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1. Introduction

Let P be ann-element poset (partially ordered set), and letω :P → [n] = {1,2, . . . , n}
be a bijection, called alabeling of P . We call the pair(P,ω) a labeled poset. A linear
extensionof P is an order-preserving bijectionf : P → [n]. We can regardf as defining
a permutationπ = π(f ) of the set[n] given byπ(i) = j if f (ω−1(j)) = i. We writeπ in
the customary way as a worda1a2 · · ·an, whereπ(i) = ai = ω(f −1(i)). We will say for
instance thatf is aneven linear extensionof (P,ω) if π is an even permutation (i.e., a
element of the alternating groupAn). Let EP denote the set of linear extensions ofP , and
setLP,ω = {π(f ): f ∈ EP }.

We say that(P,ω) is sign-balancedif LP,ω contains the same number of even p
mutations as odd permutations. Note that the parity of a linear extensionf depends on
the labelingω. However, the notion of sign-balanced depends only onP , since changing
the labeling ofP simply multiplies the elements ofLP,ω by a fixed permutation inSn, the
symmetric group of all permutations of[n]. Thus we can simply say thatP is sign-balanced
without specifyingω.

We say that a functionϑ :EP → EP is parity-reversing(respectively,parity-preserving)
if for all f ∈ EP , the permutationsπ(f ) andπ(ϑ(f )) have opposite parity (respective
the same parity). Note that the properties of parity-reversing and parity-preserving
depend onω; indeed,ϑ is parity-reversing (respectively, parity-preserving) if and onl
for all f ∈ EP , the permutationϑf ◦ f −1 ∈ Sn is odd (respectively, even).

E-mail address:rstan@math.mit.edu.

imilar papers at core.ac.uk

provi
1 Partially supported by NSF grant #DMS-9988459.

0196-8858/$ – see front matter 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.aam.2003.12.002

https://core.ac.uk/display/81218362?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


R.P. Stanley / Advances in Applied Mathematics 34 (2005) 880–902 881

follow-
ch as

poset

on

on,

even
e

) of
d
some

t

d,
Sign-balanced posets were first considered by Ruskey [20]. He established the
ing result, which shows that many combinatorially occurring classes of posets, su
geometric lattices and Eulerian posets, are sign-balanced.

Theorem 1.1. Suppose#P � 2. If every nonminimal element of the posetP is greater than
at least two minimal elements, thenP is sign-balanced.

Proof. Let π = a1a2a3 · · ·an ∈ LP,ω. Let π ′ = π(1,2) = a2a1a3 · · ·an ∈ Sn. (We always
multiply permutations from right to left.) By the hypothesis onP , we also haveπ ′ ∈ LP,ω.
The mapπ �→ π ′ is a parity-reversing involution (i.e., exactly one ofπ andπ ′ is an even
permutation) onLP,ω, and the proof follows. �

The above proof illustrates what will be our basic technique for showing that a
P is sign-balanced, viz., giving a bijectionσ :LP,ω → LP,ω such thatπ andσ(π) have
opposite parity for allπ ∈ LP,ω. Equivalently, we are giving a parity-reversing bijecti
ϑ :EP → EP .

In 1992 Ruskey [21, Section 5, item 6] conjectured as to when the productm×n of two
chains of cardinalitiesm andn is sign-balanced, viz.,m,n > 1 andm ≡ n (mod 2). Ruskey
proved this whenm andn are both even by giving a simple parity-reversing involuti
which we generalize in Proposition 4.1 and Corollary 4.2. Ruskey’s conjecture form and
n odd was proved by D. White [32], who also computed the “imbalance” between
and odd linear extensions in the case when exactly one ofm andn is even (stated her
as Theorem 3.5). None of our theorems below apply to the case whenm andn are both
odd. Ruskey [21, Section 5, item 5] also asked what order idealsI (defined below) of
m × n are sign-balanced. Such order ideals correspond to integer partitionsλ and will be
denotedPλ; the linear extensions ofPλ are equivalent to standard Young tableaux (SYT
shapeλ. White [32] also determined some additionalλ for whichPλ is sign-balanced, an
our results below will give some further examples. In Sections 5 and 6 we consider
analogous questions for the parity of the major index of a linear extension of a poseP .

Givenπ = a1a2 · · ·an ∈ LP,ω, let inv(f ) denote the number ofinversionsof π , i.e.,

inv(π) = #
{
(i, j): i < j, ai > aj

}
.

Let

IP,ω(q) =
∑

π∈LP,ω

q inv(f ), (1)

the generating function for linear extensions of(P,ω) by number of inversions. Sincef
is an even linear extension if and only if inv(f ) is an even integer, we see thatP is sign-
balanced if and only ifIP,ω(−1) = 0. In generalIP,ω(q) seems difficult to understan

even whenP is known to be sign-balanced.
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2. Promotion and evacuation

Promotion and evacuation are certain bijections on the setEP of linear extensions o
a finite posetP . They were originally defined by M.-P. Schützenberger [22] and h
subsequently arisen is many different situations (e.g., [6, Section 5], [10, Section 8
Section 4], [16, Section 3]). To be precise, the original definitions of promotion and
uation require an insignificant reindexing to become bijections. We will incorporate
reindexing into our definition. Letf :P → [n] be a linear extension of the posetP . Define
a maximal chainu0 < u1 < · · · < u� of P , called thepromotion chainof f , as follows. Let
u0 = f −1(1). Onceui is defined letui+1 be that elementu coveringui (i.e., ui < ui+1
and nos ∈ P satisfiesui < s < ui+1) for which f (u) is minimal. Continue until reachin
a maximal elementu� of P . Now define thepromotiong = ∂f of f as follows. If t �= ui

for anyi, then setg(t) = f (t) − 1. If 1 � i � k − 1, then setg(ui) = f (ui+1) − 1. Finally,
setg(u�) = n. Figure 1 gives an example, with the elements in the promotion chainf
circled. (The vertex labels in Fig. 1 are the values of a linear extension and are unrel
the (irrelevant) labelingω.) It is easy to see that∂f ∈ EP and that the map∂ :EP → EP is
a bijection.

Lemma 2.1. Let P be ann-element poset. Then the promotion operator∂ :EP → EP is
parity-reversing if and only if the length� (or cardinality � + 1) of every maximal chain
of P satisfiesn ≡ � (mod 2). Similarly,∂ is parity-preserving if and only if the length� of
every maximal chain ofP satisfiesn ≡ � + 1 (mod 2).

