Some congruences involving central q-binomial coefficients

Victor J.W. Guoa,*, Jiang Zengb

a Department of Mathematics, East China Normal University, Shanghai 200062, People’s Republic of China
b Université de Lyon, Université Lyon 1, Institut Camille Jordan, UMR 5208 du CNRS, 43, boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France

Abstract

Motivated by recent works of Sun and Tauraso, we prove some variations on the Green–Krammer identity involving central q-binomial coefficients, such as

$$
\sum_{k=0}^{n-1} (-1)^k q^{-\left(\frac{k+1}{2}\right)} \left\lfloor \frac{2k}{k} \right\rfloor_q \equiv \left(\frac{n}{5}\right) q^{-\left\lfloor \frac{n}{5}/5\right\rfloor} \pmod{\Phi_n(q)},
$$

where $\left(\frac{a}{p}\right)$ is the Legendre symbol and $\Phi_n(q)$ is the nth cyclotomic polynomial. As consequences, we deduce that

$$
\sum_{k=0}^{3a-1} q^k \left\lfloor \frac{2k}{k} \right\rfloor_q \equiv 0 \pmod{1 - q^{3a}/(1 - q)},
$$

$$
\sum_{k=0}^{5a-1} (-1)^k q^{-\left(\frac{k+1}{2}\right)} \left\lfloor \frac{2k}{k} \right\rfloor_q \equiv 0 \pmod{1 - q^{5a}/(1 - q)},
$$

for $a, m \geq 1$, the first one being a partial q-analogue of the Strauss–Shallit–Zagier congruence modulo powers of 3. Several related conjectures are proposed.

© 2010 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: jwguo@math.ecnu.edu.cn (V.J.W. Guo), zeng@math.univ-lyon1.fr (J. Zeng).

1. Introduction

The p-adic order of several sums involving central binomial coefficients have attracted much attention. For example, among other things, Pan and Sun [13] and Sun and Tauraso [18,19] proved the following congruences modulo a prime \(p \):

\[
\sum_{k=0}^{p^a-1} \binom{2k}{k+d} \equiv \left(\frac{p^a - |d|}{3} \right) \pmod{p},
\]

\[
\sum_{k=0}^{p^a-1} (-1)^k \binom{2k}{k} \equiv \left(\frac{p^a}{5} \right) \pmod{p},
\]

and, for \(p \geq 3 \),

\[
\sum_{k=0}^{p^a-1} \binom{2k}{k+d} 2^{-k} \equiv \begin{cases}
0 \pmod{p} & \text{if } p^a \equiv |d| \pmod{2}, \\
1 \pmod{p} & \text{if } p^a \equiv |d| + 1 \pmod{4}, \\
-1 \pmod{p} & \text{if } p^a \equiv |d| - 1 \pmod{4}.
\end{cases}
\]

where \(\left(\frac{n}{p} \right) \) is the Legendre symbol. It is well known that binomial identities or congruences usually have nice \(q \)-analogues (see [2]). Recently Tauraso [20] has noticed that an identity of Greene–Krammer [9] can be served as an inspiration for searching \(q \)-analogues of some identities in [18,19], and, in particular, he has proved the following generalization of (1.1):

\[
\sum_{k=0}^{n-1} q^k \left[\frac{2k}{k+d} \right]_q \equiv \left(\frac{n - |d|}{3} \right) q^{3r(r+1)+|d|(2r+1)} \pmod{\Phi_n(q)},
\]

with \(r = \lfloor (2n - |d|)/3 \rfloor \). Here and in what follows \(\Phi_n(q) \) denotes the \(n \)th cyclotomic polynomial, and \(\left[\frac{n}{k} \right]_q \) is the \(q \)-binomial coefficient defined by

\[
\left[\frac{n}{k} \right]_q = \begin{cases}
\frac{(q^n - 1)(q^n - q)(q^n - q^2) \cdots (q^n - q^{n-1})}{(q^k - 1)(q^k - q)(q^k - q^2) \cdots (q^k - q^{k-1})} & \text{if } 0 \leq k \leq n, \\
0 & \text{otherwise},
\end{cases}
\]

where \((z; q)_n = (1 - z)(1 - zq) \cdots (1 - zq^{n-1}) \) is the \(q \)-shifted factorial for \(n \geq 0 \).

The purpose of this paper is to study some \(q \)-versions of (1.1)–(1.3) as well as some variations of the same flavor as in [20]. For example, from a \(q \)-analogue of (1.2), we will deduce the following two congruences:

\[
\sum_{k=0}^{3^m-1} q^k \left[\frac{2k}{k} \right]_q \equiv 0 \pmod{(1 - q^{2^m})/(1 - q)}.
\]

\[
\sum_{k=0}^{5^m-1} (-1)^k q^{-\binom{k+1}{2}} \left[\frac{2k}{k} \right]_q \equiv 0 \pmod{(1 - q^{5^m})/(1 - q)}.
\]
Note that (1.5) may be deemed to be a partial q-analogue of the Strauss–Shallit–Zagier congruence [15]:

$$\sum_{k=0}^{3^m-1} \binom{2k}{k} \equiv 0 \pmod{3^m}.$$

The rest of the paper is organized as follows. In Section 2 we will give a q-analogue of (1.2) by using a finite Rogers–Ramanujan identity due to Schur. In Section 3 we will prove (1.5) and (1.6). Some different q-analogues of (1.3) will be given in Section 4 and some open problems will be proposed in the last section.

