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1. INTRODUCTION 

In this paper we introduce some combinatorial methods for the study of 
graded rings and use these methods to analyze a class of rings that are of 
importance in combinatorics. Our methods are based on a “unique represen- 
tation theorem” which is shown (Section 2) to hold for any graded algebra 
and which in a sense is an extension of the direct sum decomposition for 
Cohen-Macaulay algebras. This unique representation is reminiscent of a 
similar result obtained by Rees [20]. Both results yield a decomposition of 
the algebra. However, our result differs from that of Rees in that it carries 
more information about the algebra. 

Our main results are concerned with a class of rings (see Section 3 for the 
definition) associated to simplicial complexes. There are several natural 
operations that can be performed on simplicial complexes to obtain new 
complexes which in turn have an interpretation for the corresponding rings. 
We show (Sections 4, 5, and 6) that our basic decompositions can be 
transferred during these operations from the original rings to the newly 
constructed ones. The operations studied here are: the chain transform or 
barycentric subdivision (Section 4), rank-selection both for partially ordered 
sets and for simplicial complexes (Section S), and localization (Section 6). 

As we develop these tools we give some applications. In Section 5 we give 
a new topological characterization of the Cohen-Macaulay property for 
partially ordered sets, an immediate consequence of which is the Rank- 
Selection Theorem (Baclawski [2]). This characterization is closely related 
to those obtained by Garsia in [14]. 
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A fundamental result in the theory of Cohen-Macaulay complexes is a 
theorem first proved by Reisner [21] which gives a topological charac- 
terization. A great deal of combinatorial information can be extracted from 
this result. In particular it played a crucial role in Stanley’s proof [24] of the 
Upper Bound Conjecture. Unfortunately, the original proof is very difficult 
and relies on rather sophisticated algebraic machinery. One of the 
applications we give here is a new proof of Reisner’s Theorem. Our proof is 
considerably less intricate, and though it is by no means elementary, it 
makes more transparent the inner relationship among the ring-theoretical, the 
topological and the combinatorial aspects of the Cohen-Macaulay property. 

Reisner’s Theorem is composed of two parts. Perhaps we should point out 
that the more interesting part (the one used by Stanley) is easier for us to 
prove than the other part. Furthermore, the other part is relatively easy to 
prove when the simplicial complex is the chain complex of a partially 
ordered set, the special case which is of most interest combinatorially. 

There now exist numerous applications of our techniques. In commutative 
algebra one can analyze many important classes of rings, for example, the 
coordinate rings of Grassmannians, flag varieties, Schubert cycles and 
certain determinantal varieties. All these rings are examples of “algebras 
with lexicographic straightening law.” See Baclawski [5, 71. For another 
approach see DeConcini et al. [ 111. One can also analyze Diophantine rings 
using our approach. See Baclawski and Garsia [8]. All the rings mentioned 
above are important not only in commutative algebra but also in 
combinatorics and in invariant theory (as in, for example, Doubilet et al. 
[ 121, Hochster [ 161 and Stanley [23]). 

We also have applications that have a more topological flavor. Since a 
simplicial complex that triangulates a compact manifold is usually not 
Cohen-Macaulay, one must work with decompositions of the most general 
kind (as described in Section 2) in order to analyze these complexes. Such 
decompositions are computed explicitly by Baclawski in [6] for “almost 
Cohen-Macaulay complexes,” which include triangulations of compact 
manifolds as a special case. For other applications see [3,4]. 

The following conventions are employed in this paper. We use the terms 
“Lemma,” “ Theorem,” and “Corollary” for our own results, and we reserve 
the term “Proposition” for results of other authors that have been included 
for the sake of completeness or for which we give a new proof that is of 
independent interest. We write N for the natural numbers (nonnegative 
integers), and K for a field which is arbitrary but fixed throughout the paper. 
No special properties of K are used except that it be a field (indeed in some 
cases it would suffice for K to be a principal ideal domain). All rings 
considered in this paper are finitely generated graded K-algebras, and all 
simplicial complexes and partially ordered sets are finite. Lastly, we will 
write [n] for the set { 1, 2 ,..., n}. 
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2. FRAMES AND PRIVILEGED FRAMES 

A K-algebra is said to be Nm-graded if it can be written as a direct sum 
R = Ovcwn qR, such that 

(1) 4R isthefieldK, 
(2) for V, ,u E N”‘, (xR)(Z#R) s&+,,R. 

The elements of Z”R are said to be homogeneous of multidegree y. We 
will only consider Nm-graded K-algebras which are finitely generated over K. 
For such a ring the Hilbert series is defined by 

H(R; t, ,..., tm) = c dim,(Z,R)t”, 
vsw 

where t* is defined to be t’;’ me* tz. By the Hilbert Syzygy Theorem, if 
fi ,..., f, are a set of homogeneous generators of R, and if the multidegree of 
fr is v(i), then the Hilbert series is a rational function of the form 

P(t 13**-, fm) 
l-p!, (1 - t”“‘) ’ 

where p(t, ,..., t,) is a polynomial with integral coefficients [ 1, 151. 
The case of an (IN-) graded K-algebra R is of particular importance, and 

every Nm-graded K-algebra may be regarded as a graded K-algebra by 
defining <R to be @,,,=,%R, where /VI =v, + ... + v,. We call this the 
associated graded K-algebra of R. The Hilbert series of this graded K- 
algebra is given by 

H(R; t) = H(R; t,..., t). 

For a graded K-algebra R, the Krull dimension of R (written K-dim R), is 
the order of the pole of H(R, t) at t = 1. A homogeneous system of 
parameters for R is a set of r = K-dim R homogeneous elements 8, ,..., 8, of 
positive degree such that K-dim R/(0, ,..., 0,) is 0, i.e., R/(B, ,..., 0,) is finite 
dimensional over K. A frame for R is an ordered homogeneous system of 
parameters for R. We call Bi the ith parameter of the frame (0, ,..., 8,). By 
the Noether Normalization Lemma, if K is infinite, then R has a frame; 
moreover, if R is generated by qR, then R has a linear frame, i.e., a frame 
whose parameters are all in &;R. In general, it may not be possible to 
choose the parameters of a frame to be homogeneous with respect to an R\lm- 
grading on R for m > 1. 

We can now state our basic decomposition result. 

THEOREM 2.1. Let R be a finitely generated graded K-algebra of Krull 

601/39/2-4 
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dimension r. Then there is a frame (e,,..., e,), a finite sequence of 
homogeneous elements (q , ,..., qN) and a function k: [N] -+ (0, l,..., r) such 
that 

(1) the images of r,~, ,,.., yap in R/(8, ,..., t3,) form a basis over K, 

(2) every element of R may be expressed in a unique fashion as a sum 
of the form 

where pj is a polynomial in K[X, ,..., XkCj,], 

(3) for evw.i, Vj(ek,j,+ 1 9-.y 6) E (4 ,..., ekcjJ. 

