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1. Introduction

Let P be ann-element poset (partially ordered set), anddetP — [n]={1,2,...,n}
be a bijection, called #&abeling of P. We call the pair(P, w) alabeled posetA linear
extensiorof P is an order-preserving bijectiofi: P — [n]. We can regardf as defining
a permutationr = (f) of the set{n] given by (i) = j if f(w~1(j)) =i. We writer in
the customary way as a wotdas - - - a,, wheren (i) = a; = o (f ~1(i)). We will say for
instance thatf is aneven linear extensioaf (P, w) if 7 is an even permutation (i.e., an
element of the alternating gro®,). Let £p denote the set of linear extensionsmfand
setlp.o={m(f): f€&p}.

We say that(P, w) is sign-balancedf Lp , contains the same number of even per-
mutations as odd permutations. Note that the parity of a linear exterfsuepends on
the labelingw. However, the notion of sign-balanced depends onlygsince changing
the labeling ofP simply multiplies the elements &p ,, by a fixed permutation i%,,, the
symmetric group of all permutations pf]. Thus we can simply say th&tis sign-balanced
without specifyingw.

We say that a functioft : Ep — Ep is parity-reversingrespectivelyparity-preserving
if for all f € Ep, the permutationg (f) andx (¥ (f)) have opposite parity (respectively,
the same parity). Note that the properties of parity-reversing and parity-preserving do not
depend onw; indeed,? is parity-reversing (respectively, parity-preserving) if and only if
forall f € p, the permutation f o f 1 € &, is odd (respectively, even).
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Sign-balanced posets were first considered by Ruskey [20]. He established the follow-
ing result, which shows that many combinatorially occurring classes of posets, such as
geometric lattices and Eulerian posets, are sign-balanced.

Theorem 1.1. Supposé&P > 2. If every nonminimal element of the pogeis greater than
at least two minimal elements, thénis sign-balanced.

Proof. Letw =ajazaz---a, € Lp . Letn’ =7 (1, 2) = aparaz---a, € S,. (We always
multiply permutations from right to left.) By the hypothesis Bnwe also haver’ € Lp .
The mapr — 7’ is a parity-reversing involution (i.e., exactly onesefandz’ is an even
permutation) orCp ,,, and the proof follows. O

The above proof illustrates what will be our basic technique for showing that a poset
P is sign-balanced, viz., giving a bijectien: Lp_,, — Lp_, such thatr ando () have
opposite parity for allz € Lp . Equivalently, we are giving a parity-reversing bijection
V:Ep — Ep.

In 1992 Ruskey [21, Section 5, item 6] conjectured as to when the preduat of two
chains of cardinalities: andn is sign-balanced, vizs, n > 1 andm =n (mod 2. Ruskey
proved this whenn andn are both even by giving a simple parity-reversing involution,
which we generalize in Proposition 4.1 and Corollary 4.2. Ruskey’s conjecture éod
n odd was proved by D. White [32], who also computed the “imbalance” between even
and odd linear extensions in the case when exactly one ahdn is even (stated here
as Theorem 3.5). None of our theorems below apply to the case wterdn are both
odd. Ruskey [21, Section 5, item 5] also asked what order idedtefined below) of
m x n are sign-balanced. Such order ideals correspond to integer partitiamg will be
denotedP; ; the linear extensions d@¥, are equivalent to standard Young tableaux (SYT) of
shaper. White [32] also determined some additiondbr which P, is sign-balanced, and
our results below will give some further examples. In Sections 5 and 6 we consider some
analogous questions for the parity of the major index of a linear extension of aposet

Givenw =aiaz---a, € Lp o, letinv(f) denote the number afiversionsof =, i.e.,

inv(m) =#{@, j): i < j, ai > aj}.

Let

Ipw@= Y ¢™7P, (1)

ﬂeﬁp,w

the generating function for linear extensions(&f, w) by number of inversions. Sincg
is an even linear extension if and only if i) is an even integer, we see thatis sign-
balanced if and only ip ,(—1) = 0. In generallp ,,(¢g) seems difficult to understand,
even whenpP is known to be sign-balanced.
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2. Promotion and evacuation

Promotion and evacuation are certain bijections on the getf linear extensions of
a finite posetP. They were originally defined by M.-P. Schiutzenberger [22] and have
subsequently arisen is many different situations (e.g., [6, Section 5], [10, Section 8], [11,
Section 4], [16, Section 3]). To be precise, the original definitions of promotion and evac-
uation require an insignificant reindexing to become bijections. We will incorporate this
reindexing into our definition. Lef : P — [n] be a linear extension of the poset Define
a maximal chaing < uy < --- < ug of P, called thepromotion chairof f, as follows. Let
uo = f~1(1). Onceu; is defined letu; ;1 be that element coveringu; (i.e., u; < ujt1
and nos € P satisfiesu; < s < u;1) for which f(«) is minimal. Continue until reaching
a maximal element, of P. Now define thepromotiong = af of f as follows. Ift # u;
foranyi, thenseg(r) = f(r) — 1. If 1 <i <k —1,thenseg(u;) = f(u;+1) — 1. Finally,
setg(ug) = n. Figure 1 gives an example, with the elements in the promotion chajfh of
circled. (The vertex labels in Fig. 1 are the values of a linear extension and are unrelated to
the (irrelevant) labeling.) It is easy to see thatf € £p and thatthe map:Ep — Ep is
a bijection.

Lemma 2.1. Let P be ann-element poset. Then the promotion operaiofp — Ep is
parity-reversing if and only if the length (or cardinality £ + 1) of every maximal chain
of P satisfies: = £ (mod 2. Similarly, d is parity-preserving if and only if the lengthof
every maximal chain of satisfies: = ¢ + 1 (mod 2.

