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Abstract

Background: Malaria is a devastating infectious disease caused by Plasmodium parasites transmitted through the
bites of infected Anopheles mosquitoes. Salivary glands are the only mosquito tissue invaded by Plasmodium sporozoites,
being a key stage for the effective parasite transmission, making the study of Anopheles sialome highly relevant.

Methods: RNA-sequencing was used to compare differential gene expression in salivary glands of uninfected and
Plasmodium berghei-infected Anopheles coluzzii mosquitoes. RNA-seq results were validated by quantitative RT-PCR.
The transmembrane glucose transporter gene AGAP007752 was selected for functional analysis by RNA interference.
The effect of gene silencing on infection level was evaluated. The putative function and tertiary structure of
the protein was assessed.

Results: RNA-seq data showed that 2588 genes were differentially expressed in mosquitoes salivary glands in
response to P. berghei infection, being 1578 upregulated and 1010 downregulated. Metabolism, Immunity,
Replication/Transcription/Translation, Proteolysis and Transport were the mosquito gene functional classes more
affected by parasite infection. Endopeptidase coding genes were the most abundant within the differentially expressed
genes in infected salivary glands (P < 0.001). Based on its putative function and expression level, the transmembrane
glucose transporter gene, AGAP007752, was selected for functional analysis by RNA interference. The results
demonstrated that the number of sporozoites was 44.3 % lower in mosquitoes fed on infected mice after
AGAPP007752 gene knockdown when compared to control (P < 0.01).

Conclusions: Our hypothesis is that the protein encoded by the gene AGAPP007752 may play a role on An. coluzzii
salivary glands infection by Plasmodium parasite, working as a sporozoite receptor and/or promoting a favorable
environment for the capacity of sporozoites.
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Background
Malaria is a mosquito-borne infectious disease caused by
Plasmodium parasites, with 200 million cases estimated
to occur around the world, each year. Human malaria is
transmitted exclusively through the bites of infected
Anopheles mosquitoes, being Anopheles coluzzii the
main vector in Africa [1].

Transmission of Plasmodium parasites is initiated
through the ingestion of gametocytes by female mosquitoes
feeding on an infected individual. Male and female gametes
produce, after fertilization, zygotes that differentiate into
motile ookinetes and invade the midgut epithelium.
Ookinetes differentiate into oocysts after emerging on
the hemocoel side, mature and release thousands of spo-
rozoites into the hemolymph. When infected mosquitoes
bite an individual and release some of these sporozoites,
the transmission cycle is completed [2].
Of all mosquito tissues and cell types that the sporozo-

ites come in contact with, they only invade the salivary
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glands (SG) which, together with mosquito saliva, can be
considered central to the interaction between parasite,
vector and mammalian hosts [3]. The sporozoite at-
taches to the basal lamina and subsequently binds to the
basolateral membrane of the epithelial cells. This attach-
ment and invasion are facilitated by the interaction
between sporozoite and SG surface molecules [4], mean-
ing the invasion depends on parasite recognition of
mosquito SG surface components [5]. The maturation of
sporozoite in the SGs is a key stage for the effective
transmission, increasing sporozoite ability to infect
vertebrate hepatocytes [3].
Previous studies have demonstrated that carbohydrates

receptors may have an important role on parasite-vector
interaction [6–9]. Although the relation between oocysts
and carbohydrates has been reported [6, 7], their interac-
tions with SG remains unclear.
In mosquito, as well as in other arthropods, RNA-

sequencing (RNA-seq) and RNA interference (RNAi) have
been applied for de novo transcriptome assemblies
and expression profiles obtained at a specific condition
[10–12] and for the study of gene function [13–16].
The publication of genome sequences from several

arthropod vector species [17, 18] combined with tran-
scriptomics and proteomics analyses of their SG extracts
[19–23] revealed new insights into the diversity of salivary
components in these organisms. The SG transcriptome
and proteome of An. coluzzii have been characterized,
providing a full description of the salivary proteins in this
species [24]. However, despite the fact that the genome of
An. coluzzii has already been sequenced [17], a significant
number of genes still do not have a putative function
assigned and, although there are reports concerning the
characterization of mosquito SG genes [25–27], little is
known about SG protein-sporozoite interactions.
In the absence of a licensed malaria vaccine and facing

an increase in parasite resistance to new combined drugs
and to insecticides used for indoor spraying and in bed
nets, the development of complementary measures for
vector control are highly needed [28]. Preliminary results
obtained in arthropod vectors with impact on both hu-
man and animal health revealed that protective antigens
can be used for the development of new tools against
both vectors and pathogens [29–33].
Herein, we report a RNA-seq analysis of differential

gene expression in the salivary glands of An. coluzzii
elicited by P. berghei infection. A catalogue of transcripts
was produced and analyzed, providing a valuable plat-
form for future research. Further, gene expression was
experimentally validated. A SG membrane transporter
gene exhibiting the highest expression level regarding
the transport functional class was chosen for functional
analysis and the effect of gene knockdown on malaria
parasite levels was further evaluated. A three dimensional

model was elaborated and discussed. These findings will
improve our understanding of mosquito SG infection
process, contributing to the development of new measures
for malaria control.