2. A q-analogue of (1.2)

It was conjectured by Krammer and proved by Greene [9] that

$$1 + 2 \sum_{k=1}^{n-1} (-1)^k q^{-\binom{k+1}{2}} \frac{2k - 1}{k} = \begin{cases} (\frac{n}{5}) \sqrt{5} & \text{if } n \equiv 0 \pmod{5}, \\ (\frac{n}{5}) & \text{otherwise}, \end{cases}$$

(2.1)

where $q = e^{2\pi i m/n}$ with $\gcd(m, n) = 1$ (see also [3,6] for some related results). If $n = p^a$, then the left-hand side of (2.1) is a q-analogue of that of (1.2). However, we cannot deduce the Sun–Tauraso congruence (1.2) from (2.1) in the case $n \equiv 0 \pmod{5}$. In this section we shall give a new q-series identity which is similar to (2.1) and will imply the Sun–Tauraso congruence (1.2) completely.

Theorem 2.1. For $n \geq 0$, there holds

$$\sum_{k=0}^{n-1} (-1)^k q^{-\binom{k+1}{2}} \frac{2k}{k} q^{-\lceil n^4/5 \rceil} \equiv (\frac{n}{5}) q^{-\lceil n^4/5 \rceil} \pmod{\Phi_n(q)}.$$

(2.2)

In other words, letting $\omega = e^{2\pi i m/n}$ with $\gcd(m, n) = 1$, we have

$$\sum_{k=0}^{n-1} (-1)^k \omega^{-(\binom{k+1}{2})} \frac{2k}{k} \omega = \begin{cases} 0 & \text{if } n \equiv 0 \pmod{5}, \\ -\omega^{-\lceil n/5 \rceil} & \text{if } n \equiv 1 \pmod{5}, \\ -\omega^{-\lceil 3n/5 \rceil} & \text{if } n \equiv 2 \pmod{5}, \\ -\omega^{-\lceil 2n/5 \rceil} & \text{if } n \equiv 3 \pmod{5}, \\ -\omega^{-\lceil 4n/5 \rceil} & \text{if } n \equiv 4 \pmod{5}. \end{cases}$$

(2.3)

Proof. Since $\omega^k \neq 1$ for $1 \leq k \leq n - 1$ and $\omega^n = 1$, we can write

$$\omega^{-(\binom{k+1}{2})} \frac{2k}{k} \omega = \omega^{-(\binom{k+1}{2})} \prod_{j=1}^{k} \frac{1 - \omega^{-2k+1-j}}{1 - \omega^j}$$

$$= \omega^{-(\binom{k+1}{2})} (-1)^k \omega^{(3k^2+k)/2} \prod_{j=1}^{k} \frac{1 - \omega^{n-(2k+1-j)}}{1 - \omega^j}$$

$$= (-1)^k \omega^k \binom{n-k-1}{k} \omega.$$

(2.4)
Therefore, we derive from Schur’s identity (see, for example, [4, p. 50]) that
\[
\sum_{k=0}^{n-1} (-1)^k \omega^{-\binom{k+1}{2}} \binom{2k}{k}_\omega = \sum_{k=0}^{n-1} \omega^k \binom{n-k-1}{k}_\omega = \sum_{j=-\infty}^{\infty} (-1)^j \omega^{-\binom{j+1}{2}} \binom{n-1}{\frac{n-1-2j}{2}}_\omega.
\] (2.5)

Since \(\omega^n = 1\), we have
\[
\binom{n-1}{k}_\omega = \prod_{i=1}^{k} \frac{1-\omega^{n-i}}{1-\omega^i} = \prod_{i=1}^{k} \frac{1-\omega^{-i}}{1-\omega^i} = (-1)^k \omega^{-\binom{k+1}{2}}
\]
for \(0 \leq k \leq n-1\), and the identity (2.3) is easily deduced. For example, if \(n = 5m\), then there are \(2m\) non-zero terms in the right-hand side of (2.5). But the terms indexed \(j = -m + 2k\) and \(j = -m + 2k + 1\) cancel each other for \(k = 0, \ldots, m-1\). \(\square\)

Replacing \(q\) by \(q^{-1}\), one sees that (2.2) is equivalent to
\[
\sum_{k=0}^{n-1} (-1)^k q^{-\binom{k+1}{2}} \binom{2k}{k}_q = \left(\frac{n}{5}\right) q^{\left\lfloor \frac{\lfloor n/5 \rfloor}{2} \right\rfloor} \pmod{\Phi_n(q)}.
\]

If \(n = p^a\) is a prime power, letting \(q = 1\) in (2.2), one immediately gets the Sun–Tauraso congruence (1.2) by the formula
\[
\Phi_n(1) = \begin{cases}
p & \text{if } n = p^a \text{ is a prime power}, \\
1 & \text{otherwise}. \end{cases} \quad (2.6)
\]
(Eq. (2.6) follows from the identity \(q^n - 1 = \prod_{d|n} \Phi_d(q)\) by induction.)