Proof. Letf ∈ EP , and letu0 < u1 < · · · < u� be the promotion chain off . Then(∂f )f −1

is a product of two cycles, viz.,

(∂f )f −1 = (n,n − 1, . . . ,1)(b0, b1, . . . , b�),

wherebi = f (ui). This permutation is odd if and only ifn ≡ � (mod 2), and the proof fol-
lows since every maximal chain ofP is the promotion chain of some linear extension.�
Corollary 2.2. LetP be ann-element poset, and suppose that the length� of every maxima
chain ofP satisfiesn ≡ � (mod 2). ThenP is sign-balanced.

f ∂f
Fig. 1. The promotion operator∂ .
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Proof. By the previous lemma,∂ is parity-reversing. Since it is also a bijection,EP must
contain the same number of even linear extensions as odd linear extensions.�

We now consider a variant of promotion known as evacuation. For any linear e
siong of anm-element posetQ, let u0 < u1 < · · · < u� be the promotion chain ofg, so
∂g(u�) = m. Defineρg(Q) = Q − {u�}. The restriction of∂g to ρg(Q), which we also
denote by∂g, is a linear extension ofρg(Q). Let

µg,k(Q) = ρ∂kg ρ∂k−1g · · ·ρ∂g ρg(Q).

Now let #P = n and define theevacuationevac(f ) of f to be the linear extension ofP
whose value at the unique element ofµg,k−1(P ) − µg,k(P ) is n − k + 1, for 1� k � n.
Figure 2 gives an example of evac(f ), where we circle the values of evac(f ) as soon as
they are determined. A remarkable theorem of Schützenberger [22] asserts that ev
involution (and hence a bijectionEP → EP ).

We say that the posetP is consistentif for all t ∈ P , the lengths of all maximal chain
of the principal order idealΛt := {s ∈ P : s � t} have the same parity. Letν(t) denote the
length of the longest chain ofΛt , and set

Γ (P ) =
∑
t∈P

ν(t).

We also say that a permutationσ of a finite set hasparity k ∈ Z if either σ andk are both
even orσ andk are both odd. Equivalently, inv(σ ) ≡ k (mod 2).

Proposition 2.3. Suppose thatP is consistent. Thenevac :EP → EP is parity-preserving if(
n
2

) − Γ (P ) is even, and parity-reversing if
(
n
2

) − Γ (P ) is odd.

Proof. The evacuation of a linear extensionf of an n-element posetP consists ofn
promotionsδ1, . . . , δn, whereδi is applied to a certain subposetPi−1 of P with n− i +1 el-
ements. Letfi be the linear extension ofP whose restriction toPi agrees withδiδi−1 · · · δ1,
and whose value at the unique element ofPj−1−Pj for j � i is n− i +1. Thusf0 = f and
fn = evac(f ). (Figure 2 gives an example of the sequencef0, . . . , f5.) Let ui be the end
(top) of the promotion chain for the promotionδi . Thus{u1, u2, . . . , un} = P . Lemma 2.1
Fig. 2. The evacuation operator evac.
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−1
i−1 has parityn − i + 1 − (ν(ui) + 1). Hence the

parity of evac(f )f −1 is given by

n∑
i=1

(
n − i − ν(ui)

) =
(

n

2

)
−

∑
t∈P

ν(P ) =
(

n

2

)
− Γ (P ),

from which the proof follows. �
Corollary 2.4. Suppose thatP is consistent and

(
n
2

) − Γ (P ) is odd. ThenP is sign-
balanced.

Note. In [25, pp. 50–51], [26, Corollary 19.5] it was shown using the theory ofP -partitions
that the numbere(P ) of linear extensions ofP is even ifP is graded of rank� (i.e., every
maximal chain ofP has length�) andn − � is even, and it was stated that it would
interesting to give a direct proof. Our Corollary 2.2 gives a direct proof of a stronger r
Similarly in [25, Corollary 4.6], [26, Corollary 19.6] it was stated (in dual form) that if
all t ∈ P all maximal chains ofΛt have the same length, and if

(
n
2

) − Γ (P ) is odd, then
e(P ) is even. Corollary 2.4 gives a direct proof of a stronger result.

3. Partitions

In this section we apply our previous results and obtain some new results for c
posets corresponding to (integer) partitions. We first review some notation and termin
concerning partitions. Further details may be found in [29, Chapter 7]. Letλ = (λ1, λ2, . . .)

be a partition ofn, denotedλ � n or |λ| = n. Thusλ1 � λ2 � · · · � 0 and
∑

λi = n. We
can identifyλ with its diagram {(i, j) ∈ P × P: 1 � j � λi}. Let µ be another partition
such thatµ ⊆ λ, i.e.,µi � λi for all i. Define theskew partitionor skew diagramλ/µ by

λ/µ = {
(i, j) ∈ P × P: µi + 1� j � λi

}
.

Write |λ/µ| = n to denote that|λ| − |µ| = n, i.e.,n is the number of squares in the sha
λ/µ, drawn as a Young diagram [27, p. 29]. We can regardλ/µ as a subposet ofP × P

(with the usual coordinatewise ordering). We writePλ/µ for this poset. As a set it is th
same asλ/µ, but the notationPλ/µ emphasizes that we are considering it to be a po
In this section we will only be concerned with “ordinary” shapesλ, but in Section 5 skew
shapesλ/µ will arise as a special case of Proposition 5.3.

The posetsPλ are consistent for anyλ, so we can ask for whichPλ is evacuation parity
reversing, i.e.,

(
n
2

) − Γ (Pλ) is odd. To this end, thecontentc(i, j) of the cell (i, j) is
defined byc(i, j) = j − i [29, p. 373]. Also letO(µ) denote the number of odd parts
the partitionµ. An order idealof a posetP is a subsetK ⊆ P such that ift ∈ K ands < t ,
thens ∈ K . Similarly adual order idealor filter of P is a subsetF ⊆ P such that ifs ∈ F

and t > s, thent ∈ F . If we successively remove two-element chains fromPλ which are

dual order ideals of the poset from which they are removed, then eventually we reach a
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poset core2(Pλ), called the 2-core ofPλ, that contains no dual order ideals which are tw
element chains. The 2-core isunique, i.e., independent of the order in which the dual or
ideals are removed, and is given byPδk

for somek � 1, whereδk denotes the “staircas
shape”(k − 1, k − 2, . . . ,1). For further information see [29, Exercise 7.59].