Methods
Ethics statement
The maintenance and care of experimental animals was
carried out in accordance to the Europe Directive 86/
609/EEC and Portuguese law (Decreto-Lei 129/92) rec-
ommendations and protocol approved by the Divisão
Geral de Alimentação e Veterinária (DGAV), Portugal,
under Portaria 8 n°1005/92 from 23rd October. Authors
directly involved with animal manipulation were licensed
to conduct research using laboratory animals.

Mosquito rearing
An. coluzzii s.s (An. gambiae molecular M form) of the
Yaoundé strain mosquitoes were obtained from the In-
stitute of Hygiene and Tropical Medicine insectary,
reared at 27 °C, 70 % relative humidity under a 12 h
light/dark photoperiod and fed ad libitum on a 10 %
glucose solution. The adult female mosquitoes used in
these experiments were aged between 3–5 days.

P. berghei GFP infections
Mosquitos were infected with P. berghei parasites (strain
ANKA), which constitutively express green fluorescent
protein (GFP) [34]. Parasites were maintained by serial
passage in 3- to 4-week-old female CD1 mice (Mus mus-
culus) from frozen stocks. Parasitaemia were determined
2–3 days after passage using light microscopy by metha-
nol fixation of air-dried blood smears and stained with
20 % (w/v) Giemsa solution. Mosquitos were allowed to
feed on mice when parasitaemia was between 4 and 6 %
and 4–5 exflagellations/field were observed. Female
mosquitoes (100 per group) were fed on anesthetized
mice during 40–45 min. Non-fed females were removed
from the cage. Infected and control (fed on uninfected
mice) mosquitoes were kept at 21 °C and 70 % humidity
to allow parasite development. Midguts were dissected
8–9 days post-blood meal (PBM) to confirm the presence
of oocysts, using fluorescent microscopy.

RNA extraction
Mosquitos were cold anaesthetized on ice and placed
onto a glass slide in phosphate-buffered saline (PBS). To
obtain the SG free of other tissues, legs and the head
were first pulled off using forceps, the thorax was
pushed down and the connection between these tissues
and the SG was cut using a needle-tip, under a stereo-
scopic microscope at 4X magnification (Motic SMZ-171B,
China). SG were dissected 18–19 days PBM, collected
in phosphate buffer containing DEPC (DEPC-PBS) before
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transferred to RNA later (Ambion, Austin, TX, USA) and
frozen at −80 °C until utilization. Total RNA was extracted
using the RNeasy kit (Qiagen, Inc., Valencia, California,
USA). After extraction, the RNA samples were quantified
and analyzed for purity on a ND-1000 Spectrophotometer
(NanoDrop ND1000, Thermo Fisher Scientific, Whaltman,
MA). Extracted RNA obtained from six pools of SG
(three from infected mosquitoes and three from unin-
fected mosquitoes) was used for RNA-seq. To obtain
the quantity needed to perform RNA-seq, the samples
were pooled, resulting in one biological replicate of
SG infected mosquitoes and one biological replicate
of SG uninfected mosquitoes.

RNA-seq library preparation and sequencing
RNA quality and integrity were checked on an Agilent
2100 Bioanalyzer Nano Chip (Agilent Technologies, Santa
Clara, CA, USA). The RNA-seq library preparation and
sequencing were performed according with Ayllón and
co-workers (2015) [35], using total RNA and Illumina
TruSeq™ RNA Sample Prep Kit v2 (Illumina, San Diego,
CA, USA), following the manufacturer’s protocol.
The quality of the FASTQ sequences was enhanced by

trimming off low-quality bases using the “Trim sequences”
option of the CLC Genomics Workbench version 5.5.1
(CLC Bio, Cambridge, MA, USA). The quality-filtered se-
quence reads are used for further analysis with the CLC
Genomics Workbench. First, an alignment against the An.
coluzzii genome reference (ftp://ftp.ensemblgenomes.org/
pub/metazoa/release-15/fasta/anopheles_gambiae/dna/)
and calculation of the expression values was performed
using the “RNA-seq” option. The comparison of expression
values and statistical analysis was performed with the
“Expression analysis” option. To normalize for the differ-
ence in number of mapped reads and transcript length,
quality control was performed, comparing the overall distri-
butions of the RPKM (reads per kilobase of exon model per
Million mapped reads) expression between samples and
groups [36]. Finally, samples were clustered into groups
using a hierarchical clustering approach. The hierarchical
structure was chosen because the Bayesian model-based
approach reduces the bias caused by the absence of the bio-
logical replicates, increasing the precision of differentially
expressed genes [37]. P-value calculation of the Z-test was
based on the raw counts (total exon reads per gene). Genes
were considered significantly differentially expressed if the
P-value was below 0.05 and the fold - change greater than
one standard deviations above or below the average fold
change across all genes. To analyze the statistically repre-
sented gene classes or categories, the g: Profiler web server
(http://biit.cs.ut.ee/gprofiler/) was used.
The gene selected for RNA interference assay was

filtered using location predictors WoLF PSORT [38] and
MultiLoc2 [39].

