
if there exists:

• a rewriting rule for decorated labeled graphs gl → gr ∈ RG, where gl, gr ∈
GW (L,X ),

• a label substitution σ, and

• an injective morphism f from σgl to G1, such that G1 = f(σgl) 
 G1
′;

and G2 = f(σgr) 
 G1
′.

When the applied rule needs to be specified, the rewriting step is denoted by
G1 −→gl→gr

G2.

Example 3.12 The rewriting step from Figure 8 is obtained by applying the
rewriting rule

1[C] •
simple

• 2[x] −→ 1[C] •

simple

��
•

simple

��
2[x]

the label substitution {x �→ C}, the morphism f1 = {1 �→ 1, 2 �→ 2}, from
example 3.10, and the decomposition given in Figure 6.

The rewriting step from Figure 9 is obtained by applying the same rewrit-
ing rule, the same label substitution, the morphism f2 = {1 �→ 2, 2 �→ 3},
from example 3.10, and the decomposition given in Figure 7.

Let us remark that the set of decorated labeled graphs GV (L) together
with the rewriting relation −→RG is an abstract rewrite system and can thus
enjoy properties of termination and confluence as described in [2,17].
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1[C]
•

•
simple �������� •

simple��������

2[C] 3[C]

(1, simple) (1, simple)

−→ 1[C]
•

simple

��

•

simple

��
•

simple����������

2[C] 3[C]

(1, simple) (1, simple)

Fig. 8.

1[C]
•

•
simple �������� •

simple��������

2[C] 3[C]

(1, simple) (1, simple)

−→ 1[C]
•

•
simple �������

simple

��
•

simple�������

simple

��

2[C] 3[C]

Fig. 9.

3.3 Rewriting minimally hidden forests

Rewriting decorated labeled graphs as labeled graphs does not guarantee the
property that a (minimally hidden) forest is rewritten into a (minimally hid-
den) forest. Indeed this property is required if we want to implement forests
as a multiset of terms and keep this structure by rewriting at the term level.

In order to get this property, we first transform the decorated labeled graph
rewriting system RG into a decorated labeled forest RF such that for each rule
fl → fr of RF , fl is a forest and fr has only implicit edges. Transforming each
rule gl → gr in RG in such a way is always possible, by using the hide-an-edge
operation. Moreover gl = forest2graph(fl) and gr = forest2graph(fr).

Applying such a rule fl → fr ∈ RF will never create new cycles but may
produce a forest which is not a minimally hidden forest.

Then we can prove that a minimally hidden forest F1,min is rewritten using
RF into a forest F2, that can be transformed into a minimally hidden forest
using the merge transformation, in order to simulate graph rewriting.

Theorem 3.13 (Soundness) If F1 −→RF F2 using the rewriting rule fl →
fr then forest2graph(F1) →RG forest2graph(F2) using gl → gr. If F2 �→merge

F2,min then forest2graph(F2) = forest2graph(F2,min).

Theorem 3.14 (Completeness) Let F1,min be a minimally hidden forest
coding a labeled graph G1 (i.e. forest2graph(F1,min) = G1). If G1 −→RG G2

using the rewriting rule gl → gr, then

• F1,min −→RF F2 using the transformed rewriting rule fl → fr,

• F2 �→merge F2,min,
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• forest2graph(F2,min) = forest2graph(F2) = G2.

The result of the previous theorem is represented as follows.

G1 gl→gr

�� G2 labeled graph

F1,min

forest2graph

��

fl→fr

�� F2

forest2graph

��

�→merge F2,min

forest2graph
��

forest

Proof. The graphs fl, gl on one hand, fr, gr on the other hand, have the same
connected vertices by construction. The morphism used to apply gl → gr on
G1 can be transposed to a decorated labeled graph morphism used to apply
fl → fr on F1,min to get F2 and forest2graph(F2) = G2. Then applying the
rule merge if needed, will only reveal some edges but will not change connected
vertices and will not introduce cycle. So F2,min is a minimally hidden forest
and forest2graph(F2,min) = G2. �

4 Rewriting decorated terms

We address in this section the transformation of a minimally hidden forest into
a multiset of terms. Each connected component of the minimally hidden forest
is a tree (a connected acyclic graph in graph theory), that can be encoded
by a term structure. The multiset of terms is coded using the associative-
commutative operator +.