Proof. Let f € £p, and letug < u1 < - - - < u, be the promotion chain of. Then(df) f 1
is a product of two cycles, viz.,

OfNft=m,n-1,...,1)(0bo, b, ..., b,

whereb; = f(u;). This permutation is odd if and onlyif= ¢ (mod 2, and the proof fol-
lows since every maximal chain &f is the promotion chain of some linear extensiom

Corollary 2.2. Let P be ann-element poset, and suppose that the ledgthevery maximal
chain of P satisfies: = ¢ (mod 2. ThenP is sign-balanced.

12 11 10 7

Fig. 1. The promotion operatér.
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Proof. By the previous lemma is parity-reversing. Since it is also a bijectidfp must
contain the same number of even linear extensions as odd linear extensions.

We now consider a variant of promotion known as evacuation. For any linear exten-
sion g of anm-element poseD, letug < u1 < --- < uy be the promotion chain of, so
dg(ueg) = m. Define pg(Q) = Q — {uc}. The restriction ofdg to p,(Q), which we also
denote byog, is a linear extension gf, (Q). Let

Mg k(Q) = Pykg Pok—1g *** Pag Pg(Q).

Now let #P = n and define the@vacuationevad f) of f to be the linear extension at
whose value at the unique elementiof ,_1(P) — g k(P)isn —k 4+ 1, for 1< k < n.
Figure 2 gives an example of ey, where we circle the values of eg® as soon as
they are determined. A remarkable theorem of Schiitzenberger [22] asserts that evac is an
involution (and hence a bijectiafy — £p).
We say that the poset is consistentf for all r € P, the lengths of all maximal chains
of the principal order ideali, := {s € P: s <t} have the same parity. Le{(s) denote the
length of the longest chain of;, and set

I'(P) =Zv(t).

teP

We also say that a permutationof a finite set haparity k € Z if either o andk are both
even ofo andk are both odd. Equivalently, itiw) =k (mod 2.

Proposition 2.3. Suppose thap is consistent. Theavac £p — Ep is parity-preserving if
(3) — I'(P) is even, and parity-reversing {§) — I"(P) is odd.

Proof. The evacuation of a linear extensighof an n-element posef? consists ofn
promotionssy, ..., 8,, wheres; is applied to a certain subposet_; of P withn —i +1 el-
ements. Lelf; be the linear extension @ whose restriction t@; agrees witt$;8; 1 - - - 81,
and whose value at the unique elemenpPpf, — P; for j <iisn—i+1. Thusfy = f and
fn =evadqf). (Figure 2 gives an example of the sequerfge .., f5.) Letu; be the end
(top) of the promotion chain for the promotiép Thus{u1, uz,...,u,} = P. Lemma 2.1

YRR

Fig. 2. The evacuation operator evac.
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shows that ifP is consistent, ther; ff_ll has parityn —i + 1 — (v(u;) + 1). Hence the
parity of evag f) f 1 is given by

n

> o(n—i—v) = (’;) = up) = (Z) - rp),

i=1 teP

from which the proof follows. O

Corollary 2.4. Suppose thatP is consistent and’;) — I'(P) is odd. ThenP is sign-
balanced.

Note. In [25, pp. 50-51], [26, Corollary 19.5] it was shown using the theork gfartitions

that the numbee¢(P) of linear extensions of is even if P is graded of rank (i.e., every
maximal chain ofP has length?) andn — ¢ is even, and it was stated that it would be
interesting to give a direct proof. Our Corollary 2.2 gives a direct proof of a stronger result.
Similarly in [25, Corollary 4.6], [26, Corollary 19.6] it was stated (in dual form) that if for
all r € P all maximal chains ofA, have the same length, and(g) — I'(P) is odd, then
e(P) is even. Corollary 2.4 gives a direct proof of a stronger result.

3. Partitions

In this section we apply our previous results and obtain some new results for certain
posets corresponding to (integer) partitions. We first review some notation and terminology
concerning partitions. Further details may be found in [29, Chapter 7} keth1, A2, ...)
be a partition ofs, denotedh - or |[A| =n. Thusiy > A2 > --- >0 and)_; =n. We
can identify with its diagram{(i, j) e P x P: 1 < j < A;}. Let u be another partition
such thatu C 4, i.e.,u; < A; for all i. Define theskew partitionor skew diagrant./u by

Mp={G ) ePxP:u+1<j<A}

Write |A/u| = n to denote thaty| — || = n, i.e.,n is the number of squares in the shape
A/, drawn as a Young diagram [27, p. 29]. We can redafd as a subposet & x P
(with the usual coordinatewise ordering). We wriRg,,, for this poset. As a set it is the
same as./u, but the notationP, ,, emphasizes that we are considering it to be a poset.
In this section we will only be concerned with “ordinary” shapesut in Section 5 skew
shapes./u will arise as a special case of Proposition 5.3.

The posets;, are consistent for any, so we can ask for which, is evacuation parity-
reversing, i.e.,(g) — I’'(Py) is odd. To this end, theontentc(i, j) of the cell (i, j) is
defined byc(i, j) = j —i [29, p. 373]. Also letO(u) denote the number of odd parts of
the partitionu. An order idealof a posetP is a subseK C P such thatift € K ands < ¢,
thens € K. Similarly adual order idealor filter of P is a subse¥ € P such that ifs € F
andr > s, thent € F. If we successively remove two-element chains fr8mwhich are
dual order ideals of the poset from which they are removed, then eventually we reach a
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poset corg(P,,), called the 2-core oP,, that contains no dual order ideals which are two-
element chains. The 2-coreligique i.e., independent of the order in which the dual order
ideals are removed, and is given By, for somek > 1, wheres; denotes the “staircase
shape”k — 1,k —2,...,1). For further information see [29, Exercise 7.59].

Proposition 3.1. Let A - n. The following numbers all have the same parity.