Validation of RNA-seq data
A total of eighteen transcripts identified by RNA-seq as
being differentially regulated and belonging to different
functional classes were chosen based on fold-change
value (Additional file 1: Table S1) to confirm RNA-seq
results by quantitative real-time-Polymerase Chain Reac-
tion (qPCR). Total RNA extracted from infected and
non-infected An. coluzzii SG (100 per group) was used
to synthesize cDNA.
The Primer 3 platform (http://bioinfo.ut.ee/primer3-

0.4.0/) was used to design all primers (Additional file 2;
Table S2). Gene expression was assessed by iQ™ SYBR®
Green supermix for qPCR (Bio-Rad, Hercules, CA, USA)
in a total volume of 20 μl, using the iCycler iQ™ (Bio-Rad,
Hercules, CA, USA). PCR involved an initial denaturation
at 95 °C for 10 min, 40 cycles of 10 sec at 95 °C, 45 sec at
the appropriate annealing temperature for each set of
primers (Additional file 2: Table S2). Fluorescence read-
ings were taken at 62 °C after each cycle. A final extension
at 72 °C for 5 min was completed before deriving a melt-
ing curve (60–95 °C) to determinate the quality of the
amplicon. Relative expression results were normalized
with An. coluzzii ribosomal protein S7 (Vectorbase:
AGAP010592) as internal standard and analyzed by the 2
delta Ct (ΔΔCt) method [40]. Three biological replicates
with independent preparations of total RNA were per-
formed for each gene.
Pearson’s correlation was used to compare the results

obtained in both RNA-seq and qPCR analyzes.

Gene silencing assays
RNAi-mediated gene-silencing assays were performed to
evaluate the effect of AGAP007752 gene knockdown on
P. berghei-infected An. coluzzii mosquitoes.
Specific primers containing T7 promoter sequences

at the 5′-end were synthesized (Additional file 3:
Table S3) and dsRNA produced using the MEGA-
script T7 kit (Ambion, Austin, TX, USA), according
to manufacturer’s instructions. An exogenous gene,
mouse beta-2microglobulin (β2M) (GenBank: NM_009735)
was used as control for the silencing experiments.
The dsRNA was purified, diluted in sterile water to a
concentration of 4 μg/ml and quality was assessed by
spectrometry and agarose gel. For gene knockdown,
we perform three experiments of 300 P. berghei infected
female mosquitoes (three to five- days-old) for each gene.
Fourteen days PBM, cold anesthetized mosquitoes were
injected intrathoraxically with 69 nl (4 μg/ml) of dsRNA
using a nano-injector (Nanoject, Drummond Scientific,
Broomall, PA, USA). The control group was injected
with dsβ2M. Quantitative RT-PCR was used to verify
the silencing effect. The unpaired two-tailed t-test
was used to compare the different experimental
groups.
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Sporozoite quantification
SG were dissected 3–4 days post injection (18–19 PBM)
and pools of 15–20 SG per treatment were used to per-
form sporozoite quantification. Each SG pool was ho-
mogenized in a total volume of 100 μl of phosphate-
buffered saline using a mini glass tissue homogenizer
(Kontes Glass Co., Vineland, NJ, USA). Sporozoites were
counted by light microscopy using a hemocytometer
[25]. Sporozoites quantification was performed using
three independent biological replicates.

Phylogenetic analysis
Sequences were aligned with the MUSCLE (v3.7) pro-
gram, configured for highest accuracy [41] and poorly
aligned and unsupported regions were removed with
Gblocks (v 0.91b) [42]. The maximum likelihood method,
implemented in the PhyML programme (v3.0 aLRT), was
used to reconstruct the phylogenetic tree [43, 44]. Reliabil-
ity for internal branches was assessed using the bootstrap-
ping method (1000 bootstrap replicates). For the Bayesian
analysis we used MrBayes (v3.2.2) implementing a pro-
portion of invariable sites and gamma-distributed rate
variation across sites (I + G) with a WAG amino acid
substitution model. Two independent runs were executed,
each with four Markov Chain Monte Carlo (MCMC) of
50,000,000 generations, sampling every 1000th generation
(this resulted in a StDev < 0.001). The two phylogenetic
analyses agreed on tree topology; therefore, bootstrap
values and posterior probabilities were included in a single
tree. Graphical representation and editing of the phylo-
genetic tree was performed with TreeDyn (v 198.3) [45].