Proposition 3.1. Letλ � n. The following numbers all have the same parity.

(a) Γ (Pλ).
(b)

∑
t∈Pλ

c(t).

(c) 1
2(O(λ) −O(λ′)).

(d) 1
2

(
n − (

k
2

))
, where

(
k
2

) = #core2(Pλ).

Hence ifaλ denotes any of the above four numbers, then evacuation is parity-reversi
Pλ if and only if

(
n
2

) − aλ is odd.

Proof. It is easy to see that ift ∈ Pλ, thenν(t) ≡ c(t) (mod 2). Hence (a) and (b) have th
same parity. It is well known and easy to see [17, Example 3, p. 11] that

∑
t∈Pλ

c(t) =
∑(

λi

2

)
−

∑(
λ′

i

2

)
.

Since
∑

λi = ∑
λ′

i , we have

∑
t∈Pλ

c(t) = 1

2

(∑
λ2

i −
∑(

λ′
i

)2
)
.

Sincea2 ≡ 0,1 (mod 4) depending on whethera is even or odd, we see that (b) and
have the same parity. If we remove fromPλ a 2-element dual order ideal which is also
chain, then we remove exactly one element with an odd content. A 2-core is self-con
and hence has an even content sum. Hence the number of odd contents ofPλ is equal to the
number of dominos that must be removed fromPλ in order to reach core2(Pλ). It follows
that (b) and (c) have the same parity, completing the proof.�

It can be shown [30] that ift (n) denotes the number of partitionsλ � n for which aλ is
even, thent (n) = 1

2(p(n) + f (n)), wherep(n) denotes the total number of partitions on
and

∑
f (n)xn =

∏ 1+ x2i−1

.

n�0 i�1
(1− x4i )(1+ x4i−2)2
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Hence the numberg(n) of partitionsλ � n for which evac is parity-reversing onPλ is given
by

g(n) =
{

1
2

(
p(n) + f (n)

)
, if

(
n
2

)
is odd,

1
2

(
p(n) − f (n)

)
, if

(
n
2

)
is even.

We conclude this section with some applications of the theory of domino tabl
A standard domino tableau(SDT) of shapeλ � 2n is a sequence

∅ = λ0 ⊂ λ1 ⊂ · · · ⊂ λn = λ

of partitions such that each skew shapeλi/λi−1 is adomino, i.e., two squares with an edg
in common. Each of these dominos is either horizontal (two squares in the same r
vertical (two squares in the same column). Let Domλ denote the set of all SDT of shapeλ.
Given D ∈ Domλ, define ev(D) to be the number of vertical dominos in even colum
of D, where aneven columnmeans the 2ith column for somei ∈ P. For the remainder o
this section, fix the labelingω of Pλ to be the usual “reading order,” i.e., the first row oλ
is labeled 1,2, . . . , λ1; the second row is labeledλ1 + 1, λ1 + 2, . . . , λ1 +λ2, etc. We write
Iλ(q) for IPλ,ω(q) and setIλ = Iλ(−1), theimbalanceof the partitionλ. It is shown in [32,
Theorem 12] (by analyzing the formula that results from settingq = −1 in (13)) that

Iλ =
∑

D∈Domλ

(−1)ev(D).

Let λ � n. Lascoux, Leclerc, and Thibon [14, (27)] define a certain class of symm
functionsG̃

(k)
λ (x;q) (defined earlier by Carré and Leclerc [4] for the special casek = 2

andλ = 2µ). We will only be concerned with the casek = 2 andq = −1, for which we
write Gλ = G̃

(2)
λ (x;−1). The symmetric functionGλ vanishes unless core2(λ) = ∅, so we

may assumen = 2m. If core2(λ) = ∅, thenGλ is homogeneous of degreem = n/2. We
will not define it here but only recall the properties relevant to us. The connection
the imbalanceIλ is provided by the formula (immediate from the definition ofGλ in [14]
together with [32, Theorem 12])

[x1 · · ·xm]Gλ = (−1)r(λ)Iλ, (2)

where[x1 · · ·xm]F denotes the coefficient ofx1 · · ·xm in the symmetric functionF , and
r(λ) is the maximum number of vertical dominos that can appear in even column
domino tableau of shapeλ. Also defined(λ) to be the maximum number of disjoint vertic
dominos that can appear in the diagram ofλ, i.e.,

d(λ) =
∑⌊

1
λ′

⌋
.

i
2 2i
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Note thatd(λ) � r(λ), but equality need not hold in general. For instance,d(4,3,1) = 1,
r(4,3,1) = 0. However, we do haved(2µ) = r(2µ) for any partitionµ. Let us also note
that ourr(λ) is denotedd(λ) in [32] and is defined only forλ with an empty 2-core.

Theorem 3.2. (a)We have ∑
µ�m

I2µ = 1

for all m � 1.
(b) Let v(λ) denote the maximum number of disjoint vertical dominos that fit in

shapeλ. Equivalently,

v(λ) =
∑
i�1

⌊
1

2
λ′

i

⌋
.

Then ∑
λ�2m

(−1)v(λ)I2
λ = 0.

Proof. (a) Barbasch and Vogan [2] and Garfinkle [9] define a bijection between elem
π of the hyperoctahedral groupBm, regarded as signed permutations of 1,2, . . . ,m, and
pairs(P,Q) of SDT of the same shapeλ � 2m. (See [15, p. 25] for further information
A crucial property of this bijection, stated implicitly without proof in [12] and proved
Shimozono and White [23, Theorem 30], asserts that

tc(π) = 1

2

(
v(P ) + v(Q)

)
, (3)

where tc(π) denotes the number of minus signs inπ and v(R) denotes the number o
vertical dominos in the SDTR.

Carré and Leclerc, [4, Definition 9.1], define a symmetric functionHµ(x;q) which
satisfiesHµ(x,−1) = (−1)v(µ)G2µ. In [12, Theorem 1] is stated the identity

∑
µ

Hµ(x;q) =
∏
i

1

1− xi

∏
i<j

1

1− xixj

∏
i�j

1

1− qxixj

. (4)

The proof of (4) in [12] is incomplete, since it depends on a semistandard version
P = Q case of (3) (easily deduced from (3)), which had not yet been proved. The pr
(3) in [23] therefore completes the proof of (4). A generalization of (4) was later give
Lam [13, Theorem 28].

Settingq = −1 in (4) gives

∑
(−1)v(µ)G2µ =

∏ 1 ∏ 1
.