@ I'p).

(b) Zter c().

© 300 —OW)).

d) 3(n— (%)), where(5) = #core(P,).

Hence ifa;, denotes any of the above four numbers, then evacuation is parity-reversing on
P, if and only if () — a; is odd.

Proof. Itis easy to see thatife P;, thenv(r) = ¢(¢) (mod 2. Hence (a) and (b) have the
same parity. It is well known and easy to see [17, Example 3, p. 11] that

so-2()-5()

tep;,
Since)_A; =) A}, we have

> ew=5(3 12~ Y007

tePy

Sincea? =0, 1 (mod 4 depending on whether is even or odd, we see that (b) and (c)
have the same parity. If we remove froR a 2-element dual order ideal which is also a
chain, then we remove exactly one element with an odd content. A 2-core is self-conjugate
and hence has an even content sum. Hence the number of odd contenis efual to the
number of dominos that must be removed frénin order to reach coggp;). It follows

that (b) and (c) have the same parity, completing the proof.

It can be shown [30] that if(n) denotes the number of partitiohs- n for whicha, is
even, then(n) = %(p(n) + f(n)), wherep(n) denotes the total number of partitionsrof
and

; 1+x2i71
Zf(n)x = H (1—x4")(l+x4"_2)2'

n>0 i>1
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Hence the numbey(n) of partitionsa - »n for which evac is parity-reversing a, is given
by

Lp(m) + (), if (3)is odd
L(p(m) — f(m), if (3) is even

We conclude this section with some applications of the theory of domino tableaux.
A standard domino tablea(5DT) of shape.  2n is a sequence

g=20crlc...ca=x

of partitions such that each skew shapg.i—1 is adoming i.e., two squares with an edge

in common. Each of these dominos is either horizontal (two squares in the same row) or
vertical (two squares in the same column). Let Qatenote the set of all SDT of shape

Given D € Doy, define eyD) to be the number of vertical dominos in even columns

of D, where areven colummeans the 2h column for some < P. For the remainder of

this section, fix the labeling of P, to be the usual “reading order,” i.e., the first rowiof

is labeled 12, ..., A1; the second row is labeled +1, A1+ 2, ..., A1+ A2, etc. We write

I,.(q) for Ip, (g) and setl, = I, (—1), theimbalanceof the partition. It is shown in [32,
Theorem 12] (by analyzing the formula that results from setjing—1 in (13)) that

[)\, — Z (_1)ev(D)‘

DeDomy,

Let A - n. Lascoux, Leclerc, and Thibon [14, (27)] define a certain class of symmetric
functionséﬁk)(x; q) (defined earlier by Carré and Leclerc [4] for the special dase2
andx = 2u). We will only be concerned with the cage= 2 andg = —1, for which we
write G, = G;Z) (x; —1). The symmetric functioii;;, vanishes unless caré.) = @, so we
may assume = 2m. If corex(1) = @, thenG,, is homogeneous of degree=n/2. We
will not define it here but only recall the properties relevant to us. The connection with
the imbalancd,, is provided by the formula (immediate from the definition@®@f in [14]
together with [32, Theorem 12])

[x1- - xu1Gy = (=1 P, )

where[x1 ---x,,]F denotes the coefficient of; - - - x,,, in the symmetric functionF, and

r(A) is the maximum number of vertical dominos that can appear in even columns of a
domino tableau of shape Also defined (1) to be the maximum number of disjoint vertical
dominos that can appear in the diagram.of.e.,

() = ZEWZJ.

i
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Note thatd (1) > (1), but equality need not hold in general. For instantd, 3,1) =1,
r(4,3,1) = 0. However, we do havé(2u) = r(2u) for any partitionu. Let us also note
that ourr (1) is denoted/ (1) in [32] and is defined only fok with an empty 2-core.

Theorem 3.2. (a) We have

212#:1

ukEm

forall m > 1.
(b) Let v(A) denote the maximum number of disjoint vertical dominos that fit in the
shapei. Equivalently,

1 U
v(A) = belj.
i=1
Then
> —p*™rz=o.

AF2m

Proof. (a) Barbasch and Vogan [2] and Garfinkle [9] define a bijection between elements
7 of the hyperoctahedral grouB,,, regarded as signed permutations o2,1..,m, and
pairs(P, Q) of SDT of the same shapel- 2m. (See [15, p. 25] for further information.)

A crucial property of this bijection, stated implicitly without proof in [12] and proved by
Shimozono and White [23, Theorem 30], asserts that

1
tc(m) = E(U(P) +v(0Q)), 3

where t¢xr) denotes the number of minus signsznand v(R) denotes the number of
vertical dominos in the SDR.

Carré and Leclerc, [4, Definition 9.1], define a symmetric functién(x; g) which
satisfiesH), (x, —1) = (=1)*®Gy,. In [12, Theorem 1] is stated the identity

1 1 1
%:Hu(x;q)=1:[1_xigl_xix.,Hl—qxt'xj' @

i>j

The proof of (4) in [12] is incomplete, since it depends on a semistandard version of the
P = Q case of (3) (easily deduced from (3)), which had not yet been proved. The proof of
(3) in [23] therefore completes the proof of (4). A generalization of (4) was later given by
Lam [13, Theorem 28].

Settingg = —1in (4) gives

WG, — 1 1
2 MGZ"_H(l—xi)(lﬂf)Hl—xz 2°

n i i<j iXj
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Taking the coefficient ofrg---x, on both sides and using (2) together witly) =
d(2u) = r(2u) completes the proof.
(b) It is easy to see that for any SOF we have

(D) =v(h) —2d(A) + 2 eu D).
Thus by (3) we have

0— Z (_1)tc(71):Z(_l)%(v(P)—&-v(Q)) — Z( Z (_1);U<D))z

weB, P,Q AM=2m ~ DeDomy
2
= Z(—l)”(”( > (—1)EV(D>) =) )Wz o
A=2m DeDomy, A=2m

In the same spirit as Theorem 3.2 we have the following conjecture.