Tertiary modelling and induced-fit ligand docking
To approximate an accurate tertiary model of the An.
coluzzii protein, we used several protein structure predic-
tion servers, namely FOLDpro [46], I-TASSER [47], 3D-
Jigsaw, LOOPP [48], Rosetta [49], Phyre2 [50] and Swiss-
Model [51]. To assess the quality of the output models and
to choose the top candidates, we used Resprox [52], Qmean
[53], ModFOLD [54]. A consensus from all three quality
assessment servers agreed that the Rosetta models were the
most adequate. We then manually inspected the top three
Rosetta models to determine any unresolved secondary
structures (i.e., α-helices). The top candidate was refined via
minimization and optimization of the hydrogen-bond
network by means of side chain sampling using the
Schrodinger’s Maestro Protein Preparation Wizard [55].
Briefly, the Protein Preparation Wizard analyzes the struc-
ture to build a cluster of hydrogen-bonds and with the
highest degree of sampling, the algorithm performs 100000
Monte Carlo orientations for each cluster. Based on the
electrostatic and geometric scoring functions, the algorithm
then determines an optimized structure.

Results and discussion
An. coluzzii SG transcriptome
RNA-seq is a quite recent technology that allows obtain-
ing the whole transcriptome and absolute gene expres-
sion measurements, for defined conditions. RNA-seq has
been used previously to obtain a depth annotation of
An. coluzzii midgut and, for different purposes, in other
mosquitoes as An. funestus, An. albimanus and Ae.
aegypti [11, 12, 56–58].
For the characterization of An. coluzzii female SG

transcriptome, we used RNA-seq to compare transcript
abundance in P. berghei-infected and control uninfected
SG. Three groups of 100 mosquitoes each, fed on in-
fected and on uninfected healthy mice were used for
RNA-seq analysis and further validation using qPCR.
The oocysts counting on eighth day of infection showed
that mosquitoes on infected group had 86–89 % infection
rate; groups showing lower infection rates were rejected.
The relative abundance of transcripts was analyzed.

Of the total predicted transcriptome (15322 genes of
An. coluzzii, according to version 72, ENSEMBL (http://
www.ensembl.org/index.html), 12690 genes and 13611
transcripts were found in the SG transcriptome. Of them,
2588 genes were differentially expressed in response to
P. berghei infection (Additional file 4: Table S4), being
1578 (61 %) upregulated and 1010 (39 %) downregulated
(Fig. 1a-c). RNA-seq data are available in the ArrayExpress
database (www.ebi.ac.uk/arrayexpress) under accession
number E-MTAB-3415. These results indicates that
RNA-seq is a high-throughput technique enabling to
detect a high number of transcripts when compared
with other approaches [59, 60], as microarrays that was
recently used by Waisberg and co-workers [61], finding 43
genes differentially expressed.
To increase insight into SG transcriptome of An. coluzzii

adult female mosquitos, differentially expressed products
were functionally annotated using Gene Ontology (GO)
terms description (Functional Class, Biological Process and
Molecular Function) (Additional file 4: Table S4; Fig. 1a, d).
Most of the genes were assigned as unknown function due
to the lack of functional data. Quantitatively, genes belong-
ing to Metabolism, Replication-Transcription-Translation
(RTT) and Transport classes showed to be the most upreg-
ulated (Fig. 1b), whereas Metabolism, Cell Function and
Transport were the most downregulated classes (Fig. 1c).
The expression of 18 genes identified as differentially

expressed by RNA-seq (10 upregulated and 8 down-
regulated in response to infection) was analyzed by
qPCR and RNA-seq results confirmed in 15 of them
(Additional file 1: Table S1). Regression analysis be-
tween the two methods revealed a strong correlation
between mRNA levels estimated by RNA-seq and qPCR
(Pearson’s correlation coefficient r = 0.7957) (Additional
file 5: Figure S1).
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As the majority of genes had a low fold-change value
(75.6 % between 1.00 and 1.24), a cut-off of 1.25 was
used (Fig. 2a) to obtain a working list including only genes
with high fold-change values. For this cut-off, a total of
605 genes were obtained (Additional file 4: Table S4). The
g: Profiler (http://biit.cs.ut.ee/gprofiler/) public web server
for characterizing and manipulating gene lists from high-
throughput genomics, was employed to identify gene
classes or categories more represented within our RNA-
seq data.
The molecular function “endopeptidase” was the category

more statistically represented (P-value < 0.001) (Additional
file 6: Table S5). Genes presenting an “endopeptidase
activity” were classified as belonging to the Immunity
and Proteolysis classes, as they participate in different
pathways related to both classes.
Based on both g: Profiler and RNA-seq data, the pre-

dicted and more represented functional classes (Immunity,

Proteolysis, Metabolism, RTT and Transport) were ana-
lyzed in detail.

Immunity genes
Transcriptomic analysis using the fold - change cut-off
1.25 showed the highest number of differentially expressed
genes among the immunity functional class from which
49 were upregulated and 06 downregulated. Within im-
munity, the subcategories classified according functional
sub-class as Clip-Domain Serine Proteases (26 %), PRR
(Pattern recognition receptors) (16.7 %), melanization
(14.8 %), LRR (leucine-rich repeat) (13 %), and Imd path-
way (13 %) were the most highly upregulated (Fig. 2b).
In a previous report, An. funestus transcriptome chal-

lenged with Plasmodium sp. was analyzed using BLAST
to match results from RNA-seq and the An. coluzzii
genome, showing TEP, LRIM1 and Clip-Domain Serine
Proteases (SPCLIP1) among the highest upregulated

Fig. 1 Transcriptional response in An. coluzzii SG infected with P. berghei based on Gene Ontology assignments. a Summary of the general
distribution of differentially expressed genes (%). b Summary of the distribution of upregulated genes (%). c Summary of the distribution of
downregulated genes (%). d Differentially expressed genes in An. coluzzii infected SG
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immunity genes [11]. SPCLIP1 regulates the accumula-
tion of TEP1 on malaria parasites and bacteria and can
lead to distinct defense reactions including lysis and
melanization of the pathogen [62].