Remark. The first part of the proof of Theorem 2.1 can be generalized as follows. We define the \(q\)-Fibonacci polynomials (see [5]) by \(F_q^0(t) = 0, \ F_q^1(t) = 1, \) and
\[
F_q^n(t) = F_q^{n-1}(t) + q^{n-2} t F_q^{n-2}(t), \quad n \geq 2.
\]

The following is an explicit formula for the \(q\)-Fibonacci polynomials:
\[
F_q^n(t) = \sum_{k \geq 0} q^k \binom{n-k-1}{k}_q t^k. \quad (2.7)
\]

Let \(n > d \geq 0\) and let \(\omega\) be as in Theorem 2.1. Similarly to (2.4), we have
\[
\omega^{-\binom{k-d}{2}} \binom{2k}{k+d}_\omega = \omega^{-\binom{k-d}{2}} (-1)^{k-d} \omega^{(3k+d+1)(k-d)/2} \prod_{j=1}^{k-d} \frac{1 - \omega^{2n-(2k+1-j)}}{1-\omega^j} = (-1)^{k-d} \omega^{(k+d+1)(k-d)} \binom{2n-k-d-1}{k-d}_\omega.
\]
which yields the following congruence

\[
\sum_{k=0}^{n-1} q^{\frac{2k}{2^{e_d}}} \left[\begin{array}{c} 2k \\ k + d \end{array} \right]_q \equiv t^d F_{2(n-d)}^q (-t q^{2d+1}) \pmod{\Phi_n(q)}
\]

by applying (2.7).

3. Congruences modulo \(\Phi_{3j}^j(q) \) and \(\Phi_{5j}^j(q) \)

In this section we give a proof of (1.5) and (1.6). It is well known that

\[
1 - q \equiv 1 - q^b = a \prod_{j=1}^{3j} \Phi_{p j}^j(q)
\]

for any prime \(p \). We need the following two lemmas.

Lemma 3.1. For \(n \geq 0 \), there holds

\[
\sum_{k=0}^{n} (-1)^k q^{2k} \left[\begin{array}{c} n - k \\ k \end{array} \right]_q = (-1)^n \left(\frac{n+1}{3} \right) q^{\frac{n(n-1)}{6}}.
\]

Lemma 3.2. Let \(m, k, d \) be positive integers, and write \(m = ad + b \) and \(k = rd + s \), where \(0 \leq b, s \leq d - 1 \). Let \(\omega \) be a primitive \(d \)th root of unity. Then

\[
\left[\begin{array}{c} m \\ k \end{array} \right]_\omega = \left(\begin{array}{c} a \\ r \end{array} \right) \left[\begin{array}{c} b \\ s \end{array} \right]_\omega.
\]

Remark. Lemma 3.1 has appeared in the literature from different origins (see [7]). A proof using mathematical induction is given in [20] and a multiple extension is proposed in [10]. Lemma 3.2 is equivalent to the \(q \)-Lucas theorem (see [12] and [8, Proposition 2.2]).

We first establish the following theorem.

Theorem 3.3. Let \(m, n \geq 1 \). Then

\[
\sum_{k=0}^{mn-1} q^k \left[\begin{array}{c} 2k \\ k \end{array} \right]_q \equiv \sum_{j=0}^{m-1} \left(\frac{2j}{n} \right) \sum_{k=0}^{n-1} q^k \left[\begin{array}{c} 2k \\ k \end{array} \right]_q \pmod{\Phi_n(q)}.
\]

\[
\sum_{k=0}^{mn-1} (-1)^k q^{-(k+1)} \left[\begin{array}{c} 2k \\ k \end{array} \right]_q \equiv \sum_{j=0}^{m-1} (-1)^j \left(\frac{2j}{n} \right) \sum_{k=0}^{n-1} (-1)^k q^{-(k+1)} \left[\begin{array}{c} 2k \\ k \end{array} \right]_q \pmod{\Phi_n(q)}.
\]

Proof. Let \(q = \omega \) be a primitive \(n \)th root of unity. Then \(\omega^n = 1 \) and

\[
\sum_{k=j_{n+n-1}}^{j_{n+k}} \omega^k \left[\begin{array}{c} 2k \\ k \end{array} \right]_\omega = \sum_{k=0}^{n-1} \omega^k \left[\begin{array}{c} 2jn + 2k \\ jn + k \end{array} \right]_\omega.
\]
\[
\sum_{k=jn}^{jn+n-1} (-1)^k \omega^{-\binom{k+1}{2}} \binom{2k}{k}_\omega = (-1)^{jn} \sum_{k=0}^{n-1} (-1)^k \omega^{-\binom{j+n+k+1}{2}} \binom{2jn+2k}{jn+k}_\omega. \tag{3.4}
\]