µ i
(1− xi)(1+ x2

i )
i<j

1− x2
i x2

j
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Taking the coefficient ofx1 · · ·xm on both sides and using (2) together withv(µ) =
d(2µ) = r(2µ) completes the proof.

(b) It is easy to see that for any SDTD we have

v(D) = v(λ) − 2d(λ) + 2 ev(D).

Thus by (3) we have

0=
∑

π∈Bm

(−1)tc(π) =
∑
P,Q

(−1)
1
2 (v(P )+v(Q)) =

∑
λ�2m

( ∑
D∈Domλ

(−1)
1
2v(D)

)2

=
∑
λ�2m

(−1)v(λ)

( ∑
D∈Domλ

(−1)ev(D)

)2

=
∑
λ�2m

(−1)v(λ)I2
λ . �

In the same spirit as Theorem 3.2 we have the following conjecture.

Conjecture 3.3. 2 (a)For all n � 0 we have

∑
λ�n

qv(λ)td(λ)xv(λ′)yd(λ′)Iλ = (q + x)�n/2
. (5)

(b) If n �≡ 1 (mod 4), then ∑
λ�n

(−1)v(λ)td(λ)I2
λ = 0.

It is easy to see thatd(λ) = d(λ′) for all λ. (E.g., consider the horizontal and vertical li
segments in Fig. 3.) Hence the variabley is superfluous in Eq. (5), but we have includ
it for the sake of symmetry. In particular, ifFn(q, t, x, y) denotes the left-hand side of (
then

Fn(q,0, x, y) = Fn(q, t, x,0) = Fn(q,0, x,0).

Note also thatd(λ) = 0 if and onlyλ is ahook, i.e., a partition of the form(n − k,1k).
The caset = 0 (or y = 0, or t = y = 0) of Eq. (5) follows from the following proposi

tion, which in a sense “explains” where the right-hand side(q + x)�n/2
 comes from.

Proposition 3.4. For all n � 0 we have

∑
λ=(n−k,1k)

qv(λ)xv(λ′)Iλ = (q + x)�n/2
, (6)

whereλ ranges over all hooks(n − k,1k), 0� k � n − 1.

2 A combinatorial proof of (a) was found by Thomas Lam [13] after this paper was written. Later a comb
rial proof of both (a) and (b) was given by Jonas Sjöstrand [24]. Sjöstrand’s main result [24, Theorem 2.3∑

to further identities, such as µ�n qv(µ)I2µ = 1, thereby generalizing our Theorem 3.2(a).
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Fig. 3.d(86655431) = d(86655431′).

First proof. Let λ = (n−k,1k). Letω denote the “reading order” labeling ofPλ as above
The setLP,ω consists of all permutations 1, a2, . . . , am, wherea2, . . . , am is a shuffleof
the permutations 2,3, . . . , n − k andn − k + 1, n − k + 2, . . . , n. It follows, e.g., from [27,
Proposition 1.3.17] that

Iλ(q) =
[
n − 1

k

]
,

aq-binomial coefficient.
Suppose first thatn = 2m + 1. By [27, Exercize 3.45(b)],

[
n − 1

k

]
q=−1

=
{(

m
j

)
, k = 2j,

0, k = 2j + 1.

Note that ifλ = (n − 2j,12j ), thenv(λ) = j andv(λ′) = m − j . Hence

∑
λ=(n−k,1k)

qv(λ)xv(λ′)Iλ =
m∑

j=0

qjxm−j

(
m

j

)
= (q + x)m,

as desired. The proof forn even is similar and will be omitted.�
Second proof. Assume first thatn = 2m. We use an involution argument analogous to
proof of Theorem 1.1 or to arguments in [32, Section 5] and Section 4 of this pape
T be an SYT of shapeλ = (n − k,1k), which can be regarded as an element ofLPλ,ω. Let
i be the least positive integer (if it exists) such that 2i − 1 and 2i appear in different rows
and in different columns ofT . Let T ′ denote the SYT obtained fromT by transposing
2i − 1 and 2i. Since multiplying by a transposition changes the sign of a permutation
have(−1)inv(T ) + (−1)inv(T ′) = 0. The surviving SYT are obtained by first placing 1,2 in
the same row or column, then 3,4 in the same row or column, etc. Ifk = 2j or 2j + 1,
then the number of survivors is easily seen to be

(
m−1

j

)
. Because the entries ofT come

in pairs 2i − 1,2i, the number of inversions of each surviving SYT is even. Moreo
if k = 2j thenv(λ) = j andv(λ′) = m − j , while if k = 2j + 1 thenv(λ) = j + 1 and

v(λ′) = m − 1− j . Hence
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[32,
bi-
∑
λ=(n−k,1k)

qv(λ)xv(λ′)Iλ =
m−1∑
j=0

(q + x)

(
m − 1

j

)
qjxm−1−j = (q + x)m,

as desired.
The proof is similar forn = 2m + 1. Let i be the least positive integer (if it exist

such that 2i and 2i + 1 (rather than 2i − 1 and 2i) appear in different rows and in differe
columns ofT . There are now no survivors whenk = 2j +1 and

(
m
j

)
survivors whenk = 2j .

Other details of the proof remain the same, so we get

∑
λ=(n−k,1k)

qv(λ)xv(λ′)Iλ =
m∑

j=0

(
m − 1

j

)
qjxm−j = (q + x)m,

completing the proof. �
There are some additional properties of the symmetric functionsGλ that yield informa-

tion aboutIλ. For instance, there is a product formula in [12, Theorem 2] for
∑

µ G2µ∪2µ,
whereµ ranges over all partitions and

2µ ∪ 2µ = (2µ1,2µ1,2µ2,2µ2, . . .),

which implies that
∑

µ�n I2µ∪2µ = 0. In fact, in [4, Corollary 9.2] it is shown tha

G2µ∪2µ(x) = ±sµ(x2
1, x2

2, . . .), from which it follows easily that in factI2µ∪2µ = 0. How-
ever, this result is just a special case of Corollary 2.2 and of Proposition 2.3, so we
nothing new.

Also relevant to us is an expansion ofGλ into Schur functions due to Shimozono (s
[32, Theorem 18]) for certain shapesλ, namely, those whose 2-quotient (in the sense,
of [17, Example I.1.8]) is a pair of rectangles. This expansion was used by White
Corollary 20] to evaluateIλ for such shapes. White [32, Section 8] also gives a com
natorial proof, based on a sign-reversing involution, in the special case thatλ itself is a
rectangle. We simply state here White’s result for rectangles.