Our data also showed that seven LRR genes were
found upregulated; these proteins are related to the
control of the complement-like protein TEP1 function
having, as well, an important role on innate immune

Fig. 2 Differentially expressed genes in An. coluzzii infected SG based on Gene Ontology assignments. a General distribution of the differentially
expressed genes (cut-off = 1.25). b Immunity gene class functional subcategories. c Proteolysis gene class functional and more representative
functional subcategories. d Metabolism gene class functional subcategories. e RTT gene class and more representative functional subcategories.
f—Transport gene class functional subcategories

Pinheiro-Silva et al. Parasites & Vectors  (2015) 8:485 Page 6 of 15



defense [63–65]. PRR are transcripts determinant for re-
sistance to Plasmodium infection [66] and melanization,
and also identified as playing an important role on anti-
bacterial immune response on An. coluzzii [67]. Previous
results highlighted the fact that the Imd pathway in
An. coluzzii is part of an effort to limit the malaria
transmission cycle, associating the Imd-directed immune
response against P. falciparum [68] and showing that
these genes are upregulated in response to Plasmodium
infection [15]. Equivalent data were obtained in the
present study, where all Imd-pathway genes (AGAP010815,
AGAP007035, AGAP007036, AGAP006348, AGAP007033
and AGAP005693) were found to be upregulated. These
findings support the evidence that Imd pathway and PRR
genes play a part in mosquito response to Plasmodium
infection.
The gene AGAP006421 was also found upregulated. It

is considered a member of the antigen AG5 family of
the SG mosquito transcripts [19], categorized as an
immunity gene, but related with a family of secreted
proteins with different functions [69].

Proteolysis genes
GO analysis revealed that genes encoded proteins poten-
tially related to proteolysis were more upregulated in mos-
quitoes SG infected with P. berghei. Twenty-five genes were
found to be upregulated while 10 were downregulated, be-
ing the majority under the molecular function categorized
as serine-type endopeptidases (57.1 %) (Fig. 2c).
The most upregulated transcript gene under this GO

term was the AGAP002596, which corresponds to a
metallopeptidase that have been associated with tissue
invasion and infection by many pathogens [70].
It is known that this gene class is involved in blood

meal and sugar digestion, namely in proteolytic events
during blood-feeding on vertebrate hosts or in digestion
of extracellular matrix components [71] and is, usually,
upregulated in fed mosquito females [72]. Moreover, the
biological significance of positive regulation may also be
related with the role of these genes in immunity being
part of the host defense system to limit spread of the
parasite [73]. In addition, it have been showed that a sal-
ivary serine protease is related in Dengue transmission
by Aedes mosquitoes [74].

Metabolism genes
We found that genes putatively involved in metabolism
functional class were highly transcribed in mosquito SG
(Fig. 2d) in agreement with a previous transcriptomic
analysis of Ae. aegytpi SG infected with Dengue virus
suggesting parasite infection level is linked to physio-
logical processes modifications [75].
An insulin-like peptide precursor and one gene classi-

fied as related with oxidation-reduction process were the

most upregulated, while genes belonging to protein
phosphorylation and lipid metabolism were less expressed.
Insulin-like peptides (ILPs) regulate several biological pro-
cesses as metabolism and immunity to infection. Previous
reports conducted in several mosquito species have shown
that ILPs secretion and action may be responsive in
Plasmodium-infected females and potentially alter me-
tabolism and innate immunity [76]. Our data show that
gene expression changes in response to infection indicates
the upregulation of genes associated with ubiquitin-
dependent protein catabolic processes and with amino
acid metabolism. The enrichment of functional terms
such as ubiquitin-dependent proteasome was also denoted
for insects facing dehydration stress [77]. Among the tran-
scripts encoding metabolism, two, involved in nitric oxide
biosynthetic process, were found to be upregulated. Nitric
oxide synthase expression and nitric oxide increases in An.
coluzzii and An. stephensi midgut after Plasmodium para-
site infection [78, 79] limiting parasite development within
the mosquito [80]. Further, within this GO term, transcripts
linked to sugar metabolism were mostly upregulated
whereas those associated with lipid metabolism were
essentially downregulated, which may be connected to
cell repair in response to infection and/or to the produc-
tion of metabolites needed for sporozoites progress [59].