4.1 Decorated terms

A term can be considered as a tree with a distinguished vertex, that corre-
sponds to the root of the term, plus some order on its children, corresponding
to its subterms, plus some order on the children of its children, corresponding
to the sub-sub-terms and so on. That is, a term can be obtained from a tree
if we choose a root and an order on vertices. If we have associative commu-
tative (AC) matching, we may assume that the list of subterms of a term is
built with an associative and commutative operator, so that two terms that
differ only by the order on vertices are equal modulo AC. In what follows, we
assume this is the case. Otherwise, one just needs in the following discussion
to associate to a rule r not only a rule r′, but several rules r′ according to the
possible orders.

Definition 4.1 [Decorated term] A decorated term is a decorated labeled tree
with a root (that is with a marked vertex r ∈ V ). A decorated term is also
called a vision of the decorated labeled tree.
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A tree with m edges has n = m + 1 vertices. Hence, a decorated labeled
tree with m edges has m+1 visions. The number of visions corresponding to a
connected graph is bounded by O(m2m), i.e. O(2O(m)). If we consider the class
of connected graphs whose cyclomatic number κ is bounded by some constant
κ0, the number of visions of a connected graph with m edges is bounded by a
polynomial in n (in O(mκ0+1)).

Definition 4.2 [forest2terms and terms2forest] Given a forest F , with k
connected components and given a root for each connected component, we
call forest2terms the transformation that maps F to t1 + t2 + . . .+ tk, where
each ti is a decorated term associated to the ith connected component. We
call terms2forest the reverse operation (i.e., we forget the roots).

Given an order on the k connected components and given hidden edges in
each connected component, if F has m edges, then there are m+k such terms
obtained by choosing the roots of the k connected components.

Definition 4.3 [Equivalent decorated terms] Two decorated terms t1 and t2
are equivalent if the underlying decorated labeled trees are equivalent by def-
inition 2.9. We denote this equivalence by t1 ∼ t2.

Let us denote by + the multiset constructor that is associative and commu-
tative. The equivalence relation ∼ on decorated terms is extended to multisets
as follows: t1 + t2 + · · ·+ tk ∼ u1 + u2 + · · ·+ uk if there exists a permutation
π on {1, · · · , k} and ti ∼ uπ(i).

The set of all visions of a decorated term is the set of all equivalence classes:

Definition 4.4 [All visions of a decorated term] AllVision(t) = [t]∼

From the discussion above, the equivalence relation class of a given deco-
rated term ti with mi edges has at most 2O(mi) elements in the worst case. The
equivalence class of t has at most 2O(m1)2O(m2) · · · 2O(mk) = 2O(m) elements. If
the cyclomatic number κ of the graph forest2graph(terms2forest(t)) is
bounded by some constant, the equivalence relation class of t has at most a
polynomial number of elements. Each class modulo ∼ has in turn k! elements.

4.2 Rewriting relation for decorated terms

Now, we show how to simulate a forest rewriting step with rewriting in equiv-
alence classes.

We first need to transform the decorated labeled forest rewriting system
RF into a term rewriting system. From previous constructions, we may as-
sume that the rules r : fl → fr ∈ RF are such that fr has only implicit
edges. Let t1, . . . , tk be the connected components of fl. Let ri : fl,i → fr,i be
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the rewriting rules on graphs such that fl,i = ti and fr,i is the subgraph of fr

restricted to the vertices of ti (fr,i can be not well-formed).

Proposition 4.5 Let T, T ′ be decorated labeled trees. If T rewrites to T ′ using
r, then there exist T1, . . . , Tk such that T →r1

T1 →r2
T2 → · · · →rk

Tk = T ′.

Proposition 4.6 If T →r1
T1 →r2

T2 → · · · →rk
Tk = T ′ and the images

by the morphisms used in the k rules do not overlap, then T rewrites to T ′

using r.