Theorem 3.5. Letλ be anm × n rectangle. Then

Iλ =
{1, if m = 1, or n = 1,

0, if m ≡ n (mod 2) andm,n > 1,

±gµ, m �≡ n (mod 2),

wheregµ denotes the number of shifted standard tableaux(as defined, e.g., in[17, Exam-
ple III.8.12])of shape

µ =
(

m + n − 1

2
,
m + n − 3

2
, . . . ,

|n − m| + 3

2
,
|n − m| + 1

2

)
.

(An explicit “hook length formula” for anygµ appears, e.g., in the reference just cited.)
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It is natural to ask whether Theorem 3.5 can be generalized to other partitionsλ. In this
regard, A. Eremenko and A. Gabrielov (private communication) have made a rema
conjecture. Namely, if we fix the number� of parts and parity of each part ofλ, then there
are integersc1, . . . , ck and integer vectorsγ1, . . . , γk ∈ Z� such that

Iλ =
k∑

i=1

cig
1
2 (λ+γi ).

One defect of this conjecture is that the expression forIλ is not unique. We can insur
uniqueness, however, by the additional condition that all the vectorsγi have coordinate
sum 0 when|λ| is even and−1 when|λ| is odd (where|λ| = ∑

λi ). In this case, howeve
we need to define properlygµ whenµ is not a strictly decreasing sequence of nonnega
integers. See the discussion preceding Conjecture 3.6. For instance, we have

I(2a,2b,2c) = g(a,b,c) − g(a+1,b,c−1),

I(2a+1,2b,2c) = g(a,b,c) + g(a+1,b−1,c),

I(2a,2b+1,c) = 0,

I(2a,2b,2c+1) = −g(a+1,b−1,c) − g(a+1,b,c−1),

I(2a+1,2b+1,2c) = g(a+1,b,c) + g(a+1,b+1,c−1),

I(2a+1,2b,2c+1) = 0,

I(2a,2b+1,2c+1) = g(a+1,b,c) + g(a,b+1,c),

I(2a+1,2b+1,2c+1) = g(a,b+1,c) + g(a+1,b+1,c−1),

I(2a,2b,2c,2d) = g(a,b,c,d) − g(a+1,b,c−1,d) − g(a+1,b+1,c−1,d−1) − 2g(a+1,b,c,d−1).

It is easy to see thatI(2a,2b+1,c) = I(2a+1,2b,2c+1) = 0, viz., the 2-cores of the partition
(2a,2b + 1, c) and (2a + 1, b,2c + 1) have more than one square. More generally,
have verified by induction the formulas forIµ when�(µ) � 3.

We have found a (conjectured) symmetric function generalization of the Ereme
Gabrielov conjecture. Iff (x) is any symmetric function, define

f (x/x) = f (p2i−1 → 2p2i−1, p2i → 0).

In other words, writef (x) as a polynomial in the power sumspj and substitute 2p2i−1
for p2i−1 and 0 forp2i . In λ-ring notation,f (x/x) = f (X − X). Let Qµ denote Schur’s
shiftedQ-function [17, Section 3.8]. TheQµ’s form a basis for the ringQ[p1,p3,p5, . . .].
Hencef (x/x) can be written uniquely as a linear combination ofQµ’s.

We mentioned above that the symmetric functionGλ was originally defined only whe
core2(λ) = ∅. We can extend the definition to anyλ as follows. The original definition ha

the form
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Gλ(x) =
∑
D

(−1)cospin(D)xD, (7)

summed over all semistandard domino tableaux of shapeλ, where cospin(λ) is a certain
integer andxD a certain monomial depending onλ. If #core2(λ) = 1, then defineGλ

exactly as in (7), except that we sum over all semistandard domino tableaux of the
shapeλ/1. If #core2(λ) > 1, then defineGλ = 0. (In certain contexts it would be bett
to defineGλ by (7), summed over all semistandard domino tableaux of the skew s
λ/core2(λ), but this is not suitable for our purposes.) Equation (2) then continues to
for anyλ � n, wherem = �n/2
.

We also need to defineGµ(x/x) properly whenµ is not a strictly decreasing sequen
of positive integers. The following definition seems to be correct, but perhaps some
ification is necessary. Letµ = (µ1, . . . ,µk) ∈ Zk . Trailing 0’s are irrelevant and can b
ignored, so we may assumeµk > 0. If µ is not a sequence of distinct nonnegative in
gers, thenGµ(x/x) = 0. OtherwiseGµ(x/x) = εµGλ(x/x), whereλ is the decreasing
rearrangement ofµ andεµ is the sign of the permutation that convertsµ to λ.

Conjecture 3.6. Fix the number� of parts and parity of each part of the partitionλ. Then
there are integersc1, . . . , ck and integer vectorsγ1, . . . , γk ∈ Z� such that

(−1)r(λ)Gλ(x/x) =
k∑

i=1

ciQ 1
2 (λ+γi )

(x). (8)

Let λ � 2n or λ � 2n + 1. Take the coefficient ofx1x2 · · ·xn on both sides of (8). By
(2) the left-hand side becomes 2nIλ. Moreover, ifµ � m then the coefficient ofx1 · · ·xm

in Qµ is 2mgµ [17, (8.16)]. Hence Conjecture 3.6 specializes to the Eremenko–Gab
conjecture. At present we have no conjecture for the values of the coefficientsci . Here is
a short table (due to Eremenko and Gabrielov forIλ; they have extended this table to t
case of four and five rows) of the three-row case of Conjecture 3.6. For simplicity we
± for (−1)r(λ).

±G(2a,2b,2c)(x/x) = Q(a,b,c)(x) − Q(a+1,b,c−1)(x),

±G(2a+1,2b,2c)(x/x) = Q(a,b,c)(x) + Q(a+1,b−1,c)(x),

±G(2a,2b+1,2c)(x/x) = 0,

±G(2a,2b,2c+1)(x/x) = −Q(a+1,b−1,c)(x) − Q(a+1,b,c−1)(x),

±G(2a+1,2b+1,2c)(x/x) = Q(a+1,b,c)(x) + Q(a+1,b+1,c−1)(x),

±G(2a+1,2b,2c+1)(x/x) = 0,

±G(2a,2b+1,2c+1)(x/x) = Q(a+1,b,c)(x) + Q(a,b+1,c)(x),
±G(2a+1,2b+1,2c+1)(x/x) = Q(a,b+1,c)(x) + Q(a+1,b+1,c−1)(x).
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We now discuss some general properties of the polynomialIλ(q) and its valueIλ(−1).
Let C(λ) denote the set ofcorner squaresof λ, i.e., those squares of the Young diagr
of λ whose removal still gives a Young diagram. Equivalently, Pieri’s formula [29, T
rem 7.15.7] implies that

sλ/1 =
∑

t∈C(λ)

sλ−t . (9)

Let f λ denote the number of SYT of shapeλ [29, Proposition 7.10.3], so

f λ =
∑

t∈C(λ)

f λ−t . (10)

Note thatIλ(1) = f λ, so Iλ(q) is a (nonstandard)q-analogue off λ. Theq-analogue of
Eq. (10) is the following result.