By Lemma 3.2 we have
\[
\binom{2jn+2k}{jn+k}_\omega = (2j) \binom{2k}{k}_\omega,
\]
which is equal to 0 if \(2k \geq n\). Noticing that
\[
\omega^{-\binom{j+n+k+1}{2}} = \omega^{-\binom{j+1}{2}} \cdot \omega^{-\binom{k+1}{2}}
\]
and
\[
(-1)^{jn} \omega^{-\binom{j+1}{2}} = (-1)^j,
\]
we can write Eqs. (3.3) and (3.4) as
\[
\sum_{k=jn}^{jn+n-1} \omega^k \binom{2k}{k}_\omega = \frac{(2j)}{j} \sum_{k=0}^{n-1} \omega^k \binom{2k}{k}_\omega, \tag{3.5}
\]
\[
\sum_{k=jn}^{jn+n-1} (-1)^k \omega^{-\binom{k+1}{2}} \binom{2k}{k}_\omega = (-1)^j \binom{2j}{j} \sum_{k=0}^{n-1} (-1)^k \omega^{-\binom{k+1}{2}} \binom{2k}{k}_\omega. \tag{3.6}
\]

Summing (3.5) and (3.6) over \(j\) from 0 to \(m-1\), we complete the proof. \(\square\)

We now state our main theorem in this section.

Theorem 3.4. Let \(a \geq 1\) and \(m \geq 1\). Then
\[
\sum_{k=0}^{3^m-1} q^k \binom{2k}{k}_q \equiv 0 \pmod{\prod_{j=1}^{a} \Phi_3(q)}. \tag{3.7}
\]
\[
\sum_{k=0}^{5^m-1} (-1)^k q^{-\binom{k+1}{2}} \binom{2k}{k}_q \equiv 0 \pmod{\prod_{j=1}^{a} \Phi_5(q)}. \tag{3.8}
\]

Proof. Let \(\omega\) be a primitive \(n\)th root of unity. Then
\[
\omega^k \binom{2k}{k}_\omega = \omega^{k^2+k} \binom{2k}{k}_\omega = \text{conj} \left(\omega^{-k^2-k} \binom{2k}{k}_\omega \right),
\]
where \(\text{conj}(z)\) denotes the complex conjugate of \(z \in \mathbb{C}\). From (2.4) we deduce that
\[
\omega^{-k^2-k} \binom{2k}{k}_\omega = (-1)^k \omega^{\binom{n}{2}} \binom{n-k-1}{k}.
\]
Therefore, by Lemma 3.1, we have
\[\sum_{k=0}^{n-1} \omega^k \left[\frac{2k}{k} \right]_{\omega} = \text{con} \left(\sum_{k=0}^{n-1} (-1)^k \omega^k \left[\frac{n-k-1}{k} \right]_{\omega} \right) = (-1)^{n-1} \left(\frac{n}{3} \right) \omega^{\frac{(n-1)(n-2)}{9}}. \]

This implies that
\[\sum_{k=0}^{n-1} q^k \left[\frac{2k}{k} \right]_{q} \equiv 0 \pmod{\Phi_n(q)} \quad \text{if } 3 | n, \quad (3.9) \]

which also follows directly from Tauraso’s congruence (1.4).

Now, letting \(n = 3^j \) with \(1 \leq j \leq a \) in (3.9) and letting \(n = 5^j \) with \(1 \leq j \leq a \) in (2.2), we get
\[\sum_{k=0}^{3^j-1} q^k \left[\frac{2k}{k} \right]_{q} \equiv 0 \pmod{\Phi_{3^j}(q)}, \]
\[\sum_{k=0}^{5^j-1} (-1)^k q^{-\left(\frac{k+1}{2}\right)} k \left[\frac{2k}{k} \right]_{q} \equiv 0 \pmod{\Phi_{5^j}(q)}. \]

Letting \(m \rightarrow 3^{a-j}m, n \rightarrow 3^j \) in (3.1) and \(m \rightarrow 5^{a-j}m, n \rightarrow 5^j \) in (3.2) respectively, we obtain
\[\sum_{k=0}^{3^a m-1} q^k \left[\frac{2k}{k} \right]_{q} \equiv 0 \pmod{\Phi_{3^j}(q)} \quad (1 \leq j \leq a), \]
\[\sum_{k=0}^{5^a m-1} (-1)^k q^{-\left(\frac{k+1}{2}\right)} k \left[\frac{2k}{k} \right]_{q} \equiv 0 \pmod{\Phi_{5^j}(q)} \quad (1 \leq j \leq a). \]

Since the cyclotomic polynomials are pairwise relatively prime, we complete the proof of (3.7) and (3.8). \(\square \)

We have the following conjecture.

Conjecture 3.5. Let \(a \geq 1 \) and \(m \geq 1 \). Then
\[\sum_{k=0}^{3^a m-1} q^k \left[\frac{2k}{k} \right]_{q} \equiv 0 \pmod{\prod_{j=1}^{a} \Phi_{3^j}^2(q)}, \]
\[\sum_{k=0}^{5^a - 1} (-1)^k \left[\frac{2k}{k} \right] \equiv 5^a \pmod{5^{a+1}}. \]

We now give a dual form of Theorem 2.1. The reader is encouraged to compare it with [20, Theorem 5.1].
Theorem 3.6. Let \(q = e^{2\pi mi/n} \) with \(\gcd(m, n) = 1 \). Then

\[
\sum_{k=0}^{n-1} q^{2k+1} \left[\begin{array}{c} 2k \\ k \end{array} \right]_q = \begin{cases} \left(\frac{m}{n} \right) i \sqrt{3} & \text{if } 3 \mid n, \\ \left(\frac{q}{3} \right) & \text{otherwise}. \end{cases}
\]