As a consequence, we may restrict to rules of the form r : fl → fr where
fl is a tree (and applying the rules in some order, if needed). We encode this
rule r by a rewriting rule on terms obtained as follows:

r′ : t + X → u1 + u2 + · · ·+ up + X

where t is a decorated term representing the tree fl (obtained by choosing a
root), X is a variable, and u1, u2, . . . , up are the decorated terms coding the
vertices of fr (recall that all edges are implicit in fr).

Theorem 4.7 (Soundness) If t1 + t2 + · · · + tk → s1 + s2 + · · · + sl′ using
r′ then terms2forest(t1 + t2 + · · ·+ tk) → terms2forest(s1 + s2 + · · ·+ sl′)
using r.

Proof. Let Ti be terms2forest(ti) for i = 1, . . . , k and T = terms2forest(t1+
t2+· · ·+tk). If rule r′ is applied, then t matches some ti, and X is t1+· · ·+ti−1+
ti+1 · · ·+tk; so s1+s2+ · · ·+sl′ is t1+ · · ·+ti−1+ti+1 · · ·+tk +v1+v2+ · · ·+vp,
where the vj ’s for j = 1, . . . , p, are the images of uj ’s with the matching mor-
phism. Assume without lost of generality that i = 1. Since t matches t1, that
means that t1 and t have the same root. So there exists a morphism that maps
fl = terms2forest(t) into terms2forest(t1); r can be applied on T and T
rewrites to the graph where the connected relation is unchanged on T2, . . . Tk,
and changed according to r′ on T1. terms2forest(s1 + s2 + · · · + sl′) is this
graph. �

Theorem 4.8 (Completeness) If F1 −→RF F2 using some rule r : fl → fr,
where fl is a tree, then there exists a decorated term t1 + t2 + · · ·+ tk with

• terms2forest(t1 + t2 + · · ·+ tk) = F1,

• t1 + t2 + · · ·+ tk → s1 + s2 + · · ·+ sl′ using the rewriting rule r′, and

• terms2forest(s1 + s2 + · · · + sl′) = F2.

Proof. If F1 −→ F2 using r, then there is a morphism from fl to F1. Let
be T1, . . . , Tk the k connected components of F1. Since fl is connected, this
morphism sends fl to some Ti. Assume without lost of generality that i = 1.
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T2, . . . , Tk are unchanged by r. Consider ti as any decorated term coding Ti,
for i > 1. Consider t1 as the decorated term coding T1, where the root in t1 is
the root of t in rule r′, and with the same set of hidden edges as in t. We have
terms2forest(t1 + t2 + · · ·+ tk) = F1, t1 + t2 + · · ·+ tk → v1 + v2 + · · ·+ vp +
t2 + · · ·+ tk using r′, and terms2forest(v1 +v2 + · · ·+vp + t2 + · · ·+ tk) = F2.

�

Given t1 + t2 + · · · + tk with terms2forest(t1 + t2 + · · · + tk) = F1, one
may need to find a suitable equivalent vision u1 + u2 + · · · + uk on which the
rule r′ can be applied. This gives the following diagram:

F1 r:fl→fr

�� F2

t1 + t2 + · · · + tk ∼

terms2forest
��

u1 + u2 + · · · + uk

terms2forest

��

r′
�� s1 + s2 + · · · + sl′

terms2forest

��

In this transformation, the rewrite rule r is realized by a unique rule r′.
However, to apply the rule r′, one must find some u1 + u2 + · · · + uk in
AllV ision(t1 + t2 + · · ·+ tk), that may possibly contain 2O(m) elements, where
m is the number of edges of F1 (and a polynomial number if the cyclomatic
number of F1 is bounded).