We will say that a frame is privileged if {qr, q2,...} can be found so that 
properties (1) and (2) of the above theorem are satisfied. We call 
{qj ( j E [IV] } a set of separators for the privileged frame (0, ,..., f?,), and for a 
separator qj, we call k(j) the fevel of qj. 

To prove the theorem we will use the following graded version of a result 
of Kaplansky [ 181. For a graded K-algebra R, we will write &E”+ R or simply 
R, for @,,,,ZnR. 

LEMMA 2.2. Let R be a Jnitely generated graded K-algebra such that 
every homogeneous element of A?+ R is a zero-divisor. Then there exists a 
nonzero homogeneous element of R that annihilates A?+ R. 

Proox For a homogeneous element F,I of R\{O}, we write A(g) for the 
annihilator of v, A(v) = {f E R 1 fr = 0). The annihilators are all 
homogeneous ideals, and the set of all of them will be denoted &, i.e., ~4 = 
{A(q) 1 r~ is homogeneous and q # 0). For an ideal ZC R, we write I’ for the 
set of homogeneous elements of I. 

We first observe that every annihilator in d is contained in a maximal 
annihilator. To see this let A(qr) cA(qJ c . . . be a strictly ascending chain 
of annihilators. For each i, let xi E A(qi)\P(qi- r). Thus xiqi = 0 but xivj # 0 
for j < i. By the Hilbert Basis Theorem, we can find k so that for all m > k, 
x, E (XI ,***9 XJ. For example, xk+ r = Cf=, hixi for some hi E R. Now 
xk+ r qk # 0, but xk+ r qk = cf= r hixiqk and xi E A(qi) G A(?,) imply that 
xk+r ~~ = 0. We thus have a contradiction. So in fact J satisfies the 
ascending chain condition. 

We next claim that every maximal annihilator in & is a prime ideal. Let 
A(q) E ~4 be maximal and suppose that a, b 6? A(g) but that ab E A(q). Let 
a,, b,, and (ab)i be the components of a, b, and ab, respectively, of degree i. 
Define j and k to be the smallest integers such that ajq # 0 and b,q # 0, 
respectively. Then (ab)j+kV=ajbk? -I- (%bj+k+ *** + aj-lbk+,)II + 
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t",j+lbk-l + *'* +"j+k 0 ?- b ) - 0, since ab E A(q). But the last two terms 
above vanish because of the choice of j and k, and SO Uj 6, q = 0. Therefore 
b, E A(u,~~)M((?), and in particular A(q)+ A(u,q). Now a,~ is homogeneous 
and u,,~ # 0, so A(ujq) E JZZ’. Thus we have a contradiction to the 
maximality of A(q), and it follows that A(q) is a prime ideal. 

We now show that there are only finitely many maximal elements in ~2’. 
Suppose that A(q,), A(qJ,... were an intinite sequence of these elements. By 
another application of the Hilbert Basis Theorem, there is a k such that q,,, E 
(vi ,..., qk) for all k > m. This immediately implies that for m > k 

but since A(~,I,,,) is prime we must have A(?,) G A(q,,,) for some i < k. By the 
maximality of A(q,), we then have that A(qJ = A(ft,,,). So we again come to 
a contradiction. So we can only have a finite number, say, 
A(ql), A(q&.., A(qk), of maximal elements of &. The hypothesis on R then 
implies that Z+ R’ G A(?,)’ U a.. U A(q,J. To see this, let x be in R+ R’. 
Then xv = 0 for some nonzero q E R. Since x is homogeneous, we have 
xvi = 0 for every component t], of rl and one of these must be nonzero. 
Therefore x is in some A(q) E d, and by our first observation it is then 
contained in a maximal element of &‘. 

We can clearly choose a subset {i, < i, < . .. < i,} G [k] so that Z’+ R’ E 
Ah,)‘u -em UAhJ and no proper subset of {iI,..., i,} has this property. 
We claim that 1 must be equal to 1. Suppose that I> 1. By the choice of 
V , ,..., i,} we can for each s pick x, E A(v,,)’ such that x,qi, # 0 for t # s. 
Consider x = xf + (x2 s.. xJq, where p and q are chosen so that x is 
homogeneous. (Here is where we use I > 1.) Again by the choice of {iI,..., i,} 
we must have Xgi, = 0 for some s. Now ifs = 1, we get (x2 ... x,)~v~, = 0, and 
by the primality of A(?,,), this implies that Xjvi, = 0 for some j# 1. This 
contradicts the choice of x,. On the other hand, if s # 1, then we get 
x:4,, = 0 and by the primality of A(?,,), we get x, vr, = 0. This contradicts 
the choice of xi. Thus we have a contradiction either way and it follows that 
I = 1. Hence Z+ R’ G A(q)’ for some nonzero homogeneous ?,L This is 
precisely what we wanted to prove. a 

Proof of Theorem 2.1. We construct fl, ,..., qN and 8, ,..., 8, inductively as 
follows. If some homogeneous element of R annihilates R + , we choose one 

. and call it vi. In this case the ideal (vi) has dimension 1 over K. Thus 
R/(ql) has the same Krull dimension as R. We now replace R by R/(q,) and 
proceed exactly as before. In this way we choose a sequence vl, ?I~,... such 1 
that qr annihilates &“+ R/(q ,,..,, ‘I,-~) for all i. Clearly (vi ,..., qt) has 
dimension i over K so (ql)+ (v,, q&j -.. is a properly ascending chain of 
ideals of R. Since R is noetherian, this chain eventually stops, say, at 
Ol 1 ,..., tl,). Then &“+ Rl(rl, ,..., CT,, ) has no homogeneous annihilators. By 
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Lemma 2.2, we can choose a homogeneous element 8, of R + such that 8, is 
not a zero-divisor of R/(q, ,..., urn). 

Now v, annihilates R + , so in particular, ~~0, = 0. Similarly, ij2 
annihilates R+ R/(q,) so ~~6, = cv, for some c E R, so ~~0: = 0. Continuing 
in this way, we find that (q i ,,.., q,,,) 0;l = 0. Conversely, suppose that 
@;l = 0. Then since 8, is not a zero-divisor of R/(q, ,..., q,), we conclude 
that q E (q , ,..., v,). -hs @I,,..., II,,,) is precisely the annihilator of q. In a 
similar fashion we see that the mth power of any element of R, will 
annihilate (q, ,..., r],). Indeed it is easy to see that (q, ,..., q,,,) is precisely 
(7 1 118” = 0 for all g E R + ), where M is sufficiently large. Thus the ideal 
kl , . . . . . q,,) does not depend on the particular choices of ?,r, ,..., 9, made in the 
above definition. 