Proof. First note that

\[
q^{2k+1} \left[\begin{array}{c} 2k \\ k \end{array} \right]_q = q^{(k+1)^2} \left[\begin{array}{c} 2k \\ k \end{array} \right]_{q^{-1}} = \text{conj}\left(q^{-((k+1)^2)} \left[\begin{array}{c} 2k \\ k \end{array} \right]_q \right)
\]

and \(\Phi_n(q) = 0 \). From (2.4) we deduce that

\[
q^{-(k+1)^2} \left[\begin{array}{c} 2k \\ k \end{array} \right]_q = (-1)^k q^{(k+1)-2} \left[\begin{array}{c} n-k-1 \\ k \end{array} \right]_q.
\]

Therefore,

\[
\sum_{k=0}^{n-1} q^{2k+1} \left[\begin{array}{c} 2k \\ k \end{array} \right]_q = \text{conj}\left(\sum_{k=0}^{n-1} (-1)^k q^{(k+1)-2} \left[\begin{array}{c} n-k-1 \\ k \end{array} \right]_q \right).
\]

Since

\[
q^{(k+1)-2} \left[\begin{array}{c} n-k-1 \\ k \end{array} \right]_q = q^{-n} \left(q^{(k+1)} \left[\begin{array}{c} n-k \\ k+1 \end{array} \right]_q - q^{(k+1)} \left[\begin{array}{c} n-k-1 \\ k+1 \end{array} \right]_q \right),
\]

by Lemma 3.1 we have

\[
\sum_{k=0}^{n-1} (-1)^k q^{(k+1)} \left[\begin{array}{c} n-k-1 \\ k \end{array} \right]_q = (-1)^n \left(\left(\frac{n+2}{3} \right) q^{\frac{n+5}{6}} + \left(\frac{n+1}{3} \right) q^{\frac{n-7}{6}} \right).
\]

The result then follows easily. \(\Box \)

Corollary 3.7. For any positive integer \(n \) with \(\gcd(n, 3) = 1 \), there holds

\[
\sum_{k=0}^{n-1} q^{2k+1} \left[\begin{array}{c} 2k \\ k \end{array} \right]_q \equiv \left(\frac{n}{3} \right) \pmod{\Phi_n(q)}.
\]

For the following remarkable congruence of Sun and Tauraso [18, (1.1) with \(d = 0 \)]:

\[
\sum_{k=0}^{p^2-1} \left(\begin{array}{c} 2k \\ k \end{array} \right) \equiv \left(\frac{p^2}{3} \right) \pmod{p^2},
\]

we have two interesting \(q \)-versions to offer:
Conjecture 3.8. Let \(p \) be a prime and \(a \geq 1 \). Then

\[
\sum_{k=0}^{p^n-1} q^k \binom{2k}{k}_q \equiv \left(\frac{p^n}{3} \right) q^{\frac{p^n}{2} (-\frac{p^n}{2})} (p^n)^{\frac{p^n}{2} + \frac{p^n}{2}} (mod \ \Phi_{p^n}(q)),
\]

and, for \(p \neq 3 \),

\[
\sum_{k=0}^{p^n-1} q^{2k+1} \binom{2k}{k}_q \equiv \left(\frac{p^n}{3} \right) q^{\frac{p^n}{2} + \frac{p^n}{2}} (mod \ \Phi_{p^n}(q)).
\]

4. Some \(q \)-analogues of (1.3)

To give \(q \)-analogues of (1.3), we need to establish the following \(q \)-series identities:

Theorem 4.1. Let \(n \geq 1 \) and \(d = 0, 1, \ldots, n \). Then

\[
\sum_{k=0}^{n} (-1)^{n-k} q^{\binom{n-k}{2}} \binom{n}{k}_q \frac{2k}{k+d}_q \frac{(-q^{k+1}; q)_{n-k}}{(-q^{k}; q)_{n-k}} = \begin{cases} q^\frac{n^2-n^2}{2} \frac{\binom{n}{n^2}_q}{q^2} & \text{if } n-d \text{ is even}, \\ 0 & \text{if } n-d \text{ is odd}, \end{cases}
\]

(4.1)

\[
\sum_{k=0}^{n} (-1)^{n-k} q^{\binom{n-k}{2}} \binom{n}{k}_q \frac{2k}{k+d}_q \frac{(-q^{k}; q)_{n-k}}{(-q^{k}; q)_{n-k}} = \begin{cases} q^\frac{n^2-n^2}{2} \frac{\binom{n}{n^2}_q}{q^2} & \text{if } n-d \text{ is even}, \\ q^\frac{n^2-n^2}{2} (q^n-1) \frac{\binom{n}{n^2-1}_q}{q^2} & \text{if } n-d \text{ is odd}. \end{cases}
\]

(4.2)

Proof. The \(d = 0 \) case of (4.1) was found by Andrews [2, Theorem 5.5]. Both (4.1) and (4.2) can be proved similarly by using Andrews’s \(q \)-analogue of Gauss’s second theorem [1,2]:

\[
\sum_{k=0}^{\infty} \frac{(a; q)_k (b; q)_k q^{k+1}}{(q; q)_k (ab; q^2)_k} = \frac{(-q; q)_\infty (aq; q^2)_\infty (bq; q^2)_\infty}{(abq; q^2)_\infty},
\]

(4.3)

where \((z; q)_\infty = \lim_{n \to \infty} (z; q)_n\). We first sketch the proof of (4.1).