Conjecture 3.3.2 (a) For all n > 0 we have

3PP AR OD (g 42, (5)
A=n
(b) If n #£ 1 (mod 4, then
D (=P z=o0.

An

Itis easy to see that(L) = d()") for all A. (E.g., consider the horizontal and vertical line
segments in Fig. 3.) Hence the variablés superfluous in Eq. (5), but we have included
it for the sake of symmetry. In particular, K,(q, ¢, x, y) denotes the left-hand side of (5)
then

Fn(Qs 07x3y): Fn(q’tsxvo): FH(Q1O3x1 O)

Note also that/(1) = 0 if and onlyx is ahook i.e., a partition of the fornin — k, 1¢).
The case =0 (ory =0, ort = y = 0) of Eq. (5) follows from the following proposi-
tion, which in a sense “explains” where the right-hand sigle- x)"/2) comes from.

Proposition 3.4. For all n > 0 we have

> O = (g0, ©)
r=(n—k,1%)

wherex ranges over all hooké: — k, 1¥), 0 < k <n — 1.
2 A combinatorial proof of (a) was found by Thomas Lam [13] after this paper was written. Later a combinato-

rial proof of both (a) and (b) was given by Jonas Sjostrand [24]. Sjostrand’s main result [24, Theorem 2.3] leads
to further identities, such aglm q”(“)lzﬂ =1, thereby generalizing our Theorem 3.2(a).
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Fig. 3.d (8665543} = d(86655431).

First proof. Leti = (n —k, 1¥). Letw denote the “reading order” labeling & as above.
The setlp , consists of all permutations dp, ..., a,, Whereay, ..., a, is ashuffleof
the permutations, 3, ...,n —kandn —k+1,n—k+2,...,n. Itfollows, e.g., from [27,

Proposition 1.3.17] that
L) = n—1
2q) = I
ag-binomial coefficient.
Suppose first that = 2m + 1. By [27, Exercize 3.45(b)],

[n—1i| :{(’;), k=2,
k -1 lo  k=2j+1

Note that if» = (n — 2j, 1%/), thenv(1) = j andv()) = m — j. Hence

m
J

r=(n—k,1%) j=0

as desired. The proof far even is similar and will be omitted. o

Second proof. Assume first that = 2m. We use an involution argument analogous to the
proof of Theorem 1.1 or to arguments in [32, Section 5] and Section 4 of this paper. Let
T be an SYT of shape = (n — k, 1¥), which can be regarded as an elemenfef ,. Let

i be the least positive integer (if it exists) such that-21 and 2 appear in different rows
and in different columns of . Let T’ denote the SYT obtained froffi by transposing

2i — 1 and 2. Since multiplying by a transposition changes the sign of a permutation, we
have(—1)™(T) 4 (—1)™(T") = 0. The surviving SYT are obtained by first placing?lin

the same row or column, then 8in the same row or column, etc.#f=2; or 2j + 1,

then the number of survivors is easily seen to(’ﬁ?l). Because the entries @f come

in pairs 2 — 1, 2i, the number of inversions of each surviving SYT is even. Moreover,
if k=2j thenv(d) = andv())) =m — j, while if k =2j + 1 thenv(A) = j + 1 and
v(M)=m —1— j.Hence
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m—1

/ —1\ A
> @ h=3 +x)<m . >q’x’"_1_’ =(q+0",
j

A=(n—k, 1) j=0

as desired.

The proof is similar form = 2m + 1. Leti be the least positive integer (if it exists)
such that 2and 2 + 1 (rather than 2— 1 and 2) appear in different rows and in different
columns ofT". There are now no survivors whénr=2; +1 and(’}’) survivors wherk = 2;.
Other details of the proof remain the same, so we get

m
, N
> @' =% (m . )q’xm” = (g +x)",
. j
Jj=0

r=(n—k,1%)
completing the proof. O

There are some additional properties of the symmetric functipnehat yield informa-
tion aboutl, . For instance, there is a product formula in [12, Theorem ZEQCI’GZMU&“
whereu ranges over all partitions and

2 U2 = (2u1, 2u1, 212, 212, - . ),

which implies that}_ , , Io,u2, = 0. In fact, in [4, Corollary 9.2] it is shown that
Gouuzu (x) = £s5,(x2, x2, ..), from which it follows easily that in factz,uz, = 0. How-

ever, this result is just a special case of Corollary 2.2 and of Proposition 2.3, so we obtain
nothing new.

Also relevant to us is an expansion @f, into Schur functions due to Shimozono (see
[32, Theorem 18]) for certain shapgesnamely, those whose 2-quotient (in the sense, e.g.,
of [17, Example 1.1.8]) is a pair of rectangles. This expansion was used by White [32,
Corollary 20] to evaluatd,, for such shapes. White [32, Section 8] also gives a combi-
natorial proof, based on a sign-reversing involution, in the special case fte#lf is a
rectangle. We simply state here White’s result for rectangles.

Theorem 3.5. Let A be anm x n rectangle. Then

1, ifm=1 orn=1,
I;Lz{O, if m=n (mod2 andm,n > 1,
+gh, m#n (mod 2,

whereg* denotes the number of shifted standard table@sxdefined, e.g., ifL7, Exam-
ple 111.8.12]) of shape

_(m+n—-1 m+n-3 mn—m|+3 |[n—m|+1
r= N R '

(An explicit “hook length formula” for any* appears, e.g., in the reference just cied.