Now any power of a non-zero-divisor is again a non-zero-divisor, so we 
can, by the above computations, choose 8, so that (v,,..., q,) is the 
annihilator of 8,) and that deg(t9,) > deg(qj) for j E [ml. We now replace R 
by R/(9 ,,..., q,,,, 0,). Since (vi ,..., q,,J has dimension m over K and t9i is not 
a zero-divisor of R/(q ,,..., q,), we see that R/(q, ,..., g,,,, 0,) has Krull 
dimension r - 1. We then proceed exactly as above to choose homogeneous 
elements h(,)+, p-e7 vmc2) of R, (where m(l) = m). We can then find a non- 
zero-divisor 8, of R/(vl ,..., qmc2), 0,). As before, by replacing 8, by a power 
of 0, if necessary, we can choose 8, so that deg(8,) > deg(qj) for j E [m(2)], 
so that (v,(~~+, 3.-9 vmt2) ) is the annihilator of 8, in R/(q,,..., q,,,(,), 0,) and so 
that 8, annihilates (vi,..., ~,,,~i,) in R. 

We can actually ensure that we have one more property, namely, that f?, 
may be chosen so that qje2 E (t9,) for all j such that m( 1) < j < m(2). Now 
we already know that qj@, = 0 in R/(q, ,..., q,,,, 0,) for j = m( 1) + l,..., m(2). 
Thus vjie2 = Cr!, Jri + g0, for someL and g in R. Hence ,(e2)’ = (gB,)B,. 
Thus if we replace 0, by 0:, we may arrange that qjiB2 E (0,) as desired. 

Continuing the above procedure for r steps, we construct sequences 
VI 3***, 
Iv ,,,,,~~,!‘., ;td,.+y:;‘tb 

0 of homogeneous elements of R We then take 
ie a homogeneous basis of R/(q, ,.T,‘v,,,,, 8, ,..., 0,). 

The number N is m(r + 1) and the function k: [N] -+ (O,..., r} is given by 

k(j) = i, if m(i) < j< m(i + l), 

where m(0) is taken to be 0. 
The sequences q, ,..., I;I,,,, and 8, ,..., 0, have the following properties. Write 

R(i) for R/(q, ,..., qrntiJ, 0, ,..., Bi). Then for i = l,..., r we have: 

(4 {Vm(i-l)+lv*‘, VmCijI iS a basis of the ideal 
(Vm(i-l)+ l~--~ Vm(i,> R(i- 1). 

(b) (Vrn(i-l~+l,-~~ vmci,) R(i - 1) is the annihilator of Bi in R(i - 1). 

Cc> vjei E (4 ,..., Bkcn) for all I > kG). 
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(d) 0, is not a zero-divisor of R(i - l)/(~,(i-l)+l,..., flmci,). 
(e) deg(8,) > deg@) for all i,j such that j< m(i). 

Note that property (3) of the theorem coincides with (c) above. 
We now show that property (2) holds. We use induction on the Krull 

dimension of R (the result for Krull dimension 0 being trivial). Replacing R 
by R(1) we see that q,,,(i)+i,..., tf,(,+l) and &,..., 0, satisfy the same 
conditions for R(1) as do the two original sequences for R. Thus they have 
properties (1) and (2) by the induction hypothesis. Letf E R’ = R/(vl ,..., q,) 
be homogeneous of degree d. The image f off in R(1) = R’/(B,) may be 
expressed as the image of 

,=t+, %q:“‘(& v..., Ok,,)) 
m 

in R(1). Since the qj’s and 0[)s are homogeneous, we claim that all terms 
appearing in the above sum can be chosen to have degree d. For if not, we 
simply throw out all terms not of degree d. The result is the homogeneous 
component of (*) of degree d. Sincef is homogeneous of degree d, it will still 
coincide with the image of (*) in R( 1). Now form the difference between (*) 
and f in R’. The result is homogeneous of degree d and is in the ideal (e,), 
hence is of the form 8, g, where g is homogeneous of degree d - deg(8,). 
Write g as the image of X7= m + i q1qj1’(02 ,,.., R,,,,) in R (1) such that all terms 
in the sum are homogeneous of degree d - deg(8,). Continuing this process 
inductively, we find that after at most 1= [(d + l)/deg(@,)] steps, we may 
express f in the form Cf=, Cy=‘=,+, tfiqj’)(&,..., Okt,))O~. If we set 
p,(e, ,..., 8,,jJ equal to Cf=, q:w z ,..., &,Je!, then we have the desired 
expansion in R’. The result for R follows from the fact that the ideal 
(V i ,..., q,) has dimension m over K (and {vi ,..., n,} is a basis over K). 

To establish property (2) it remains to show uniqueness of the expansion. 
This immediately follows from the fact that the expansion in R(1) is unique 
and that the Hilbert series of R is given by 

H(R, t) = 2 fdeg(“j’ + H(R( l), f)( 1 - fdeg@l))- ‘. 
j=l 

To show this identity, observe that by (a), H(R’, t) = H(R, t) - cj”=, tdeg(“J) 
and by (d), H(R(l), t) = H(R’/(8,), t) = H(R’, t)(l - tdegtel)). 

We now consider property (1). We proceed by contradiction. Suppose 
there are constants c, E R, not all zero such that Cy= i C,Q E (0, ,..., 0,). Now 
by our inductive hypothesis, {q, ( j > m) are linearly independent in 
R(l)/@,..., 0,). Now the image of CT=‘=, cjqj in R(l)/(B, ,..., 0,) = R(q ,,..., v,,,, 
e 1,..., 8,) is C~E’,,+l~,f,. These being linearly independent, we must have 
C, = 0 for j > m. Thus we have C,“= 1 c,tl/ E (0, ,..., 8,). But by property (e), 
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we have deg(0,) > deg(rt/) for all i and all jE [ml. Thus we have a 
contradiction and the result follows. 1 

Rees [20] showed the existence of 0:s and qis satisfying property (2) of 
Theorem 2.1 when K is an infinite field. It is easy to give an example to 
show that property (1) does not follow from property (2). Let R be the K- 
algebra K[X]. Take 8, to be the polynomial X. Then 0, is a privileged frame 
with vi = 1 (and k(1) = 1). However, if we define q, = 1, q2 =X and 
k(1) = 0, k(2) = 1, then (0,; r,, q2) will have property (2) but not property 
(1) of Theorem 2.1. In this example, property (3) also fails to hold.’ 