RTT genes
Translational regulation allows cells to respond to stimuli
and modify protein levels. For most of the genes, is not
known if an increase on translation is directly related to
defence reactions against Plasmodium sp. infection, but
some reports evidence that translational regulation of
gene expression in mosquito midguts has a profound
impact on the anti-malaria responses [81].
As many as 43 genes, 31 upregulated and 12 downreg-

ulated (Fig. 2e) were found to be transcribed in SG of
An. coluzzii belonging to the RTT class, which includes
the second highest number of genes differentially expressed
in response to parasite infection (Fig. 2a). Transcript genes
linked to the biological processes DNA replication and
DNA repair were exclusively upregulated, probably acting
as cell defense from infection. Our data is in accordance to
the transcriptome profile of An. coluzzii hemocytes
upon P. berghei infection, also showing that the RTT
class was also significantly upregulated [82]. RTT genes
may regulate protein expression required for Plasmodium-
SG interaction and thus, manipulated by the parasite
to facilitate infection.

Transport genes
Several transport transcripts (28 upregulated and 12
downregulated) were identified in SG (Fig. 2f). Among the
subcategories described, we found that transmembrane
transport transcripts were the most represented (27.5 %).
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The most abundant and upregulated transcript
(AGAP007752), encoding a protein referred as EAA12343,
was submitted to a location predictor analysis, confirming
its inclusion into this subcategory. Although evidences sug-
gest that this gene is not SG-specific, being preferentially
expressed in Malpighian tubules from male mosquitoes
[72], both RNA-seq and qPCR experiments showed a high
upregulation expression in SG female mosquitoes during
Plasmodium infection. Moreover, the GO annotation
predict the function of this transcript as glucose
transporter and, supported by findings that carbohydrates
transporters may have an important role on Plasmodium
transmission [6–9], we selected the AGAP007752 gene for
further analysis.

Other functional classes
Among the genes selected to be analyzed by qPCR, the
HPX11 gene (AGAP010899), belonging to the detoxifica-
tion functional class and, included in the biological
process designated as response to oxidative stress, was
one of the most highly downregulated (Additional file 1:
Table S1). Transcription alteration of detoxification genes
in response to bacteria and Plasmodium has been de-
scribed [73]. It is possible that subexpression might be
related with the presence of the parasite, as infection may
induce stress response in mosquitoes [83], resulting in
induced and or repressed genes [73]. During mosquito
response to infection, active nitrogen and oxygen radicals
are produced to contain Plasmodium infection [84]. These
products may represent potential oxidative stress that can
be enhanced or eliminated by detoxification enzymes.
Several genes with putative chemosensory molecular

function as odorant binding proteins (OPB) were tran-
scribed in An. coluzzii SG after infection. The expression
of one of these genes, OBP20, was evaluated by RNA-
seq and qPCR, showing to be downregulated in both as-
says (Additional file 1: Table S1). Olfaction plays a vital
role in guiding mosquito behaviours and contributing to
their ability to transmit pathogens but response medi-
ated by chemosensory genes may vary according to the
pathogen [73, 85].
In addition, two members of the D7 family,

AGAP008278 and AGAP008279 (D7 long form L1 and
L2, respectively) were found upregulated in SG. It is
suggested that D7 SG proteins are distantly related with
OBP, inhibiting hemostasis during hematophagy and
therefore, facilitating blood feeding [86].
Six genes that codify five members of the salivary gland

surface (SGS) were differentially expressed (AGAP000548
(SGS1b), AGAP000150 (SGS6), AGAP008215 and
AGAP008216 (SGS7), AGAP010647 (SGS8) and
AGAP003841 (SGS10)). These transcripts codify a family
of immunogenic mosquito SG proteins involved during
blood feeding and also parasite infection [87, 88].

AGAP007752 silencing experiments
Considering that membrane transporter proteins of
Anopheles sp. SG have an important role on Plasmo-
dium transmission, we select the AGAP007752 SG gene
coding to a membrane transport protein to perform
RNAi-mediated gene silencing. This gene showed to be
the most upregulated within the transport functional
class regarding RNA-seq analysis (Additional file 4:
Table S4), showing to be as well upregulated in qPCR
experiments (Additional file 1: Table S1).
The AGAP007752 gene was annotated as predicted cod-

ing for a protein with transmembrane transporter activity
(according to Gene Ontology annotation: http://www.ebi.
ac.uk/QuickGO/GTerm?id=GO:0055085). Protein-protein
interaction prediction analysis using the platform STRING
(string-db.org) showed that this target interacts with only
four proteins (AGAP000128, AGAP000220, AGAP003039
and AGAP006360). Two of them, AGPA006360 and
AGAP000220 were found on RNA-seq results but they
showed no similarity function. The low number of interac-
tions and no similar function associated suggests this tar-
get as a good candidate for further analysis. Thus, to
characterize the function of this gene in Plasmodium
sporozoite SG invasion, putative function analysis and
RNA interference (RNAi)-mediated gene knockdown was
carried out in infected and uninfected mosquitoes.
Performing three independent RNAi assays, we found