Recall that \((q; q)_{2n} = (q; q^n)(q^2; q^n)(a; q)_n(-a; q)_n = (a^2; q^n)_n\) and

\[
(a; q)_{n-k} = \frac{(a; q)_n}{(q^{1-n}/a; q)_k} \left(-\frac{q}{a} \right)^k q^{(k+1)/2}.
\]

Replacing \(k \) by \(n-k \), we can write the left-hand side of (4.1) as

\[
\sum_{k=0}^{n} (-1)^k q^{k+1} \binom{n}{k}_q \frac{2n-2k}{n-k+d}_q \frac{(-q^{n-k+1}; q)_k}{(-q^{n-k}; q)_k}
\]

\[= \begin{cases} 2n \sum_{k=0}^{n} \frac{(q^{-n-d}; q)_k (q^{-n-d}; q)_k q^{k(k+1)/2}}{(q; q)_k (q^{-2n+1}; q^2)_k} & \text{if } n-d \text{ is even}, \\ 2n \sum_{k=0}^{n} \frac{(q^{-n-d+1}; q^2)_\infty (q^{-n-d+1}; q^2)_\infty (q^{-2n+1}; q^2)_\infty}{(q^{-2n+1}; q^2)_\infty} & \text{if } n-d \text{ is odd}. \end{cases}
\]

(4.3)
we obtain the following result by substituting $n \in \mathbb{N}$ into (4.1) and (4.2).

This proves (4.1). Observing that

$$
\frac{(a; q)_k(b; q)_kq^{\frac{k}{2}}}{(q; q)_k(abq; q^2)_k} - \frac{(a; q)_k(b; q)_kq^{\frac{k+1}{2}}}{(q; q)_k(abq; q^2)_k} = \frac{(1 - a)(1 - b)(aq; q)_{k-1}(bq; q)_{k-1}q^{\frac{k}{2}}}{(1 - abq)(q; q)_{k-1}(abq^2; q^2)_{k-1}}.
$$

we derive the following q-series identity from (4.3):

$$
\sum_{k=0}^{\infty} \frac{(a; q)_k(b; q)_kq^{\frac{k}{2}}}{(q; q)_k(abq; q^2)_k} = \frac{(-q; q)_\infty(aq; q^2)_\infty(bq; q^2)_\infty}{(abq; q^2)_\infty} + \frac{(-q; q)_\infty(a; q^2)_\infty(b; q^2)_\infty}{(abq; q^2)_\infty}.
$$

Replacing k by $n - k$, we can write the left-hand side of (4.2) as

$$
\sum_{k=0}^{n} (-1)^k q^{\frac{k}{2}} \left[\sum_{q=2n-2k+1}^{n} \frac{2n - 2k}{2k} \right] (q^n - k; q)_k
\begin{align*}
&= \left[\frac{2n}{n + d} \right] \sum_{q=2n-2k+1}^{n} \frac{(q^{n-d}; q)_k(q^{-n+d}; q)_kq^{\frac{k+1}{2}}}{(q; q)_k(q^{-2n+1}; q^2)_k} \left(1 + q^{n-k} \right) \\
&= \left[\frac{2n}{n + d} \right] \frac{(-q; q)_\infty(q^{-n-d+1}; q^2)_\infty(q^{-n+d+1}; q^2)_\infty}{(q^{-2n+1}; q^2)_\infty} \left(\frac{2n}{1 + q^n} \right) \\
&\quad + \frac{q^n}{1 + q^n} \left[\frac{2n}{n + d} \right] \frac{(-q; q)_\infty(q^{-n-d}; q^2)_\infty(q^{-n+d}; q^2)_\infty}{(q^{-2n+1}; q^2)_\infty} \\
&\begin{cases}
q^{\frac{n^2 - d^2}{2}} \left[\frac{n - d}{2} \right] q^2 & \text{if } n - d \text{ is even}, \\
q^{\frac{n^2 - d^2 - 1}{2}}(q^n - 1) \left[\frac{n - 1}{n - d - 1} \right] q^2 & \text{if } n - d \text{ is odd}.
\end{cases}
\end{align*}
$$

This proves (4.2). \hfill \Box

Since $q^n \equiv 1 \pmod{\Phi_n(q)}$ and

$$
\left[\begin{array}{c}
\frac{n - 1}{k} \\
\frac{n - 2}{k}
\end{array} \right] _q = \prod_{j=1}^{k} \frac{1 - q^{n-j}}{1 - q^j} \equiv (-1)^k q^{-k(k+1)} \pmod{\Phi_n(q)},
$$

$$
\left[\begin{array}{c}
\frac{n - 1}{k} \\
\frac{n - 2}{k}
\end{array} \right] _{q^2} = \prod_{j=1}^{k} \frac{1 - q^{2n-2j-2}}{1 - q^{2j}} \equiv (-1)^k q^{-k(k+3)} \pmod{\Phi_n(q)},
$$

we obtain the following result by substituting n with $n - 1$ in (4.1) and (4.2).
Corollary 4.2. Let $n \geq 1$ and $d = 0, 1, \ldots, n - 1$. Then

$$
\sum_{k=0}^{n-1} q^k \left[\begin{array}{c} 2k \\ k+d \end{array} \right] q (-q^{k+1}; q)_{n-k-1}
\equiv \begin{cases}
0 & \text{if } n - d \text{ is even,} \\
(-1)^{n+d-1} q \left(\frac{d(2n - 3d) - n^2 + 2d}{4} \right) \frac{1 - q^{n-d}}{1+q} & \text{if } n - d \text{ is odd}
\end{cases} \pmod{\Phi_n(q)}.
$$