If R is a graded K-algebra for which there is a privileged frame all of 
whose separators have level r (such a frame is said to be basic), then we say 
that R is Cohen-Macauluy (abbreviated CM). In this case, every frame is 
basic. See [9] for an elementary proof of this fact. The decomposition of R 
given by Theorem 2.1 therefore expresses in a quantitative way how far a 
given ring fails to the Cohen-Macaulay. 

We end this section by giving several equivalent conditions for a K- 
algebra to be Cohen-Macaulay. The decomposition for a Cohen-Macaulay 
ring is sometimes called “Hironaka’s criterion.” 

PROPOSITION 2.3. Let R be a finitely generated graded K-algebra of K- 
dim r. The following are equivalent (di denotes deg(B,)): 

(1) R is Cohen-Mucuuluy; 

(2) for some (every)frame (el,..., e,), 

H(R; t) = 
W/(4 ,..., 0; 0 ; 

r-IL1 (1 -Pi) 

(3) for some frame (e,,..., 0,) and some set (qj 1 j E [N]} of 
homogeneous elements of R, we have 

(a) every element of R may be written in the form 
N 

1 VjPj(e1,..., a, 
j=l 

where the pi are polynomials in K[X, ,..., Xr] and 

(b) H(R; t) = (cj t”‘““‘j’)/n;= 1 (1 - td’); 

(4) for some frame (0, ,..., 6,) of R, 

dim, R/(0, ,..., 8,) = l,‘f”: ,fil (1 - td’) H(R; t); 

(5) for some (every) frame (8, ,..., 0,) of R, the sequence 8, ,..., Or is a 

‘Added in proof: Property (1) follows from properties (2) and (3), [6]. 
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regular squcnce of R, i.e., the image of 8, is not a zero-divisor of 
R/V, ,..., e,- ,) for all i. 

(6) for some (every) frame (I3 ,,..., t9,) of R, the set (0, ,..., 8,) satisfies 
the cancellation property in R, i.e., if xi=, 8,h, = 0 in R, then there exists 
a,,, E R, 1 & i, j Q r, such that a,,] - - -a,,, for all i and j, and h, = CJ= 1 a& 
for all i. 

Proof For two power series f(t) = C&a,ti and g(t) = C&b,t’, we 
write f(t) Q, g(t) to mean that a, < b, for all i. Now (1) =+ (2) follows 
immediately from the definition of a privileged frame and the fact that every 
frame of a CM K-algebra is basic. (See [9], for example.) 

We next show (2) =+ (3). Choose the set {q, ) j E [N] } to be a 
homogeneous basis of R/(0 , ,..., 0,). Then (b) is immediate. To show (a), let f 
be a homogeneous element of R. By choice of {qj}, there are constants 
a1 E K such that f - C$‘= 1 Ujq, E (0, ,..., 8,), i.e., f - cJ”= 1 a,~, = CL= 1 0, f,, 
where each f, is homogeneous and has strictly smaller degree than f: By 
induction on degdf), we get the representation required forf. 

Now we consider (3) =P (1). We first show that {q, ] j E [N]} is a basis of 
we, ,-e-9 8,). As in the proof of (2) =P (3) above, any homogeneous basis of 
R/(8, ,*--, 0,) will satisfy (a). Conversely, it is easy to see that (a) implies that 
{tl,) spans R/(4,..., r 8 ) as a vector space over K. Thus if {Q} is not a basis 
of R/(B , ,..., 8,) we can choose a proper subset S$ [N] such that {ol 1 j E S) 
is a basis. We then have 

where the last inequality comes from condition (a) for { 7, ] j E S}. Thus we 
get a contradiction. It follows that (q, 1 j E [N]} is a basis of R/(0, ,..., 0,). It 
is easy to see that condition (b) implies that the representation in (a) is 
unique. 

The fact that (1) o (4) is not used in the sequel; we refer the reader to [9] 
for a proof. 

The regular sequence property (5) is the most commonly seen definition of 
a CM K-algebra. The equivalence of (2) and (5) follows immediately from 
the fact that 

holds for any homogeneous element 0 of R of positive degree, with equality 
if and only if 8 is not a zero-divisor. The exact formula is 

H(R; t)= 
kqR/(e); t) - tde*(W(qe); t) 

1 _ fdeW3) ’ 

where A(8) is the annihilator of 8. See [9] for details. 
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The equivalence of (5) and (6) is usually expressed using the Koszul 
complex. See Serre [22]. However, it is possible to give an elementary proof 
191. As with (4), we will not make use of (6). 1 

COROLLARY 2.4. Let R be an Nm-graded R-algebra possessing a frame 
(0 ,,..., 8,). Then R is Cohen-Macaulay if and only if 

H(R; t, ,..., t,) = 
W/(4 ,..., 8,); t,, . . . . t,) 

n;=, (1 - td”‘) ’ 

where d(i) = deg(ei). 

3. SIMPLICIAL COMPLEXES AND PARTIALLY ORDERED SETS 

The class of rings we will be studying is based on simplicial complexes 
and on partially ordered sets (posets). We introduce here some of the 
terminology of the homology of simplicial complexes and of the rings 
associated to them. 

A (finite) simplicial complex A is a collection of subsets (called simplices) 
of a finite vertex set V such that any subset of a simplex is also a simplex. 
We always regard 0 as being one of the simplices. We do not require that 
(v} be a simplex whenever u E V. A simplicial complex is said to be pure if 
every maximal simplex has the same number of vertices. The rank of a 
simplicial complex A, denoted r(A), is the highest cardinality of any simplex. 

A simplicial complex is a special kind of poset. We will, however, 
distinguish between the two concepts. For a simplicial complex A, we will 
write P(A) for A\{0}, regarded only as a poset. On the other hand, if P is a 
finite poset, we define the order complex or chain transform A(P) to be the 
simplicial complex whose vertex set is P and whose simplices are the chains 
(x, < ‘9. < x,J of P. If A is a simplicial complex then A(P(A)) corresponds to 
(the triangulation of) the barycentric subdivision of (the polyhedron 
associated to) A. If A(P) is pure, then we say P is ranked (or graded). The 
rank of P is defined to be the rank of A(P). 

For a poset P, we write p for the poset obtained by adjoining two new 
elements 8 and ? to P such that 0 < x < ? for all x E P. If x is an element of 
P, we define the rank of x, denoted r(x), to be the rank of the half-open 
interval (6, x] of P. It is easy to see that the elements of P of a given rank 
form an antichain of P. One could also define the rank of an element of P as 
follows. The elements of rank 1 are the minimal elements of P. If we remove 
these, the minimal elements of the resulting poset have rank 2, and so on. 