Proposition 3.7. We have

Iλ(q) =
∑

t∈C(λ)

qbλ(t)Iλ−t (q),

wherebλ(t) denotes the number of squares in the diagram ofλ in a lower row than that
of t .

Proof. We have by definition

Iλ(q) =
∑
T

q inv(π(T )),

whereT ranges over all SYT of shapeλ andπ(T ) is the permutation obtained by readi
the entries ofT in the usual reading order, i.e., left-to-right and top-to-bottom whenT is
written in “English notation” as in [17,27,29]. Supposeλ � n. If T is an SYT of shapeλ,
then the squaret occupied byn is a corner square. The number of inversions(i, j) of
π(T ) = a1 · · ·am such thatai = n is equal tobλ(t), and the proof follows. �

Now letD1 denote the linear operator on symmetric functions defined byD1(sλ) = sλ/1.
We then have the commutation relation [29, Exercise 7.24(a)]

D1s1 − s1D1 = I, (11)

the identity operator. This leads to many enumerative consequences, discussed
There is an analogue of (11) related toIλ, though we do not know of any application
Define a linear operatorD(q) on symmetric functions by

D(q)sλ =
∑

qbλ(t)sλ−t .
t∈C(λ)
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Let U(q) denote the adjoint ofD(q) with respect to the basis{sλ} of Schur functions, so

U(q)sµ =
∑

t

qbµ+t (t)sµ+t ,

wheret ranges over all boxes that we can add to the diagram ofµ to get the diagram of a
partitionµ + t (for which necessarilyt ∈ C(µ + t)). Note thatU(1) = s1 (i.e., multiplica-
tion by s1) andD(1) = D1 as defined above. It follows from Proposition 3.7 that

U(q)n · 1=
∑
λ�n

Iλ(q)sλ,

whereU(q)n ·1 denotesU(q)n acting on the symmetric function 1= s∅. WriteU = U(−1)

andD = D(−1). Let A be the linear operator on symmetric functions given byAsλ =
(2k(λ) + 1)sλ, wherek(λ) = #C(λ), the number of corner boxes ofλ.

Proposition 3.8. We haveDU + UD = A.

Proof. The proof is basically a brute force computation. Writeλ̄i = λi + λi+1 + · · · . Sup-
poseµ is obtained fromλ by adding a box in rowr − 1 and deleting a box in rows − 1,
wherer < s. Then the coefficient ofsµ in (D(q)U(q) + U(q)D(q))sλ is given by

〈
sµ,

(
D(q)U(q) + U(q)D(q)

)
sλ

〉 = qλ̄r qλ̄s + qλ̄s qλ̄r−1,

which vanishes whenq = −1. Similarly if r > s we get

〈
sµ,

(
D(q)U(q) + U(q)D(q)

)
sλ

〉 = qλ̄s qλ̄r+1 + qλ̄r qλ̄s ,

which again vanishes whenq = −1. On the other hand, ifλ = µ we have

〈
sλ,

(
D(q)U(q) + U(q)D(q)

)
sλ

〉 = (
c(λ) + 1

)
q2λ̄r + c(λ)q2λ̄r = (

2c(λ) + 1
)
q2λ̄r .

Whenq = −1 the right-hand side become 2c(λ) + 1, completing the proof. �

4. Chains of order ideals

Suppose thatP is ann-element poset, and letα = (α1, . . . , αk) be a composition ofn,
i.e.,αi ∈ P = {1,2, . . .} and

∑
αi = n. Define anα-chainof order ideals ofP to be a chain

∅ = K0 ⊂ K1 ⊂ · · · ⊂ Kk = P (12)

of order ideals satisfying #(Ki − Ki−1) = αi for 1 � i � k. The following result is quite

simple but has a number of consequences.
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Proposition 4.1. Let P be ann-element poset andα a fixed composition ofn. Suppose
that for everyα-chain (12) of order ideals ofP , at least one subposetKi − Ki−1 is sign-
balanced. ThenP is sign-balanced.

Proof. Let C be theα-chain (12). We say that a linear extensionf is C-compatibleif

K1 = f −1({1, . . . , α1}
)
, K2 − K1 = f −1({α1 + 1, . . . , α1 + α2}

)
,

etc. Let inv(C) be the minimum number of inversions of aC-compatible linear extension
Clearly

∑
f

q inv(f ) = q inv(C)
k∏

i=1

IKi−Ki−1(q),

where the sum is over allC-compatiblef . Since every linear extension is compatible w
a uniqueα-chain, there follows

IP,ω(q) =
∑
C

q inv(C)
k∏

i=1

IKi−Ki−1(q), (13)

whereC ranges over allα-chains of order ideals ofP . The proof now follows by setting
q = −1. �

Define a finite posetP with 2m elements to betilable by dominosif there is a chain
∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = P of order ideals such that each subposetKi − Ki−1 is a
two-element chain. Similarly, if #P = 2m + 1 and 1� j � m + 1 then we say thatP is
j -tilable by dominosif there is a chain∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km+1 = P of order ideals
such that #(Ki − Ki−1) = 2 if 1 � i � m + 1 andi �= j (so #(Kj − Kj−1) = 1). Note
that being tilable by dominos is stronger than the existence of a partition ofP into cover
relations (or two element saturated chains). For instance, the posetP with cover relations
a < c,b < c,a < d,b < d can be partitioned into the two cover relationsa < c andb < d ,
but P is not tilable by dominos. Whenn = 2m, we define aP -domino tableauto be a
chain∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = P of order ideals such thatKi − Ki−1 is a two-elemen
chain for 1� i � m. Similarly, whenn = 2m+1, we define a (standard)P -domino tableau
to be a chain∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km+1 = P of order ideals such thatKi − Ki−1 is a
two-element chain for 1� i � m (so thatKm+1 − Km consists of a single point). Thus fo
λ � 2n, aPλ-domino tableau coincides with our earlier definition of an SDT of shapeλ.