Replacing q by q^{-1} in (4.5), we get

$$
\sum_{k=0}^{n-1} q^{-\left(\frac{k+1}{2}\right)} \left[\begin{array}{c} 2k \\ k+d \end{array} \right] q (-q^{k+1}; q)_{n-k-1}
\equiv \begin{cases}
0 & \text{if } n - d \text{ is even,} \\
(-1)^{n+d-1} q \frac{1 - q^{n-d}}{1+q} & \text{if } n - d \text{ is odd}
\end{cases} \pmod{\Phi_n(q)}.
$$

We also have the following variant of Theorem 4.1.

Theorem 4.3. Let $n \geq 1$ and $d = 0, 1, \ldots, n$. Then

\begin{align*}
\sum_{k=0}^{n} (-q)^{n-k} \left[\begin{array}{c} n \\ k \end{array} \right] q \left[\begin{array}{c} 2k \\ k+d \end{array} \right] q (-q^{k+1}; q)_{n-k} &= \begin{cases}
\left[\begin{array}{c} n-d \\ 2 \end{array} \right] q^2 & \text{if } n - d \text{ is even,} \\
(1 - q^{2n}) \left[\begin{array}{c} n-1 \\ n-1-d \end{array} \right] q^2 & \text{if } n - d \text{ is odd}
\end{cases} \tag{4.7}
\end{align*}

\begin{align*}
\sum_{k=0}^{n} (-q)^{n-k} \left[\begin{array}{c} n \\ k \end{array} \right] q \left[\begin{array}{c} 2k \\ k+d \end{array} \right] q (-q^{k}; q)_{n-k} &= \begin{cases}
\left[\begin{array}{c} n-d \\ 2 \end{array} \right] q^2 & \text{if } n - d \text{ is even,} \\
(1 - q^{2n}) \left[\begin{array}{c} n-1 \\ n-1-d \end{array} \right] q^2 & \text{if } n - d \text{ is odd.} \tag{4.8}
\end{cases}
\end{align*}

Proof. We would only prove (4.7), since the proof of (4.8) is similar. Replacing q by q^{-1} and multiplying by $q^{n^2-d^2+1}$, one sees that (4.7) is equivalent to the following identity:

\begin{align*}
\sum_{k=0}^{n} (-1)^{n-k} q^{\left(\frac{n-k-1}{2}\right)} \left[\begin{array}{c} n \\ k \end{array} \right] q \left[\begin{array}{c} 2k \\ k+d \end{array} \right] q (-q^{k+1}; q)_{n-k}
&= \begin{cases}
q^{\frac{n^2-d^2+1}{2}} \left[\begin{array}{c} n \\ 2 \end{array} \right] q^2 & \text{if } n - d \text{ is even,} \\
q^{\frac{(n-1)^2-d^2}{2}} (q^{2n} - 1) \left[\begin{array}{c} n-1 \\ n-d-1 \end{array} \right] q^2 & \text{if } n - d \text{ is odd.} \tag{4.9}
\end{cases}
\end{align*}

Replacing k by $n - k$, we can write the left-hand side of (4.9) as
\[\sum_{k=0}^{n} \frac{(-1)^k q^{k+1}}{q} \binom{n}{k} \left(\binom{2n+1}{n} q^{n-k+1} : q \right) \]

\[= \frac{2n}{n + d} q^{\frac{n}{4}} \sum_{k=0}^{n} \frac{(q^{-n-d} : q)_k (q^{n+d} : q)_k}{(q : q)_{k(q-2n+1)} : q^2} \]

\[= \frac{q^{\frac{2n}{4}}}{n + d} \left(\frac{(q^{-n-d+1} : q^2)_{\infty} (q^{n+d+1} : q^2)_{\infty}}{(q : q)_{\infty} (q^{-2n+1} : q^2)_{\infty}} \right) (by \ (4.4)) ,\]

which is equal to the right-hand side of (4.9). □

Remark. Whenever they are discovered, both Theorem 4.1 and Theorem 4.3 can be proved by the q-Zeilberger algorithm (see, for example, [11, p. 113]).

As before, we have the following consequences.