If we have some rewriting rules on terms that map any term representation
of a forest into its visions, denoted by �vision, and some rules that implement
merge transformation on term representation of forests, denotes by �merge we
get the following diagram:

G1 gl→gr

�� G2

F1,min

forest2graph

��

fl→fr

�� F2

forest2graph

��

�→merge F2,min

forest2graph

�����������������������������

t1 + · · ·+ tk �vision

terms2forest
��

u1 + · · ·+ uk

terms2forest

��

r′
�� s1 + · · · + sl′

terms2forest

��

�merge w1 + · · ·+ wn

terms2forest

��

The merge operation can be realized using classical algorithms (see [8])
in polynomial time. Moreover, from above discussions �vision may relate a
term to 2O(m) terms modulo associativity and commutativity of +. Hence,
one simulation step going from t1 + · · · + tk to w1 + · · · + wn, may require to
test the matching of the left-hand side of rule r′ to 2O(m) terms in the worst
case. This has to be balanced by the fact that rewriting graphs implies solving
graph isomorphism problems, for which no polynomial bound is known.

In our context, and from our experience in the GasEl system, we are far
from this worst case analysis. This is due to various facts:
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• Associative and commutative matching is simply exponential in general, but
can be efficiently performed by current AC-compilers.

• Furthermore, due to their structure, rewrite rules r′ only apply on top of
terms u1 + · · ·+ uk which improves efficiency of the AC-matching problems
solving.

• From our experience, the involved rules in our application related to chem-
istry imply only molecules with few cycles. As a consequence, in practice
our approach is rather good for chemical rules.

• In some sense, if the number of cycles involved is low, we are close to term
rewriting. An implementation with adjacency lists, would not so directly
benefit from this property.

5 Implementation

The implementation of the GasEl system relies on the concepts presented in
this paper. It has been designed in the ELAN language that provides in partic-
ular an efficient rewriting engine for associative and commutative theories [20].
In [5,15], the basic concepts of the chemical kinetics, together with the chem-
ical and computational problems related to the conception and validation of
a reaction mechanism are presented. A general structure for the generator of
reaction mechanisms called GasEl is described in [15].

In GasEl the relations graph2forest and forest2graph are performed by
the user interface, based on SMILES editor and viewer [23,1]; the relations
forest2tree and tree2forest are performed by the ELAN compiler, with
a suitable definition of GasEl terms. The vision and merge relations are
in fact the key of simulating graph rewriting by term rewriting. Intuitively,
generating all visions of a term is performed by selecting successively every
node as root, which amounts to visit the tree [8]. The merge operation may
be very complex in general. It has been fully implemented in the context of
the chemical study of ten generic reactions of the oxidizing pyrolysis.

The prototype makes an extensive use of associative-commutative rewrit-
ing and of the ELAN strategy language which appeared as perfectly suitable
for expressing the control of the chemical reactions chaining occurring in the
automated generation of reaction mechanisms.

Qualitative chemical validations of the prototype show that our approach
gives, for acyclic molecules, the same results as the existing mechanism gen-
erators, and for polycyclic molecules produces validated original results.

The main concerns of the GasEl project ware to be able to rewrite molec-
ular graphs (with cycles), to explore the computational foundation of the
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automated generation of reaction mechanisms, and to provide a flexible and
reliable tool that gives significant insights to the chemists. Significant pro-
gresses have been achieved in this directions, that need to be confronted to
other chemical computational systems. However the comparison with other
systems solving the same chemical problem is very difficult since the code of
concurrent systems is mostly confidential and often not distributed.

6 Conclusion

In this paper we explore a class of graphs and a graph rewriting relation
where vertices are preserved and only edges are changed. We show how to
represent cyclic labeled graphs by decorated labeled trees or forests, then how
to transform trees into terms. A graph rewriting relation is defined, then
simulated by a forest rewriting relation, which can be in turn simulated by
a rewriting relation on equivalence classes of terms. As a consequence, this
kind of graph rewriting can be implemented using term rewriting which is a
good level of formalization. This study is motivated by the design of the GasEl

system for the generation of kinetics reactions mechanisms.

As further work, it would be interesting to compare this term-based imple-
mentation of graph rewriting with a direct implementation of graph rewriting
in a system able to take benefit from the specific class of graphs we are con-
sidering. Another interesting question is to find the right level of formalism
to study properties like termination, confluence, sufficient completeness,... of
graph rewriting rules in this class of graphs.

Finally, we feel that our approach of graph rewriting is worth applying
in some others contexts such as networks or web services. This had to be
investigated.
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