R.P. Stanley / Advances in Applied Mathematics 34 (2005) 880-902 891

It is natural to ask whether Theorem 3.5 can be generalized to other partitionthis
regard, A. Eremenko and A. Gabrielov (private communication) have made a remarkable
conjecture. Namely, if we fix the numbérof parts and parity of each part #f then there
are integerss, .. ., ¢; and integer vectorgy, . .., yx € Z¢ such that

k
1
L=y cigztm.
i-1

One defect of this conjecture is that the expression/fois not unique. We can insure
uniqueness, however, by the additional condition that all the vegiohsve coordinate
sum O wherji| is even and-1 when|| is odd (whergi| = 3" A;). In this case, however,
we need to define properly* whenp is not a strictly decreasing sequence of nonnegative
integers. See the discussion preceding Conjecture 3.6. For instance, we have

(a,b,c) _ (a+1,b,c—1)

8
(a,b,c) + g(a+1,b—1,c)

I 2a,2b,2c) = &
Ioat1,2b,2c) = &

I24,20+1,c) =0,

I(ZG,Zb,Zc+1) — _g(LH—l,b—l,c) _ g(a—i-l,h,c—l)’

1b 1b+1,c-1
Igat1,2p41,20) = gTH00) 4 glatbbrbemd,
I(2441,2p,2c41) =0,

Ia2p+1,20+1) = g4TH0) 4 g@0HLO),

b+1 Lh+Lc—1
L20+1.264+1.20+1) = g @010 4 glatlbtle=D)

(a,b,c,d) _ (a+1,b,c=1,d) _ _(a+1,b+1,c-1,d-1) 2g(a+1,b,c,dfl)

L(2q,26,2¢,24) = & 4 8
It is easy to see thalz, 2p+1.c) = I(2a+1.26.2c+1) = 0, viz., the 2-cores of the partitions
(2a,2b 4+ 1,¢) and (2a + 1, b, 2c + 1) have more than one square. More generally, we
have verified by induction the formulas fof whenf(u) < 3.

We have found a (conjectured) symmetric function generalization of the Eremenko—

Gabrielov conjecture. If (x) is any symmetric function, define
f(x/x)= f(p2i-1— 2p2i-1, p2i — 0).

In other words, writef (x) as a polynomial in the power sums and substitute 2>,
for pp;—1 and O forpy;. In A-ring notation, f (x/x) = f(X — X). Let Q,, denote Schur’s
shiftedQ-function [17, Section 3.8]. Th@,,’s form a basis for the rin@[ p1, p3, ps, .. .].
Hencef (x/x) can be written uniquely as a linear combination®f’s.

We mentioned above that the symmetric funct@nwas originally defined only when
core (1) = @. We can extend the definition to aiyas follows. The original definition has
the form
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G).(x) =) (=1)00sPD) D, (7)
D

summed over all semistandard domino tableaux of shapehere cospif.) is a certain
integer andx? a certain monomial depending on If #core (1) = 1, then defineG;,
exactly as in (7), except that we sum over all semistandard domino tableaux of the skew
shapeir /1. If #core () > 1, then defineG; = 0. (In certain contexts it would be better
to defineG, by (7), summed over all semistandard domino tableaux of the skew shape
A/core (1), but this is not suitable for our purposes.) Equation (2) then continues to hold
for anyi - n, wherem = |n/2].

We also need to defin€, (x/x) properly wheru is not a strictly decreasing sequence
of positive integers. The following definition seems to be correct, but perhaps some mod-
ification is necessary. Lat = (u1, ..., ux) € Z*. Trailing 0’s are irrelevant and can be
ignored, so we may assume. > 0. If i is not a sequence of distinct nonnegative inte-
gers, thenG, (x/x) = 0. OtherwiseG,(x/x) = ¢, G, (x/x), where) is the decreasing
rearrangement qi ande,, is the sign of the permutation that conveut$o .

Conjecture 3.6. Fix the number of parts and parity of each part of the partition Then
there are integerss, . .., cx and integer vectorgs, . .., yx € Z¢ such that

k
V' PGrw/x) =i Q14 ) ®)

i=1

Let A+ 2n or A+ 2n + 1. Take the coefficient af1xz - - - x,, on both sides of (8). By
(2) the left-hand side become82. Moreover, ifu - m then the coefficient of1 - - - x,,
in 0, is 2"g" [17, (8.16)]. Hence Conjecture 3.6 specializes to the Eremenko—Gabrielov
conjecture. At present we have no conjecture for the values of the coefficiehtsre is
a short table (due to Eremenko and Gabrielovigrthey have extended this table to the
case of four and five rows) of the three-row case of Conjecture 3.6. For simplicity we write
+ for (=1)"@®,

*+G 24,20,20)(x/X) = Q(a,p.e) (X) = Q(a+1b,c-1) (%),

£G @a+1,26,20) (/%) = Qabp,e)(X) + Qra1,5-1,0 (%),

+G (20,20+1.20)(x/x) =0,

+G (24,2p,20+1) (¥ /X) = = Q(a+1,6-1,0)(¥) = Q(a+1,b,c-1) (X)),
£G 20+1,26+1,20) (X /%) = Q(a+1,b,0)(X) + Q(at+1,b+1,c-1) (%),
G (2a+1,2b,20+1) (x/x) = 0,

+G 2a,2+1,2c+1) (¥ /X) = Q(a+1,b,0) () + Q(a,p+1,¢) (X)),

£G 24+1,20+1,2c41) (X /%) = Q(a,p+1,6)*) + O(a41,p+1,c—1) (X).
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We now discuss some general properties of the polynofigl) and its valuel; (—1).
Let C()) denote the set aforner square®f A, i.e., those squares of the Young diagram
of A whose removal still gives a Young diagram. Equivalently, Pieri's formula [29, Theo-
rem 7.15.7] implies that

S)L/lz Z Sy—t- (9)

teC ()

Let f* denote the number of SYT of shapg29, Proposition 7.10.3], so
= (10)

teC(v)

Note thatl; (1) = f*, soI;(¢) is a (nonstandard)-analogue off*. The g-analogue of
Eq. (10) is the following result.