Corollary 4.4. Let $n \geq 1$ and $d = 0, 1, \ldots, n - 1$. Then

\[\sum_{k=0}^{n-1} q^{-k(k+3)/2} \binom{2k}{k+d} \left(\frac{-q^{k+1}}{q} \right)_{n-k-1} \]

\[\equiv \begin{cases}
(-1)^{n+d} q^{\frac{n(n-d+1)}{4}} (1 - q^{n-d}) & \text{if } n - d \text{ is even,} \\
(-1)^{n+d} q^{\frac{n(n-d+1)}{4}} & \text{if } n - d \text{ is odd}
\end{cases} \quad (\mod \Phi_n(q)) . \quad (4.10) \]

\[\sum_{k=0}^{n-1} q^{-k(k+3)/2} \binom{2k}{k+d} \left(\frac{-q^k}{q} \right)_{n-k-1} \]

\[\equiv \begin{cases}
(-1)^{n+d} q^{\frac{n(n-d+1)}{4}} (1 - q^{n-d}) & \text{if } n - d \text{ is even,} \\
(-1)^{n+d} q^{\frac{n(n-d+1)}{4}} & \text{if } n - d \text{ is odd}
\end{cases} \quad (\mod \Phi_n(q)) . \quad (4.11) \]

If we change q to q^{-1}, then the congruence (4.10) may be rewritten as

\[\sum_{k=0}^{n-1} q^{2k} \binom{2k}{k+d} \left(\frac{-q^{k+1}}{q} \right)_{n-k-1} \]

\[\equiv \begin{cases}
(-1)^{n+d} q^{\frac{2(n-d+1)}{4} - 1} (1 - q^{n-d}) & \text{if } n - d \text{ is even,} \\
(-1)^{n+d} q^{\frac{2(n-d+1)}{4}} & \text{if } n - d \text{ is odd}
\end{cases} \quad (\mod \Phi_n(q)) . \]

while the congruences (4.6) and (4.11) exchange each other.

5. Open problems

Inspired by the $q = 1$ case of congruences (1.5)–(1.6) and the work of Sun [16], we would like to make the following conjectures:
Conjecture 5.1. Let p be a prime factor of $4m - 1$ with $m \in \mathbb{Z}$ and let $a, n \geq 1$. Then
\[
\sum_{k=0}^{p^an-1} \binom{2k}{k} m^k \equiv 0 \pmod{p^a}.
\]

Conjecture 5.2. Let m be a positive integer. Then
\[
\sum_{k=0}^{4m-2} \binom{2k}{k} m^k \equiv 0 \pmod{(4m - 1)},
\]
\[
\sum_{k=0}^{4m} \binom{2k}{k} (-m)^k \equiv 0 \pmod{(4m + 1)}.
\]

It is easy to see that Conjecture 5.1 implies Conjecture 5.2 but not vice versa.

Conjecture 5.3. Let a be a positive integer. Then
\[
\sum_{k=0}^{3^a-1} (-2)^k \binom{2k}{k} \equiv 3^a \pmod{3^{a+1}},
\]
\[
\sum_{k=0}^{3^a-1} (-5)^k \binom{2k}{k} \equiv 2 \cdot 3^a \pmod{3^{a+1}},
\]
\[
\sum_{k=0}^{7^a-1} (-5)^k \binom{2k}{k} \equiv 7^a \pmod{7^{a+1}}.
\]

Conjecture 5.4. Let m be a positive integer. If $4m - 1$ is a prime and $m \neq 1$, then
\[
\sum_{k=0}^{(4m-1)^a-1} \binom{2k}{k} m^k \equiv (4m - 1)^a \pmod{(4m - 1)^{a+1}}.
\]
If $4m + 1$ is a prime, then
\[
\sum_{k=0}^{(4m+1)^a-1} \binom{2k}{k} (-m)^k \equiv (4m + 1)^a \pmod{(4m + 1)^{a+1}}.
\]

Conversely, we make the following conjecture, which gives a sufficient condition for whether $4m - 1$ or $4m + 1$ is a prime. We have checked the cases $m \leq 1500$ via Maple, not finding any counterexamples.

Conjecture 5.5. Let m be a positive integer. If $m \neq 30$ and
\[
\sum_{k=0}^{4m-2} \binom{2k}{k} m^k \equiv 4m - 1 \pmod{(4m - 1)^2},
\]
then $4m - 1$ is a prime. If
\[\sum_{k=0}^{4m} \binom{2k}{k} (-m)^k \equiv 4m + 1 \pmod{(4m + 1)^2}, \]
then $4m + 1$ is a prime.

The following conjecture looks a little different but seems also very challenging.

Conjecture 5.6. Let a and n be positive integers. Then
\[\sum_{k=0}^{5^n n - 1} \binom{4k}{2k} \binom{2k}{k}^2 \equiv 0 \pmod{5^a}, \]
\[\sum_{k=0}^{5^n - 1} \binom{4k}{2k} \binom{2k}{k}^2 \equiv (-1)^a 5^a \pmod{5^{a+1}}. \]

Remark. Recently, Pan and Sun [14] have confirmed the first congruence in Conjecture 3.5 and Sun [17] has proved Conjectures 5.1–5.4 (naturally including the second congruence in Conjecture 3.5).

Problem 5.7. Are there any q-analogues of Conjectures 5.1–5.6?

Acknowledgments

The authors thank the anonymous referee for helpful comments on this paper. The first author was sponsored by Shanghai Educational Development Foundation under the Chenguang Project (#2007CG29), Shanghai Rising-Star Program (#09QA1401700), Shanghai Leading Academic Discipline Project (#B407), and the National Science Foundation of China (#10801054). The second author was supported by the project MIRA 2008 of Région Rhône-Alpes.

References