The rank function on a poset P is a special case of a “coloring” of a 
simplicial complex. Let A be a simplicial complex of rank r on vertex set V. 
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A coloring of A is a function c: V-t {I,..., r) such that for all c E A, 
(c(u) ] v E u} has cardinality )u]. All of our, results on simplicial complexes 
of the form A(P) also hold for colorable complexes. A pure, colorable 
complex is also called a completely balanced complex. See Stanley [25]. 

We use the rank function on a poset P to define an important class of 
subposets. Let r = r(P), and suppose that S CL [r]. The rank-selected subposet 
of P with respect to S is 

P, = {x E P) r(x) E S}. 

We will make use of the concept of the simplicial cohomology of a 
simplicial complex as well as some of its well-known properties. For a 
simplicial complex A, we recall that the reduced cochain complex of A is 
defined as follows. Choose some total order on the vertex set V of A. Let 
e’(A, K) be the vector space over K on the simplices 1x,,,..., xi} of rank i + 1 
of A. In particular, C?‘(A, K) is one-dimensional. We next define a linear 
map 6’: (?(A, K)+ C”‘(A,K) f or all i > -1, on basis elements by the 
formula 

d’{x, )..., Xi} = C (-l)‘{Xo,..., Xi, X}, 
XEV 

where the sum is over all x such that x & {x, ,..., xr} but {x, ,..., xi, x) E A, 
and where j is the number of elements of {x0,..., xi} which precede x in the 
total order on V. It is easy to check that 6’ o 8-l = 0. We define the ith 
reduced cohomology of A to be the vector space 

A’(A, K) = Ker(S’)/Im(G’- ‘). 

This vector space does not depend on the choice of total order chosen for V. 
Indeed, it is a topological invariant of the polyhedron IAl associated to A. 
This is not that easy to prove; however, we only need that R’ be invariant 
under barycentric subdivision, i.e., #‘(A, K) s Z?(A(P(A)), K) for all i, which 
is relatively easy to prove. 

The reduced cohomology of A allows one to compute several important 
invariants of A. The ith reduced Betti number of A, &(A, K), is the dimension 
of R,(A, K) over K. The alternating sum of the reduced Betti numbers is the 
reduced Euler characterstic of A, denoted ,u(d) = C;“= _ 1 (-1)’ Kt(A, K). This 
number is independent of the field K. We will say that A is a bouquet if 
R’(A, K) = 0 for all i # r(A) - 1. Since every simplicial complex trivially 
satisfies #(A, K) = 0 for i > r(A) - 1, to say that A is a bouquet is to restrict 
all its nonzero cohomology to be in @-‘(A, K), where r = r(A). Thus A is a 
bouquet if and only if fii(A, K) = 0 for i < r - 1. A bouquet A will therefore 
satisfy p(A) = (-l)‘-’ &.-,(A, K). When we apply these concepts to the case 
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of a simplicial complex d(P), we will often abbreviate by replacing the 
symbol d(P) by P. Thus we write p(P) for ,u(A(P)), etc. 

We will require the following two well-known results from algebraic 
topology, and we give brief proofs for the sake of completeness. 

fkOPOSITION 3.1. Let A be a simplicial complex. Define Ai to be the 
subcomplex {a E A 11 o I,< i}. Then 

E7i(A, K) z @(A i, K), for j<i-1. 

ProoJ By the obvious induction, we may assume that i = r - 1, where 
r = r(A). Write A’ for A,- r, P for P(A) and P’ for P(A’). Observe that we 
have a natural projection 

17j: @A(P), K) + cj(A(P’), K), 

for every j, defined by 

17j(uocu,c~~~cuj)=u~c~~~cuj, if uj E A’, 

= 0, otherwise. 

The kernel is isomorphic to @,, x cj- ‘(A’(u), K), where A’= Ab’ and 
A’(u) is the simplicial complex of proper subsets of u. Now apply the snake 
lemma to the short exact sequence of complexes whose jth component is 

0 + Ker(ZZj) + cj(A(P), K) -+ cj(A(P’), K) + 0. 

The result is a long exact sequence part of which is 

. . . -+ mF4 Z?‘- ‘(A’(u), K) -+ @(A(P), K) + @(A(P’), K) 

+ @/fi7/(A’(u), K)+ .a#. 

Now A’(u) is a standard triangulation of the (r - 2)-sphere so that A’(u) is a 
bouquet, i.e., H’@‘(u), K) = 0 for j ( r - 2. The long exact sequence then 
implies that l?(A(P), K) z Z?‘(A(P’), K) for j < r - 2. Since Z?j(A(P), K) g 
@‘(A, K) and Hj(A(P’), K) z Z?j(A’, K), the result follows. I 

Let A, and A, be simplicial complexes on disjoint vertex sets V, and V,, 
respectively. The join of A, and A, is the simplicial complex on V, u V2 

given by 

A, *A,= {uUt(uEA,, sEA,}. 
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PROPOSITION 3.2. If A, and A, are bouquets, then so is A, * A,. 

ProoJ The basis elements of c’(A, * A,, K) are of the form cr U T, where 
loUr/=j+l and aEd,, TEA,. Thus we may “split apart” 
C?(A , * A,, K) according to the cardinalities of u and 7: 

(?(A, * A,,K)z 0 (ck(A 1, K) 0 c’(A,, K)). 
k+l=/- I 

By the (homological) Kiinneth formula, we conclude that 

R’(A,*Az,K)z @ (I?k(A1,K)@~‘(A2,K)). 
k+i=j-l 

The result now follows immediately. 1 

Let A be a simplicial complex on the vertex set V. We write K[X, ( u E V] 
for the (free) polynomial ring on indeterminates corresponding to the vertices 
in V. We define the ideal 14 to be the one generated by all square-free 
monomials Xu, .a. X,” such that (0, ,..., u,) $ A. The quotient ring K[A] = 
WL. I ?J E WA is called the Stanley-Reisner ring after Stanley and 
Reisner, who introduced it independently (first by Stanley (241 and later by 
Reisner [21]). The ring K[A] has a natural grading which is defined by 
deg(X,) = 1 for all u E V. Furthermore, it has a natural frame (a, ,..., a,), 
where r = r(A), defined as follows. We first introduce some notation. For 
u E A we write X” for the monomial I&,, X,. If J is a statement, the 
symbol ,&&‘) denotes 1 if ZJ’ is true and 0 if & is false. Finally we define 
a, = a,(A) to be the sum COCA x”x((]u] = i). We will show that (a, ,..., a,) is a 
frame in Proposition 3.2 below. 