Proposition 3.7. We have

L= Y ¢"L(,

teC(.)

whereb, (t) denotes the number of squares in the diagram of a lower row than that
of r.

Proof. We have by definition

IA,(q) — ZqinV(H(T))’
T

whereT ranges over all SYT of shapeandr (T) is the permutation obtained by reading
the entries ofl" in the usual reading order, i.e., left-to-right and top-to-bottom wkids
written in “English notation” as in [17,27,29]. Supposé- n. If T is an SYT of shape,
then the square occupied byn is a corner square. The number of inversigng) of
7(T)=ay---a, such that; =n is equal tab, (), and the proof follows. O

Now let D; denote the linear operator on symmetric functions definefiiy,) = s;./1.
We then have the commutation relation [29, Exercise 7.24(a)]

Disy —s1D1=1, (12)

the identity operator. This leads to many enumerative consequences, discussed in [28].
There is an analogue of (11) related &g though we do not know of any applications.
Define a linear operatad(g) on symmetric functions by

D(q)S)\ — Z qbl(t)s)nfl“
teC(})
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Let U (q) denote the adjoint 0D (q) with respect to the basis, } of Schur functions, so

U(C[)S,L — quuﬂ(t)su—l-ts
t

wherer ranges over all boxes that we can add to the diagramtof get the diagram of a
partition . + ¢ (for which necessarily € C(u + 1)). Note thatU (1) = s1 (i.e., multiplica-
tion by s1) and D(1) = D1 as defined above. It follows from Proposition 3.7 that

Ul@)" 1= L(@s,

Abn

wherelU (¢)" -1 denoted/ (¢)" acting on the symmetric function s4. WriteU = U (—1)
and D = D(—1). Let A be the linear operator on symmetric functions givenAsy =
(2k()) + 1)s;,, wherek(A) = #C (1), the number of corner boxes f

Proposition 3.8. We haveDU + U D = A.

Proof. The proof is basically a brute force computation. White= A; + A1+ - - . Sup-

poseu is obtained fromk by adding a box in row — 1 and deleting a box in row — 1,
wherer < s. Then the coefficient of,, in (D(q)U(g) + U(g)D(q))s, is given by

(50 (D@U @) + U@ D@)s1) =4 ¢" +q*q* 2,
which vanishes wheg = —1. Similarly if » > s we get
(5. (D@U (@) + U@ D@)s2) = g™ ¢+ + g* g™,
which again vanishes when= —1. On the other hand, i = u we have
(52, (D@U @) + U@ D@)s:) = () +1)g? +c()g? = (2c(4) + 1)g?.

Wheng = —1 the right-hand side become(2) + 1, completing the proof. O

4. Chainsof order ideals

Suppose thaP is ann-element poset, and let= (a1, ..., ax) be a composition of,
ie.,a; eP=1{1,2,...} and)_ «; = n. Define anx-chainof order ideals ofP to be a chain

W=KoCK1C---CKy=P (12)

of order ideals satisfying@; — K;_1) = «; for 1 <i < k. The following result is quite
simple but has a number of consequences.
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Proposition 4.1. Let P be ann-element poset and a fixed composition of. Suppose
that for everyx-chain (12) of order ideals ofP, at least one subposét; — K;_1 is sign-
balanced. TherP is sign-balanced.

Proof. LetC be thex-chain (12). We say that a linear extensipiis C-compatiblef
Ki=f({L....ea)), Ko—Ki=f'({oa+1....01+02))

etc. Let inWC) be the minimum number of inversions offacompatible linear extension.
Clearly

k
quv(f) — qmv(C) 1_[ Ik, —k;,_1(q),
7 i=1

where the sum is over all-compatiblef. Since every linear extension is compatible with
a uniquex-chain, there follows

k
Ipw@) =) qd™OT [ 1ki-x 1@, (13)
c

i=1

whereC ranges over akk-chains of order ideals aP. The proof now follows by setting
g=-1. O

Define a finite poseP with 2m elements to béilable by dominosf there is a chain
#=KoC Ky C---C K,, =P of order ideals such that each subpoket— K;_1 is a
two-element chain. Similarly, if 2 =2m + 1 and 1< j < m 4+ 1 then we say thaP is
j-tilable by dominosf there is a chaiy = Ko C K1 C --- C K41 = P of order ideals
such that #K; — K;_1) =2 if 1 <i<m+ 1 andi # j (so #K; — K;_1) = 1). Note
that being tilable by dominos is stronger than the existence of a partitiéghiofo cover
relations (or two element saturated chains). For instance, the poséh cover relations
a<c,b<c,a<d,b<d canbe partitioned into the two cover relatians ¢ andb < d,
but P is not tilable by dominos. When = 2m, we define aP-domino tableauo be a
chain= Ko C K1 C --- C K,, = P of order ideals such th&; — K;_1 is a two-element
chain for 1< i < m. Similarly, wherm = 2m + 1, we define a (standar@-domino tableau
tobe achaiy=KocC K1 C --- C K,,,-1 = P of order ideals such tha&&; — K;,_1 is a
two-element chain for X i < m (so thatK,,.1 — K,,, consists of a single point). Thus for
A+ 2n, a P,-domino tableau coincides with our earlier definition of an SDT of shape

Corollary 4.2. Let#P = 2m, and assume tha? is not tilable by dominos. Theh is sign-
balanced. Similarly i#P = 2m + 1 > 3 and P is not j-tilable by dominos for somg, then
P is sign-balanced.

