MATHEMATICS

ON THE EXISTENCE OF ENTIRE FUNCTIONS MAPPING COUNTABLE DENSE SETS ONTO EACH OTHER

BY
J. W. NIENHUYS and J. G. F. THIEMANN

(Communicated by Prof. J. H. van Lint at the meeting of January 31, 1976)

Between two countable everywhere dense subsets of \mathbf{R}, there exists an order preserving map ([3], 2.2. problem 1). The extension to \mathbf{R} of such a map is almost everywhere differentiable. Do there, in general, also exist nicer maps? The answer is yes.

This has been known since 1925 [4]. However, the existing literature is not easy to read, nor very general. Franklin [4] finds a function which is analytic on \mathbb{R}, but not entire, due to the fact that his prime interest is not \mathbf{R} but $[0,1]$. In [1] the standard Bagemihl-Seidel argument together with Mergelyan's theorem is used. In [6], both dense sets equal \mathbf{Q} and the field structure of \mathbf{Q} is explicitly used.

We feel that the theorem presented below and its proof show that the solution of the problem is basically quite simple.

Let $E M$ be the space of entire functions on \mathbf{C}, whose restriction to \mathbf{R} is a real monotonically nondecreasing function.

Theorem. Let S and T be countable everywhere dense subsets of \mathbf{R}, let p be a continuous positive real function such that $\lim _{t \rightarrow \infty} t^{-n} p(t)=\infty$ for all $n \in \mathbb{1}$ and let $f_{0} \in E M$.

Then there exists a function $f \in E M$ such that
i) f is strictly increasing on \mathbb{R} and $f(S)=T$
ii) $\left|f(z)-f_{0}(z)\right| \leqslant p(|z|)$ for all $z \in \mathbf{C}$.

Proof. The reader may find it convenient to think of the following construction as an effort to construct the graph of f, by starting with f_{0} and wiggling it in such a way that the whole of S is mapped onto T, thereby using progressively smaller wiggles, that do not disturb points of the graph constructed earlier.

Let S and T have been enumerated and let $x_{1} \in S, x_{1} \neq 0$ and $\delta>0$ be such that

$$
f_{0}\left(x_{1}\right)+\delta x_{1} \in T \text { and }|\delta z| \leqslant \frac{1}{2} p(|z|) \text { for all } z \in \mathbf{C} .
$$

We define

$$
f_{1}(z):=f_{0}(z)+\delta z, S_{1}:=\left\{x_{1}\right\} \text { and } T_{1}:=\left\{f_{1}\left(x_{1}\right)\right\}
$$

We now construct, starting with f_{1}, S_{1} and T_{1}, a sequence $\left\{f_{n}\right\}$ in $E M$ and sequences $\left\{S_{n}\right\}$ and $\left\{T_{n}\right\}$ of finite subsets of S and T respectively such that

$$
f_{n}^{\prime}(x) \geqslant\left(2^{-1}+2^{-n}\right) \delta \text { and } f_{n}\left(S_{n}\right)=T_{n} \text { for all } n \in \mathbf{R}, x \in \mathbf{R}
$$

Suppose that f_{n}, S_{n} and T_{n} have been constructed and choose a polynomial g with real coefficients such that
1)

$$
g(z)=0 \Leftrightarrow z \in S_{n} \quad(z \in \mathbf{Q})
$$

2)

$$
|g(z)| \leqslant 2^{-n-1} p(|z|) \quad(z \in \mathbf{C})
$$

3)

$$
g^{\prime}(x) \geqslant-2^{-n-1} \delta(x \in \mathbf{R})
$$

(Any polynomial of odd degree with positive leading coefficient for which 1) is valid will also obey 2) and 3) after it has been multiplied by a small enough positive constant. The degree can be chosen odd, by adjusting the multiplicity of one of the zeros.)

For each $M \in[0,1]$ we have

$$
\left(f_{n}+M g\right)^{\prime}(x)=f_{n}^{\prime}(x)+M g^{\prime}(x)>\left(2^{-1}+2^{-n-1}\right) \delta(x \in \mathbf{R})
$$

so $f_{n}+M g$ is strictly monotonic on \mathbf{R}.
Moreover if we let M vary in [0, 1], then for $x \notin S_{n},\left(f_{n}+M g\right)(x)$ varies in an interval of R that contains points of $T \backslash T_{n}$ and for $y \notin T_{n}$, $\left(f_{n}+M g\right)^{-1}(y)$ varies in an interval of \mathbf{Q} that contains points of $S \backslash S_{n}$.