Corollary 4.2. Let#P = 2m, and assume thatP is not tilable by dominos. ThenP is sign-
balanced. Similarly if#P = 2m+1� 3 andP is notj -tilable by dominos for somej , then
P is sign-balanced.

Proof. Let α = (2,2, . . . ,2) (m 2’s). If #P = 2m andP is not tilable by dominos, then fo

anyα-chain (12) there is ani for which Ki − Ki−1 consists of two disjoint points. Since
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a poset consisting of two disjoint points is sign-balanced, it follows from Propositio
thatP is sign-balanced. The argument is similar for #P = 2m + 1. �

Corollary 4.2 was proved in a special case (the product of two chains with an
number of elements, with thê0 and1̂ removed), using essentially the same proof as
have given, by Ruskey [21, Section 5, item 6].

Corollary 4.2 is particularly useful for the posetsPλ. From this corollary and the defin
ition of core2(λ) we conclude the following.

Corollary 4.3. If core2(Pλ) consists of more than one element, thenPλ is sign-balanced.

It follows from [29, Exercise 7.59(e)] that iff (n) denotes the number of partitionsλ � n

such that #core2(λ) � 1, then

∑
n�0

f (n)xn = 1+ x∏
i�1(1− x2i )2

.

Standard partition asymptotics (e.g., [1, Theorem 6.2]) shows that

f (n) ∼ C

n5/4
exp

(
π

√
2n/3

)
for someC > 0. Since the total numberp(n) of partitions ofn satisfies

p(n) ∼ C′

n
exp

(
π

√
2n/3

)
,

it follows that limn�0 f (n)/p(n) = 0. Hence asn → ∞, Pλ is sign-balanced for almost a
λ � n.

5. Maj-balanced posets

If π = a1a2 · · ·am is a permutation of[n], then thedescent setD(π) of π is defined as

D(π) = {i: ai > ai+1}.
An element ofD(π) is called adescentof π , andmajor indexmaj(π) is defined as

maj(π) =
∑

i∈D(π)

i.

The major index has many properties analogous to the number of inversions, e.g.,
sic theorem of MacMahon states that inv and maj are equidistributed on the sym
group Sn [7,8]. Thus it is natural to try to find “maj analogues” of the results of

preceding sections. In general, the major index of a linear extension of a poset can be
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Fig. 4. Some counterexamples.

more tractable or less tractable than the number of inversions. Thus, for example, i
orem 5.1 we are able to completely characterize naturally labeled maj-balanced
An analogous result for sign-balanced partitions seems very difficult. On the other
since multiplying a permutation by a fixed permutation has no definite effect on the
of the major index, many of the results for sign-balanced posets are false (Theore
Lemma 2.1, Proposition 2.3).

Let f be a linear extension of the labeled poset(P,ω), and letπ = π(f ) be the asso
ciated permutation of[n]. In analogy to our definition of inv(f ), define maj(f ) = maj(π)

and

WP,ω(q) =
∑

f ∈EP

qmaj(f ) =
∑

π∈LP,ω

qmaj(π).

We say that(P,ω) is maj-balancedif WP,ω(−1) = 0, i.e., if the number of linear ex
tensions ofP with even major index equals the number with odd major index. Un
the situation for sign-balanced posets, the property of being maj-balanced can dep
the labelingω. Thus an interesting special case is that ofnatural labelings, for which
ω(s) < ω(t) whenevers < t in P . We writeWP (q) for WP,ω(q) whenω is natural. It is a
basic consequence of the theory ofP -partitions [27, Theorem 4.5.8] thatWP (q) does not
depend on the choice of natural labeling ofP .

Figures 4(a) and 4(b) show two different labelings of a posetP . The first labeling (which
is natural) is not maj-balanced, while the second one is. Moreover, the dual posetP ∗ to the
posetP in Fig. 4(b), whether naturally labeled or labeled the same asP , is maj-balanced
Contrast that with the trivial fact that the dual of a sign-balanced poset is sign-balanc
a further example of the contrast between sign- and maj-balanced posets, Fig. 4(c) s
naturally labeled maj-balanced posetQ. However, if we adjoin an element0̂ below every
element ofQ and label it 0 (thus keeping the labeling natural) then we get a poset wh
no longer maj-balanced. On the other hand, it is clear that such an operation has n
on whether a poset is sign-balanced. (In fact, it leavesIQ,ω(q) unchanged.)

Corollary 4.2 carries over to the major index in the following way.

Theorem 5.1. (a) Let P be naturally labeled. ThenWP (−1) is equal to the number o
P -domino tableaux. In particular,P is maj-balanced if and only if there does not exis
P -domino tableau.
(b) A labeled poset(P,ω) is maj-balanced if there does not exist aP -domino tableau.
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Fig. 5. A maj-balanced labeled poset tilable by dominos.

Proof. (a) Let π = a1 · · ·am ∈ LP,ω. Let i be the least number (if it exists) for whic
π ′ = a1 · · ·a2ia2i+2a2i+1a2i+3 · · ·am ∈ LP,ω. Note that(π ′)′ = π . Now exactly one ofπ
andπ ′ has a descent at 2i +1. The only other differences in the descent sets ofπ andπ ′ oc-
cur (possibly) for the even numbers 2i and 2i+2. Hence(−1)maj(π) +(−1)maj(π ′) = 0. The
surviving permutationsσ = b1 · · ·bm in LP,ω are exactly those for which∅ ⊂ {b1, b2} ⊂
{b1, . . . , b4} ⊂ · · · is a P -domino tableau withω−1(b2i−1) < ω−1(b2i ) in P . (If n is
even, then theP -domino tableau ends as{b1, . . . , bn−2} ⊂ P , while if n is odd it ends
as{b1, . . . , bn−1} ⊂ P .) Sinceω is natural we haveb2i−1 < b2i for all i, so maj(σ ) is even.
HenceWP (−1) is equal exactly to the number ofP -domino tableaux.

(b) Regardless of the labelingω, if there does not exist aP -domino tableau then ther
will be no survivors in the argument of (a), soWP (−1) = 0. �

The converse to Theorem 5.1(b) is false. The labeled poset(P,ω) of Fig. 5 is tilable by
dominos and is maj-balanced.