Now suppose that P is a poset. The ring K[A(P)] may now be given a 
finer structure than just the grading mentioned above. Let r = r(P), and write 
e, E IN’ for the ith standard basis element of N’, i E [r]. Then K[A(P)] has 
an N’-grading defined by deg(X,) = erCo), for v E P. 

For a homogeneous element in the N’-grading on K[A(P)], we will refer to 
its degree as its multidegree to distinguish it from the ordinary degree 
mentioned earlier. We will often regard a multidegree as a multisubset of [r]. 
The K-algebra K[A(P)] has two choices for a frame. In addition to the frame 
(a 1,***, a,) defined above for arbitrary simplicial complexes, we have the 
frame @i,...,&) given by pi = CUE,, X,X(r(u) = i). Unlike the frame 
fbLi,*;l;, g;Aye Ga 1,...,/?,) is homogeneous with respect to the N’- 

We now compute the Hilbert series of K[A] and K[A(P)]. 
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PROPOSITION 3.3 (Stanley). For a simplicial complex A and a poser P, 

H(K[A], t) = x t’“‘(l - t)-I”‘; 
OEA 

T 

W+V)]; t,,..., t,) = \‘ (-l)‘T’-‘p(P,) 
Trrl J&l -tiy 

where t’= n,.,, ti and r = r(P). 

Proof To show the first formula, one simple classifies the nonzero 
monomials of K[A] by their support: the support of a monomial w of K[A] is 
defined by 

O(W) = (0 E VI X, is a factor of w}. 

To show the second formula, we start with the multigraded version of the 
first formula and put it over a common denominator: 

H(K(A(P)]; t, ,..., t,) = \‘ 1 1 ‘W 
OGZP) VEO 1 - tw 

J OEAU’) IIierco) ti rIi++r(o) (1 - ti) 

nr= I (I - ti) ’ 

where r(u) = {r(u) ) u E Q} is called the rank set of o. For a subset S E [r], 
we write c(S) for the number of ( S j-element chains of P, , i.e., the number of 
chains of P whose rank set is S. The sum CTEs (-1)“’ c(T) is the same as 
the alternating sum ‘JJiz10 (-l)‘c,(P,), where ci(P,) is the number of chains 
of P, of size i. By a theorem of Philip Hall, this sum coincides with -,u(Ps). 
Therefore, 

fWlW’)]; t, ,..., t,) = c rreA(P) nicr(o) ti FIier(o) (1 - ti> 

nr= I (l - ti) 

\‘ \’ (-1)“‘-“‘I t’x(r(a) c T c [r]) = lY 
ohA nl= 1 (l - ti) 
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An immediate consequence of the first formula in Proposition 3.3 is that 
the Krull dimension of K[A] is r(P). Thus we have the correct number of 
polynomials in (a, ,..., a,) and (/I, ,..., /3,) for these to be frames of K]A] and 
K[A(P)], respectively. We now show that they are frames. 

PROPOSITION 3.4. If A is a simplicial complex and P is a poset, both of 
rank r, then (a ,,..., a,) is a frame for K[A] and (J3,,...,Br) is a frame for 
KlA(P)I. 

Proof. We first show the result for (a, ,..., a,). Let Y be the set of vertices 
of A, and write B(V) for the simplicial complex of all subsets of V. Then A is 
a subset of B(V) and K[A] is a quotient ring of Q(V)] = K[X, 1 v E V]. 
The image of the parameter a,@(V)) in K[A] is the parameter ai (or zero if 
i > r). Thus K[A]/(a,,..., a,) is a quotient ring of K[B(v)]/(ai(B(V)),...). 
Now a@?(V)) is easily seen to be the ith elementary symmetric function. An 
explicit basis of K[B(V)]/(ai(B(V)),...) was found by Garsia in [ 141; hence 
this vector space is finite-dimensional. Therefore K[A ]/(a, ,..., a,) is also 
finite-dimensional. 

Next consider the sequence (/I,,...,&) of elements of K[A(P)]. Since we 
can express the a,‘s in terms of the /I,%, 

ai= C Pj, *-a fijiX(l <j* < ‘** < ji < r), 

j,.....ii 

it follows that K[A(P)]/@, ,..., /3,) is a quotient ring of K[A(P)]/(a,,..., a,). 
Thus this case follows from the first one. 1 

Remark 3.5. Suppose that A’ is a subcomplex of A, i.e., A’ s A and A’ is 
itself a simplicial complex on the vertex set Y of A. Then we may view K[A’] 
in a natural way as a subset of K[A]. However, K[A’] will not generally be a 
subalgebra or submodule of K[A]. On the other hand, there is a natural 
surjective homomorphism 7~4 ,: K[A] + K[A’.], defined by 

n,,(w) = w  if O(w) E A’ 

=o otherwise. 

This homomorphism endows K[A’] with the structure of a K[A]-module, and 
it is this structure that we have in mind whenever we refer to K[A’] as a 
module. 

4. THE CHAIN TRANSFORM 

It is well known that if the chain transform of a simplicial complex A is 
CM then so is A; however, the original proof [2, Proposition 3.31 relied on a 
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topological characterization of the CM property. In this section we give a 
ring-theoretic proof by showing that one can use a basic system for the chain 
transform of d to construct a basic system for A itself. As a result, the 
problem of finding a basic system of K[A] can be accomplished by finding 
one for the ring K[A(P(A))], which has a simpler structure. 

Let A be a simplicial complex of rank r on the vertex set V. For the rest of 
this section we write P for P(A). The ring K[A] has a natural frame 
(a , ,..., a,), where a, = Cosd X”x(] (~1 = i). On the other hand, the ring 
K[A(P)] also has a natural frame (8, ,..., 0,.), where Bi = CUSP X,x(] 0) = i), 
the symbol X, denoting the indeterminate corresponding to (T E P. The first 
fact that one notices is that Bi and a, are formally equivalent. Indeed, there is 
a linear map Q: K[A(P)] -+K[A], defined on monomials by setting 
‘dx,, . . . XJ equal to x”* . . . x”“, where u, < . . . < un is a chain of elements 
of P; and the map lp carries Bi to ai. Moreover, if we define N-gradings on 
K[A ] and on K[A(P)] by deg(X,) = 1 for u E V and deg(X,) = 1 cr ] for u E P, 
respectively, then u, is degree-preserving. However, o is not a homomorphism 
of rings. For example, let (v, w} E A be a simplex. Then o(X,,,) 9(X,,,) = 
X,X,,,# 0 in K[A], but Xtv,X,,+,r = 0 in K[A(P)]. On the other hand, as a 
linear map q is an isomorphism. 