Now for n odd, let x be the point of $S \backslash S_{n}$ with smallest index and let $M \in[0,1]$ be such that $\left(f_{n}+M g\right)(x) \in T$. We define

$$
f_{n+1}:=f_{n}+M g, S_{n+1}:=S_{n} \cup\{x\} \text { and } T_{n} \cup\left\{f_{n+1}(x)\right\}
$$

For n even, let y be the point of $T \backslash T_{n}$ with smallest index and let $M \in[0,1]$ be such that $\left(f_{n}+M g\right)^{-1}(y) \in S$. We define

$$
f_{n+1}:=f_{n}+M g, T_{n+1}:=T_{n} \cup\{y\} \text { and } S_{n+1}:=S_{n} \cup\left\{f_{n+1}^{-1}(y)\right\}
$$

The following properties of the constructed sequences are easily verified:
a)

$$
\left|f_{n}(z)-f_{n-1}(z)\right|<2^{-n} p(|z|) \quad(n \in \mathbf{\Omega}, z \in \mathrm{C})
$$

b)

$$
\bigcup_{n=1}^{\infty} S_{n}=S, \quad \bigcup_{n=1}^{\infty} T_{n}=T \text { and } f_{m}\left(S_{n}\right)=T_{n}(m, n \in \mathbf{R}, m>n) .
$$

From a) it follows that $\left\{f_{n}\right\}$ converges pointwise to a function f for which

$$
\left|f(z)-f_{0}(z)\right| \leqslant p(|z|) \quad(z \in \mathbf{Q}) .
$$

Now $p(|z|)$ is a function of z which is bounded on compact subsets of \mathbf{Q}, so the convergence of $\left\{f_{n}\right\}$ is uniform on such sets. From this we conclude that f is an entire function.

For each $n \in \mathbf{\Omega}$ we have $f_{n}{ }^{\prime}(x) \geqslant \frac{1}{2} \delta(x \in \mathbf{R})$, so the same is true for f. Hence f is strictly increasing on \mathbf{R}. From b) it follows that $f\left(S_{n}\right)=T_{n}$ for each n and so $f(S)=T$.

Remark 1. By similar procedures one may construct a real analytic homemorphism mapping one dense countable subset of \mathbf{R}^{n} onto another one. This latter may be done by starting with the identity map for f_{0} and taking each time for $g(x)$ the product of a polynomial vanishing precisely on S_{n} and $\exp \left(-|\mathbf{x}|^{2}\right)$; instead of a constant $M \in[0,1], M$ is now a vector chosen from an ε-ball around $0, \varepsilon$ so small that at every stage $\left|f_{n}(\mathbf{x})-f_{n}(\mathbf{y})\right|>\frac{1}{2}|\mathbf{x}-\mathbf{y}|$ is ensured.

This result is mainly negative: countable dense subsets cannot be distinguished topologically, and also not diffeomorphically nor by any other feasible class of homeomorphisms.

Remark 2. If we start with $f_{0} \equiv 0$, each f_{n} is polynomial. If moreover, for each n, we give the zeros of $f_{n-1}-f_{n}$ multiplicities higher than the degree of f_{n}, then the Taylor expansion of f around any point of S has all its coefficients in the vectorspace over $F(S)$ generated by T, where $F(S)$ is the field generated by S.

Remark 3. Generalization to dense subsets T and S of \mathbf{C} is not so elegant: the class of entire functions is not a feasible class of homeomorphisms, mainly because it is not a class of homeomorphisms.

One still can obtain $f(S)=T$ and $\left.f\right|_{S}$ injective, if one starts with $f_{0}=0$. Indeed, all f_{n} are then polynomials hence surjections from \mathbf{Q} onto \mathbf{Q}, which makes the "even" step possible. If one starts with an arbitrary entire function f_{0} the existence of exceptional values may complicate the even step.

Technological University, Eindhoven

REFERENCES

1. Barth, K. F. and W. J. Schneider - Entire functions mapping countable dense subsets of the reals onto each other monotonically, J. London Math. Soc. 2, 620-626 (1970).
2. Barth, K. F. - Entire functions mapping arbitrary countable dense sets and their complements onto each other, J. London Math. Soc. 4, 482-488 (1971).
3. Dieudonné, J. - Foundations of Modern Analysis, New York, Academic Press (1969).
4. Franklin, P. - Analytic transformations of linear everywhere dense point sets. Trans. Amer. Math. Soc. 27, 91-100 (1925).
5. Maurer, W. D. - Conformal equivalence of countable dense sets, Proc. Amer. Math. Soc. 18, 269-270 (1967).
6. Neumann, B. H. and R. Rado - Monotone functions mapping the set of rational numbers onto itself, J. Australian Math. Soc. 3, 282-287 (1963).
7. Solution of Problem 5955, Amor. Math. Monthly 82, 415-416 (1975).