a significant 99 %, 82 % and 89 % (146.7 + 9.6) (unpaired
two-tailed t-test, P < 0.01) reduction on endogenous
mRNA levels (Fig. 3a). AGAP007752 knockdown signifi-
cantly reduced the number of sporozoites present in
the SG 18 days post-infection by 45 %, 43 % and
44 % (9.9 + 5.1) (unpaired two-tailed t-test, P < 0.01)
when compared to controls (Fig. 3b).
Glucose transporters are a wide group of membrane

proteins essential for transport and metabolism of glu-
cose in cells of diverse organisms from microbes to
humans [89]. The EAA12343 was categorized as glucose
transporter and, as other proteins from this family, is
likely to be glycosylated [90]. Previous reports have sug-
gests that Plasmodium spp. propagation in mosquitoes
consumes vector nutrients [8] and specific glycosylated
proteins might function as parasite receptors on the
basal lamina, of the distal lateral and the medial lobes of
the SG [6, 91]. Furthermore, the invasion of P. gallina-
ceum sporozoites into the SG of Aedes aegypti is blocked
by a carbohydrate binding protein or lectin [7], confirming
the role of glycosylated proteins as receptors for malaria
sporozoite-SG interaction.
In accordance to our data, it was shown that the

knockdown of the sugar transporter trehalose (AgTreT1)
significantly reduced parasite oocysts in the midguts of
An. gambiae infected with P. falciparum; threalose is the
predominant sugar in mosquito hemolymph decreasing
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after Plasmodium infection [8]. AgTreT1 showed to be
critical to maintain hemolymph trehalose concentration
and a positive mediator for parasite growth and propaga-
tion during the oocyst stage. Sporozoite may scavenger
and metabolizes trehalose directly or trehalose may be
hydrolyzed to glucose by either the vector or the sporo-
zoite [8]. Rosinski-Chupin and co-workers [59] found
several genes involved in energy and glucose metabolism
upregulated in SG infected by Plasmodium sp., assuming
that this alterations may be favorable for the sporozoite
maturation and/or transmission to the vertebrate host.
According with these findings, it is likely that the
EAA12343 protein might act as a sporozoite receptor
for entry in the SG and/or have part on the maintenance
of parasite optimal conditions, as glucose level, supply-
ing energy for the vertebrate infection.
Other proteins have been described as related to Plasmo-

dium infection on Anopheles spp.. For instance, it have
been demonstrate that Saglin (a protein found in Anopheles
SG) and their interaction with TRAP (a surface protein
present in Plasmodium parasites) is essential for parasite
invasion in SG [2]. Another protein, AgESP, was found in
both midgut and SG and described as having an important
role on Plasmodium infection, reducing midgut invasion
and the number of sporozoites, after silencing. Some pro-
teins, however, show a protective effect on Plasmodium in-
fection. This is the case of the SRPN6, a marker of
Plasmodium infection in An. coluzzii SG, as once the
gene is silenced, the number of sporozoites increases in
SG [25]. Further, the passage through the SG is necessary
for sporozoite capacity, as the complete acquisition of
gliding locomotion and cell traversal [92].

An. coluzzii protein putative function
Classifying the putative function of the An. coluzzii pro-
tein coded by the AGAP007752 gene as a sugar trans-
porter was done by performing five PSI-BLAST [93]
interactions using the default settings—a pfam database
search [94] confirmed this classification. The top hits
were from insect trehalose and glucose transporters (E
value 3e-38). It was previously shown that insects
glucose transporters cluster with several organisms, in-
cluding mammalian glucose transporters and not with
insecta trehalose transporters. suggesting a function re-
lated to phylogenetic clustering [95]. Maximum likeli-
hood and Bayesian phylogenetic analyses with threalose
and glucose transporters from members of metazoa
(Mammalia, Insecta and Trematoda) show that An.
coluzzii AGAP007752 protein (named as EAA12343)
(Fig. 4, red star) cluster together with glucose transporters
from the three metazoan clades (Fig. 4, blue box) and not
with the trehalose transporters from insecta (Fig. 4, green
box) (Additional file 7: Figure S2, Additional file 8:
Figure S3 and Additional file 9: File S1), in agree-
ment with previous findings [95]. The GLUT/SLC2A
glucose transporter family in humans has been cate-
gorized into three classes: class 1 comprises GLUT1
to GLUT4 and GLUT14-L; class 2 comprises GLUT5,
GLUT7, GLUT9, and GLUT11 and class 3 comprises
GLUT6, GLUT8, GLUT10 and GLUT12 [96–98]. We
found that EAA12343 cluster together with an
insecta glucose transporter (NlST1) that was previ-
ously characterized [99] and both of them cluster to-
gether with class III human glucose transporters
(Fig. 4, blue box).