Proof. Leta =(2,2,...,2) (m 2's). If #P = 2m and P is not tilable by dominos, then for
any «-chain (12) there is ahfor which K; — K;_1 consists of two disjoint points. Since
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a poset consisting of two disjoint points is sign-balanced, it follows from Proposition 4.1
that P is sign-balanced. The argument is similar fat £ 2m + 1. O

Corollary 4.2 was proved in a special case (the product of two chains with an even
number of elements, with thé and1 removed), using essentially the same proof as we
have given, by Ruskey [21, Section 5, item 6].

Corollary 4.2 is particularly useful for the posets. From this corollary and the defin-
ition of corex(A) we conclude the following.

Corollary 4.3. If corex(P;) consists of more than one element, thigris sign-balanced.

It follows from [29, Exercise 7.59(e)] that jf (n) denotes the number of partitiohs- n
such that #corgA) < 1, then

Zf(n)x”= L+

n>0 [Tiza@ =222

Standard partition asymptotics (e.g., [1, Theorem 6.2]) shows that

C
fm~ — exp(ry/2n/3)

for someC > 0. Since the total number(n) of partitions ofn satisfies

C/
p(n) ~ ’ exp(n\/Zn/S),

it follows that lim, >0 f(n)/p(n) = 0. Hence ag — oo, P, is sign-balanced for almost all
A n.

5. Maj-balanced posets
If 7 =ajaz---a, is a permutation ofn], then thedescent seD (rr) of = is defined as
D(m)={i: a; > aj+1}.

An element ofD(rr) is called adescentf =, andmajor indexmaij(x) is defined as

majr) = Y i

ieD(m)

The major index has many properties analogous to the number of inversions, e.g., a clas-
sic theorem of MacMahon states that inv and maj are equidistributed on the symmetric
group &, [7,8]. Thus it is natural to try to find “maj analogues” of the results of the

preceding sections. In general, the major index of a linear extension of a poset can be
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4 5

(@) (b) ©

Fig. 4. Some counterexamples.

more tractable or less tractable than the number of inversions. Thus, for example, in The-
orem 5.1 we are able to completely characterize naturally labeled maj-balanced posets.
An analogous result for sign-balanced partitions seems very difficult. On the other hand,
since multiplying a permutation by a fixed permutation has no definite effect on the parity
of the major index, many of the results for sign-balanced posets are false (Theorem 1.1,
Lemma 2.1, Proposition 2.3).

Let f be a linear extension of the labeled po&Rtw), and letr = 7 (f) be the asso-
ciated permutation dfz]. In analogy to our definition of invf), define majf) = maj(r)
and

Weow@ =) q") = 3" ™.
ngp ﬂeﬁpw

We say that(P, w) is maj-balancedif Wp ,(—1) =0, i.e., if the number of linear ex-
tensions of P with even major index equals the number with odd major index. Unlike
the situation for sign-balanced posets, the property of being maj-balanced can depend on
the labelingw. Thus an interesting special case is thanafural labelings for which
w(s) < w(t) whenever <t in P. We write Wp(g) for Wp ,,(¢) whenw is natural. Itis a
basic consequence of the theorympartitions [27, Theorem 4.5.8] thdltp (¢) does not
depend on the choice of natural labelingrof

Figures 4(a) and 4(b) show two different labelings of a p&séthe first labeling (which
is natural) is not maj-balanced, while the second one is. Moreover, the dualfiosethe
posetP in Fig. 4(b), whether naturally labeled or labeled the samg d@s maj-balanced.
Contrast that with the trivial fact that the dual of a sign-balanced poset is sign-balanced. As
a further example of the contrast between sign- and maj-balanced posets, Fig. 4(c) shows a
naturally labeled maj-balanced posgt However, if we adjoin an elemeftbelow every
element ofQ and label it O (thus keeping the labeling natural) then we get a poset which is
no longer maj-balanced. On the other hand, it is clear that such an operation has no effect
on whether a poset is sign-balanced. (In fact, it ledygs(¢) unchanged.)

Corollary 4.2 carries over to the major index in the following way.

Theorem 5.1. (a) Let P be naturally labeled. The®p(—1) is equal to the number of
P-domino tableaux. In particularP? is maj-balanced if and only if there does not exist a
P-domino tableau.

(b) A labeled posetP, w) is maj-balanced if there does not exisPadomino tableau.
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4

2

Fig. 5. A maj-balanced labeled poset tilable by dominos.

Proof. (a) Letw =a1---a, € Lp,. Leti be the least number (if it exists) for which
' =ay---aa12a2i41a2;+3---am € Lp . Note that(z’)’ = 7. Now exactly one ofr
andr’ has a descent at 2 1. The only other differences in the descent sets ahdz’ oc-
cur (possibly) for the even numbersand 2 +2. Hence(—1) ™™ 4 (—1)Mair) — 0, The
surviving permutations = b1 --- by, in Lp ., are exactly those for whichi C {b1, b2} C
{b1,...,bs} C --- is a P-domino tableau withw 1(boi_1) < @ 1(by) in P. (If n is
even, then theP-domino tableau ends d#%1, ..., b,_2} C P, while if n is odd it ends
as{b1,...,b,_1} C P.) Sincew is natural we havéy; _1 < by; for all i, so mafo) is even.
HenceWp(—1) is equal exactly to the number &-domino tableaux.

(b) Regardless of the labeling, if there does not exist &-domino tableau then there
will be no survivors in the argument of (a), $6p(—1)=0. O

The converse to Theorem 5.1(b) is false. The labeled gdset) of Fig. 5 is tilable by
dominos and is maj-balanced.

Given ann-element poseP with dual P*, setA(P) = I'(P*). In [25, Theorem 4.4],
[26, Proposition 18.4], [27, Theorem 4.5.2] it is shown that the following two conditions
are equivalent:

(i) Forallr € P, all maximal chains of the principal dual order idéal= {s € P: s > 1}
have the same length.