LEMMA 4.1. For a pure simplicial complex A, (p: K[A(P)] + K[A] is a 
linear degree-preserving isomorphism. 

ProoJ We define an inverse w: K[A] + K[A(P)]. By definition of K[A], if 
w  is a nonzero monomial of K[A], then its support O(w) is a simplex of A. 
Let ur be Cl(w). Then X”* is a factor of w  and the quotient w, = w/r1 is a 
well-defined nonzero monomial of K[A]; indeed w, = nvco,~U-l, where 
m, is the multiplicity of X, as a factor of w. Thus q (w,) is also a simplex of 
A, which we denote by u2. Continuing in this manner, we see that we can 
define a sequence of monomials w, and simplices u[ which satisfy u[ = 
q (wi- I), ui C ui- 1 and w  = n, X’? We call this the standard factorization 
of w. We define y: K[A] + K[A(P)] on monomials by w(w) = n, Xoi. Since 
the sequence u, , u2 ,... defined by a nonzero monomial w  of K[A] is a chain 
u,zu,2 a.0 of elements of P, w(w) is a well-defined nonzero monomial of 
K[A(P)]. It is obvious that (D and w  are inverse maps. 1 

It follows that K[A] and K[A(P)] h ave the same Hilbert series and have a 
very similar structure, but they are generally not isomorphic even as 
ungraded rings. For example, if A has two vertices V= { 1,2} and one 
simplex of rank 2, then K[A] = K[X,,X,] and K[A(P)] = 
KLX, 3 X, 3 X,2 I/(x, X,> are not isomorphic (one ring is an integral domain, 
the other is not). However, the two rings are related by a “straightening 
law.” This idea was inspired by Garsia’s work in [ 141, where this method 
was used to show that “partition rings,” are CM. For a general treatment of 
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rings with straightening law see [S], from which the following discussion was 
derived. 

The key structure possessed by the monomials of K[d] and K[d(P)] is a 
“lexicographic” partial order. Let X0,X0, - -. X0, be a monomial of K[d(P)], 
where tr, 2 a2 2 -se G? ok. The shape of XO,XD, . -- Xor is the descending 
sequence (partition) ] u, ( ) ] u2 ] ) . . . > ]ck]. The shape of a monomial is 
equivalent to its rank multiset, except for the way we have written it. We 
endow the set of decreasing sequences of positive integers with a total order 
as follows. Let I = (a, > .a- >a,) and u= (b, > -es > b,) be two such 
sequences. We say A precedes v if either k < 1 or k = 1 and for some i, 
a,=b,,a,=b, ,..., a,-, = brel, and a, > b,. We will say that a monomial w  
precedes a monomial u if the shape of.w precedes the shape of U. We induce 
a partial order on the monomials of K[d] by means of the standard 
factorization map v. Shapes have a natural sum: if rZ and ,U are as above, 
then A + ~1 is the (disjoint) union of the multisets {a,} and {b,} put into 
descending order. This operation has the property that the sum of the shapes 
of monomials w  and u of Q(P)] is the shape of the product wu when 
wu # 0. This is not true of monomials of K[d]. 

We now show that (p is a “perturbation” of a ring isomorphism in the 
following sense: 

STRAIGHTENING LEMMA 4.2. Let f,, fi,..., fk be homogeneous 
polynomials in the multigraded K-algebra K[A(P)]. Then (p(f, fi ..a fk) - 
rpu1) df2) *se c4.h) is a linear combination of monomials whose shapes 
strictly precede the sum of the shapes off, , fi ,..., fk. 

Proof Since o is a linear map, we may assume without loss of generality 
that f, ,..., fk are monomials, say, fi = I&i Xorj, where ui 1 2 ui,2 2 -.- 2 
ui.1,. NOW (~dfi) = I$‘= 1 ~P(X,,J Thus l-If= 1 c~dfi) = nf= 1 fi:= 1 r~(x,,,)- We 
may therefore also assume that each f, has the form X,, for some u, E P. 
Finally, when lJ ui G P, we have that rpGf, -.. fk) = cpdf,) e-e (PDF) = 0. Thus 
we may assume that u uI E P. 

We now show that the ordering on shapes satisfies a property we call 
admissibility. More precisely, if we have A, < A2 and J.: < Al,, then A, + A; < 
1,+L’,.Toseethislet1,=(a,)a,~...~aa,),IZ,=(b,~b,)...~b,)and 
use primes to denote the terms of A’, and Ai. Now if either k < k’ or 1 < l’, 
then we trivially have 1, + A; < A, + A.;. So we may assume that k = k’ and 
I= 1’. If we have A’, = Al,, then it is easy to see that A, + A’, < 1, + A;. Thus 
we assume that A’, < A;. Suppose that a, = b, ,..., ai-, = br-,, a, > b, and 
al - = bj-,, 
(~l~b.‘.9~‘$~,~~), 

;* v=(a,>...)a,-,)= 
p1 = (a,$:,: l ) . .yTp; =‘yi, ) bl+ I ) . . B), and use 

similar formulas in the primed cases. Then 1, = v + P,, A, = v + c12, A’, = 
V’ +&, and A,= V’ + pU;. It is trivial to see that pi + P’, < cl2 + &. Hence we 
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have u+v’+~,+~;<v+v’+~,+~~, which is the same as A,+L;< 
1, +n;. 

Next suppose that u, 2 . -. 2 6, is a chain of P and that r E P is such that 
10 L,“‘, 01, 51 is not in A(P). The standard factorization of 
COK, * * * x,,) (0(X,) = x”’ . .. x”‘F is easily seen to be r1tir2ch*1 . . . 
XOW~l-l~W . ~=(,a,Ut,~,u,usnu,,~...~ 
) u, U r n u,- ,I’> I ~rl?~l). Wzsh :i show that this shape precedes the sum 
v= (la,1 > -es > lull) + (lrl). Choose i so that this sum is (la,/ > ..- > lu,[ > 
I4 > ID ,+ ,I > .-. > 1 r,[), the cases i = 0, I having the obvious interpretation. 
Now compare the first i terms of 1 and v: 16, U tl> lu, I, 1u2 U 5 n u, I> 
1 uz I,..., 1 ui U r n ui- ,I > 1 ui I. If any of these are strict, then 1 precedes v and 
we are done. Thus we may assume they are all equalities. These imply that 
r G ui. The (i + 1)st term of A is then /u,+i U r[ while the (i + I)st term of v 
is 171. Since 151 > JUi+ll, we conclude that either (Ui+IU5( > (~1 or uitl~r. 
In the latter case, we would have that {u, ,..., u,, t) E A(P), since r c ui. Thus 
the former case holds, and we conclude that 13 precedes v as desired. 