Fig. 3 Effect of AGAP007752 silencing on An. coluzzii SG infection by P. berghei. Infected mosquitoes were injected with dsRNA 14 days PMB and
SG extracted 4–5 days later to determine sporozoite numbers and mRNA levels by qPCR. a Normalized AGAP007752 mRNA levels (9.9 + 5.1) were
expressed in arbitrary units and compared between groups using the unpaired two-tailed t-test (*P < 0.01; N = 3). b Effect of AGAP007752 silencing
on the number of P. berghei sporozoites present in the SG of mosquitoes injected with dsRNA7752 (AGAP007752) when compared to controls
(146.7 + 9.6; unpaired two-tailed t-test *P < 0.01; N = 3)
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To confirm our phylogenetic classification, we per-
formed a multiple amino acid sequence alignment of
glucose transporters class III (NlST1GLUT/GLUT8/
GLUT6/GLUT10/GLUT12). The alignment shows that
the An. coluzzii glucose transporter identified in this
study share important functional domains with other
members of this class of glucose transporters (Fig. 5).
For example, a common structural feature of the GLUT/
SLC2 family members is the presence of 12 transmem-
brane domains (TM) and a unique N-linked oligosac-
charide side-chain present in a large extracellular loop

either to the N-terminus (classes I and II) or to the C-
terminus of the protein (class III) (Fig. 5, red boxes).
The conserved glycine (G) residues in the transmem-
brane domains “(TM) 1, 4, 5, 7, 8, and 10” among class
III glucose transporters (Fig. 5, blue boxes) are thought
to be critical in stabilizing the structure of GLUT/
SLC2A [96]. Another difference among glucose trans-
porter classes is the proline-containing motif between
TM6 and TM7. Classes I and II possess residues PETPR/
PESPR, respectively [95], while class III possess “PXXPR”
[95] (Fig. 5, asterisks above black box). Finally, the

Fig. 4 Phylogenetic tree of trehalose and glucose transporters family. Maximum likelihood (ML) and MrBayes (MB) phylogenetic analysis for
trehalose (green box) and glucose transporters (blue box) were constructed and showed similar phylogenetic topology. Coloured circles represent the
statistical support for each clade. Nodes with black circles indicate≥ 90 % of bootstrap and≥ 0.9 of posterior probability, grey circles indicate≥ 60 %
bootstrap and≥ 0.9 of posterior probability and green circles indicate 52 % bootstrap and 0.5 posterior probability. Nodes without circles have≤ 50 %
bootstrap and≤ 0.5 posterior probability. The sequence names were written following the code: species name, taxonomic family and GenBank accession
number. The sucrose transporter from D. melanogaster DmSlc45 (accession number AAF50310) was used as an outgroup. An. coluzzii AGAP007752 is
indicated by a red star
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presence of a dileucine motif in the amino-terminal tail of
some members of class III glucose transporters has been
previosuly reported [96]. In our case, even when leucines
residues were found in the amino-terminus of both NlST1
and EAA12343, no dileucine motif was present.
The predicted tertiary structure of EAA12343 is

depicted in Fig. 6a and clearly shows the 12 TM do-
mains common among membrane bound transporters
(as indicated by the alignment in Fig. 5). There are sev-
eral GLUT/SLC2A crystal structures available, however,
not all classes have been resolved. Regardless of the dif-
ferent classes, the overall structure GLUT/SLC2A is
highly conserved. In Fig. 6b we demonstrate the conser-
vative nature of the structural backbone of EAA12343

compared with two other sugar transporters for
which crystal structures are available. The overall
root mean square deviation of the superimposed struc-
tures in Fig. 6b is < 3.5 Å, indicating that the tertiary
model of EAA12343 is adequate for further computational
analyses.

Conclusions
This is the first transcriptome analysis of An. coluzzii SG
infected with P. berghei by RNA-seq, producing a cata-
logue of SG genes differentially expressed in response to
infection. Among the differentially expressed genes, the
sugar transporter AGAP007752 gene was the most upreg-
ulated after P. berghei infection and the RNAi-mediated

Fig. 5 Alignment of members of glucose transporters class III. Class III glucose transporters were aligned using Clustalw. Relevant motifs conserved
among class III glucose transporters and An. coluzzii EAA12343 are shown. Annotation of relevant motifs was done using previous reports [95, 96, 98].
Transmembrane domains (TM) are indicated (green boxes), conserved glycine (G) residues (blue boxes), N-linked oligosaccharide site (red boxes) and
“PXXPR” motiff (black box with asterisk on top). Other residues and motiff conserved among class III glucose transporters are also shown (black boxes).
Insertions of 60 and 68 amino acids in the sequences GLUT10 and GLUT12 respectively were deleted from the alignment, the position is indicate (a).
Transmembrane domains were predicted using TMHMM 2.0 [100]
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gene knockdown data suggests that AGAP007752 encoded
a protein that may be important to malaria transmission.
Thus, we suggest that this protein may have an analogous
role to other sugar transporters as a sporozoite receptor
and/or in the maintenance of the optimal conditions for
parasite egress from salivary glands.
Further analyses are being conducted to go deeper into

the role of EAA12343 protein on P. berghei transmis-
sion, as protein location in SG and its impact on mos-
quito physiology after gene-silencing.
Our set of results provide a valuable resource for

future studies in this crucial malaria vector. The improve-
ment on the understanding of salivary gland gene expres-
sion and function will contribute for the progress on
malaria control actions.
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