(i) ¢@=2PWp(1/q) = Wr(q).

Itfollows by settingy = —1 that if (i) holds and}) — A(P) is odd, thenP is maj-balanced.
Corollary 2.4 suggests in fact the following stronger result.

Coroallary 5.2. Suppose thap is naturally labeled and dual consistefite., P* is consis-
tend). If (3) — A(P) is odd, thenP is maj-balanced.

Proof. By Theorem 5.1 we need to show that there does not existdmmino tableau.
Givenr € P, let §(r) denote the length of the longest chainlef SOoA(P) =", p 8(2).
First suppose that = 2m, and assume to the contrary tlet [ c L C---C I, = P is
a P-domino tableau. If,t € I; — I;_1 then by dual consistendy(s) + §(r) =1 (mod 2.
HenceA(P) =m (mod 2, so

<'2’) —AP)=m(2m—-1)—m=0 (mod 2,

a contradiction.
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(@ (b)
Fig. 6. A setS of squares and the Schur labeled paRgt

Similarly if n = 2m + 1, then the existence of B-domino tableau implie\(P) =
m (mod 2, so

<’;) —AP)=m(2m+1) —m=0 (mod?2,

again a contradiction. O

Now letS be a finite subset of solid unit squares with integer vertic&:iR such that
the setlS| = g5 is simply-connected. Faf, T € S, defineS < T if the center vertices
(s1, s2) of S and(z1, r2) of T satisfy either (aj1 = s1 andr = s>+ 1 or (b)t; = s1+ 1 and
2 = s2. RegardS as a poset, denoteRk, under the transitive (and reflexive) closure of the
relation<. Figure 6 gives an example, where (a) sh@was a set of squares and (b) as a
poset. Note that the poseks,,, are a special case.

A Schur labelingw of Pg is a labeling that increases along rows and decreases along
columns, as illustrated in Fig. 6. For the special c&sg,, Schur labelings play an im-
portant role in the expansion of skew Schur functiepg, in terms of quasisymmetric
functions [29, pp. 360—361]. Suppose th#s#is even and thaPs is tilable by dominos.
Thens itself is tilable by dominos in the usual sense. It is known (implicit, for instance, in
[31], and more explicit in [5]) that any two domino tilings 8fcan be obtained from each
other by “2x 2 flips,” i.e., replacing two horizontal dominos in ax2 square by two ver-
tical dominos or vice versa. It follows that i is a domino tiling ofS with v(D) vertical
dominos, then—1)"®) depends only ois. Set sgiiS) = (—1)V? for any domino tiling
of S.

Proposition 5.3. Let S be as above, and led be a Schur labeling oPs, where#Pgs is
even, sayfPs = n. ThensgnS) Wp, (—1) is the number o s-domino tableaux.

Proof. The proof parallels that of Theorem 5.1. Define the involutior> 7’ as in the
proof of Theorem 5.1. Each surviver= b1 - - - b, corresponds to £s-domino tableaw.

We haveby; 1 > by; if and only if the domino labeled withy; 1 andby; is vertical. As
noted above(—1)*?) = sgn(S), independent oD. Hence(—1)M3@) = sgn(¢), and the
proof follows as in Theorem 5.1(a).0

A result analogous to Proposition 5.3 holds faPg¢#odd (with essentially the same
proof) providedPs has & or 1. The special casg, /,, of Proposition 5.3 (and its analogue
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for #Ps odd) can also be proved using the theory of symmetric functions, notably, [29,
Proposition 7.19.11] and the Murnaghan—Nakayama rule [29, Corollary 7.17.5].

6. Hook lengths

In this section we briefly discuss a class of poget®r which We (¢), and sometimes
evenlp ,(q), can be explicitly computed. For this class of posets we get a simple criterion
for being maj-balanced and, if applicable, sign-balanced.

Following [26, p. 84], am-element poseP is called ahook length poséf there exist
positive integerss, ..., h,, thehook length®f P, such that

[n]!
(L—gh)--- A —gh)’

Wp(q) = (14)

where[n]! = (1—¢)(1—g%) ---(1—g"). ltis easy to see that if is a hook length poset,
then the multiset of hook lengths is unique. In genera®, i§ an “interesting” hook length

poset, then each element 8f should have a hook length associated to it in a “natural”
combinatorial way.

Note. We could just as easily have extended our definitiolabeledposety P, w), where
now

q‘[n]!
(1—g")---A—g")
for somec € N. However, little is known about the labeled situation except when we can

reduce it to the case of natural labelings by subtracting certain constants from the values
ofo.

WP,w(‘]) =

The following result is an immediate consequence of Eq. (14).

Proposition 6.1. Suppose thaP is a hook length poset with hook lengths . .., i,,. Then
P is maj-balanced if and only if the number of even hook lengths is less|th@n. If P
is not maj-balanced, then the maj imbalance is given by

ln/2]!
nh,-even(hi/z) '

It is natural to ask at this point what are the known hook length posets. The strongest
work in this area is due to Proctor [18,19]. We will not state his remarkable results here,
but let us note that hig-completeposets encompass all known “interesting” examples of
hook length posets. These include forests (i.e., posets for which every element is covered
by at most one element) and the duBfsof the posetsP; of Section 3.

Bjorner and Wachs [3, Theorem 1.1] settle the question of what naturally labeled posets
(P, w) satisfy

Wp(~1) =
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[P,a)(CI) = WP,w(CI)- (15)

Namely, P is a forest andv is a postorder labeling. Hence for postorder labeled forests,
Proposition 6.1 holds also fakp ,(—1). Bjorner and Wachs also obtain less definitive
results for arbitrary labelings, whose relevance to sign and maj imbalance we omit.
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