Given ann-element posetP with dualP ∗, set∆(P ) = Γ (P ∗). In [25, Theorem 4.4]
[26, Proposition 18.4], [27, Theorem 4.5.2] it is shown that the following two condit
are equivalent:

(i) For all t ∈ P , all maximal chains of the principal dual order idealVt = {s ∈ P : s � t}
have the same length.

(ii) q(n
2)−∆(P )WP (1/q) = WP (q).

It follows by settingq = −1 that if (i) holds and
(
n
2

)−∆(P ) is odd, thenP is maj-balanced
Corollary 2.4 suggests in fact the following stronger result.

Corollary 5.2. Suppose thatP is naturally labeled and dual consistent(i.e.,P ∗ is consis-
tent). If

(
n
2

) − ∆(P ) is odd, thenP is maj-balanced.

Proof. By Theorem 5.1 we need to show that there does not exist aP -domino tableau
Given t ∈ P , let δ(t) denote the length of the longest chain ofVt , so∆(P ) = ∑

t∈P δ(t).
First suppose thatn = 2m, and assume to the contrary that∅ = I0 ⊂ I1 ⊂ · · · ⊂ Im = P is
a P -domino tableau. Ifs, t ∈ Ii − Ii−1 then by dual consistencyδ(s) + δ(t) ≡ 1 (mod 2).
Hence∆(P ) ≡ m (mod 2), so(

n

2

)
− ∆(P ) ≡ m(2m − 1) − m ≡ 0 (mod 2),
a contradiction.
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Fig. 6. A setS of squares and the Schur labeled posetPS .

Similarly if n = 2m + 1, then the existence of aP -domino tableau implies∆(P ) ≡
m (mod 2), so (

n

2

)
− ∆(P ) ≡ m(2m + 1) − m ≡ 0 (mod 2),

again a contradiction. �
Now letS be a finite subset of solid unit squares with integer vertices inR×R such that

the set|S| = ⋃
S∈S is simply-connected. ForS,T ∈ S , defineS < T if the center vertices

(s1, s2) of S and(t1, t2) of T satisfy either (a)t1 = s1 andt2 = s2 + 1 or (b)t1 = s1 + 1 and
t2 = s2. RegardS as a poset, denotedPS , under the transitive (and reflexive) closure of
relation<. Figure 6 gives an example, where (a) showsS as a set of squares and (b) a
poset. Note that the posetsPλ/µ are a special case.

A Schur labelingω of PS is a labeling that increases along rows and decreases
columns, as illustrated in Fig. 6. For the special casePλ/µ, Schur labelings play an im
portant role in the expansion of skew Schur functionssλ/µ in terms of quasisymmetri
functions [29, pp. 360–361]. Suppose that #PS is even and thatPS is tilable by dominos
ThenS itself is tilable by dominos in the usual sense. It is known (implicit, for instanc
[31], and more explicit in [5]) that any two domino tilings ofS can be obtained from eac
other by “2× 2 flips,” i.e., replacing two horizontal dominos in a 2× 2 square by two ver
tical dominos or vice versa. It follows that ifD is a domino tiling ofS with v(D) vertical
dominos, then(−1)v(D) depends only onS . Set sgn(S) = (−1)v(D) for any domino tiling
of S .

Proposition 5.3. Let S be as above, and letω be a Schur labeling ofPS , where#PS is
even, say#PS = n. Thensgn(S)WPS (−1) is the number ofPS -domino tableaux.

Proof. The proof parallels that of Theorem 5.1. Define the involutionπ �→ π ′ as in the
proof of Theorem 5.1. Each survivorσ = b1 · · ·bm corresponds to aPS -domino tableauD.
We haveb2i−1 > b2i if and only if the domino labeled withb2i−1 andb2i is vertical. As
noted above,(−1)v(D) = sgn(S), independent ofD. Hence(−1)maj(σ ) = sgn(σ ), and the
proof follows as in Theorem 5.1(a).�

A result analogous to Proposition 5.3 holds for #PS odd (with essentially the sam

proof) providedPS has a0̂ or 1̂. The special casePλ/µ of Proposition 5.3 (and its analogue
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for #PS odd) can also be proved using the theory of symmetric functions, notably
Proposition 7.19.11] and the Murnaghan–Nakayama rule [29, Corollary 7.17.5].

6. Hook lengths

In this section we briefly discuss a class of posetsP for which WP (q), and sometime
evenIP,ω(q), can be explicitly computed. For this class of posets we get a simple crit
for being maj-balanced and, if applicable, sign-balanced.

Following [26, p. 84], ann-element posetP is called ahook length posetif there exist
positive integersh1, . . . , hn, thehook lengthsof P , such that

WP (q) = [n]!
(1− qh1) · · · (1− qhn)

, (14)

where[n]! = (1− q)(1− q2) · · · (1− qn). It is easy to see that ifP is a hook length pose
then the multiset of hook lengths is unique. In general, ifP is an “interesting” hook length
poset, then each element ofP should have a hook length associated to it in a “natu
combinatorial way.

Note. We could just as easily have extended our definition tolabeledposets(P,ω), where
now

WP,ω(q) = qc[n]!
(1− qh1) · · · (1− qhn)

for somec ∈ N. However, little is known about the labeled situation except when we
reduce it to the case of natural labelings by subtracting certain constants from the
of σ .

The following result is an immediate consequence of Eq. (14).

Proposition 6.1. Suppose thatP is a hook length poset with hook lengthsh1, . . . , hn. Then
P is maj-balanced if and only if the number of even hook lengths is less than�n/2
. If P

is not maj-balanced, then the maj imbalance is given by

WP (−1) = �n/2
!∏
hieven(hi/2)

.

It is natural to ask at this point what are the known hook length posets. The stro
work in this area is due to Proctor [18,19]. We will not state his remarkable results
but let us note that hisd-completeposets encompass all known “interesting” example
hook length posets. These include forests (i.e., posets for which every element is c
by at most one element) and the dualsP ∗

λ of the posetsPλ of Section 3.
Björner and Wachs [3, Theorem 1.1] settle the question of what naturally labeled
(P,ω) satisfy
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,

IP,ω(q) = WP,ω(q). (15)

Namely,P is a forest andω is a postorder labeling. Hence for postorder labeled fore
Proposition 6.1 holds also forIP,ω(−1). Björner and Wachs also obtain less definit
results for arbitrary labelings, whose relevance to sign and maj imbalance we omit.
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