We now show, by induction on k, that if each fi has the form X0, for some 
ui E P, then o(f,) o(fJ -.. pdfk) either coincides with pdf,f2 . -. jJk) or else 
oV;f2 .. . fk) vanishes and qdfi) (p(f& - -. (D(J,J is a monomial whose shape 
precedes A(f,) + A(&) + -.. + A(&). By induction this is true for f, ,..., fk- i, 
If q(f,) .-. (p(fk- i) coincides with o(Ji ..e fk- ,), then we simply apply the 
argument above to this monomial and cpdfk). If qdfi *a- fk- ,) vanishes, then 
so does rp(f, - - - fk). Now in this case, p(f,) -a - p(fk- i) is a monomial whose 
shape precedes Aui) + --. + A(‘&-,). By admissibility and the argument 
above, we conclude that oodfi) ..e cp(f,J is a monomial whose shape precedes 
n(f,> + ... + J.(f,). The result now follows. I 

We may now state the main result of this section. 

THEOREM 4.3. Let A be a simplicial complex of rank r, and let P be 
P(A). Define rp: K[A(P)] +K[A] on monomials by &X0, a-- XOJ = 
X”’ a . . XQ, whenever u, 2 . . - 2 uk is a chain of elements of P. Suppose that 
(8 ,,..., 8,; b.., n,) is a sequence of homogeneous elements in the 
multigraded algebra K[A(P)] and that k: [N] + {O,..., r} is a function such 
that every element of K[A(P)] is expressible in the form 

for suitable polynomials pi. Then (&B,),..., &or); I,..., p(Q) satisfies the 
corresponding condition for K[A]. Moreover if (*) is unique then such 
expressions using the p(eJ’s and ~(rl,)‘s will also be unique in K[A]. In 
particular, ifK[A(P)] is CM, then so is K[A]. 



COMBINATORIALDECOMPOSlTlONS 173 

Although the statement of the theorem seems quite involved, the essential 
idea is that frames, basic frames and sets of separators for K[d(P)] may all 
be “transferred” via v, to produce frames, basic frames and sets of separators, 
respectively, for K[d]. As we will see in Example 4.4, this process is only 
one-way: we cannot, in general, transfer sets of separators from K[d] to 
l@(P)] via w. 

ProoJ Let IV be a (nonzero) monomial of K[d]. By assumption we may 
write w(w) in the form (*). Since w(w), the 8;s and the qj’s are all 
homogeneous, we may, by taking the homogeneous component of 
multidegree r(~(w)) in each term of (*), assume that all terms of (*) are 
homogeneous and have the same multidegree as w(w). By Lemma 4.2, we 
have that 

is a linear combination of monomials that precede w. Thus by induction on 
shapes, we conclude that every element of K[d] may be written in the 
desired form. 

The part of the theorem, which is concerned with uniqueness of 
expressions of the form (*), is an immediate consequence of the fact that 
K[d] and K[d(P)] h ave the “same” Hilbert series, by Lemma 4.1. The last 
part of the theorem follows from Proposition 2.3. 1 

One immediate consequence of Theorem 4.3 is that 

where 2, is coeffrcientwise inequality (see the proof of Proposition 2.3), with 
equality when K[d (P)] is CM. We do not know of any example of a 
simplicial complex d for which these two Hilbert series do not coincide. See 
Theorem 5.4 for a partial result in this direction. 

EXAMPLE 4.4. The converse to the first part of Theorem 4.3 is false, as 
the following example shows. Let d be the simplicial complex on three 
vertices given by the solid triangle 

3 

1 A 2 

Then K[d] = K[X,, X,, X,] has basic frame 

a,=X,+X*+X,, a2 =X,X, + X2X3 +X,X,, a3 =x,x,x, 

607/39/2-S 
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and separators vi = 1, q2 =X,, q3 =X,, v,, = Xi, q5 =X,X3, and 
‘la = X2X:. To check this we need only show that the separators are a basis 
of the K-algebra K[X, , X,, X,1/( ai, a,, q). On the other hand, the ring 
K[W)] =K[X,, x*9 x3, x12,‘x*2, x*39 x1*31/w1x2~ x,x,9 X,X,~ XIX237 
XzX13, X3X1,, X,2X,3, X1,X,,, X,,&,) has frame e1 =X1 +X2 +X3, b= 
Xl, +x,3 +x*,9 0, =x123, and the monomials corresponding to the above 
vis are wh) = 1, wh) =X2, wh) =X3, wh) =X9 wh) =X13? v/hi) = 
x,x*,* It is easy to see that the graded part of K[d(P)]/(B,, e2, 0,) of 
multidegree {2} is not spanned by elements of the form 
CT=, V/(Q) p,(e,, 8,) 0,). Thus the converse to the first part of Theorem 4.3 
does not hold. There is, however, a partial converse. See Baclawski [5]. 
Moreover, the converse to the last assertion of Theorem 4.3 does hold as we 
will show in Corollary 6.3. 

5. RANK-SELECTION AND COHOMOLOGY 

We show in this section that the Cohen-Macaulay property of the ring 
K [d(P)] for a poset P can be characterized by a topological property of the 
poset P (or more precisely of its rank-selected subposets). This charac- 
terization is new, although it bears some similarity to characterizations 
found by Reisner [21], Hochster [ 171, and Munkres [ 191. To avoid overly 
cumbersome notation we will abbreviate K[d]/(a,,..., a,) to K[d]/(a), where 
r = r(d), and similarly K[d(P)]/(B,,..., 8,) = K@(P)]/(d). 

Our principal tool is the following result which gives an explicit 
isomorphism between certain cohomology modules of rank-selected 
subposets of P and modules defined ring-theoretically in terms of K[d(P)]. 

THEOREM 5.1. Let P be a poset of rank r. Let S be a multisubset of [r]. 
Then 

RsK[d(P)]/(d) E R’s’-f(Ps, K), if S is a set, 

z 0, otherwise. 

Proof: Suppose that S is not a set, say that i E S occurs with multiplicity 
mi > 1. Let x71 . . . x:r be a monomial of K[d(P)] of multidegree S. Then 
xy1 . . . x ;r=e,xr;l ...xyi-l ...x, mr. Hence in this case Zs K[d(P)]/(B) = 0. 

Now let S = {I, < 1, < . . . < 1,} be a set, and let njss xi be a monomial of 
K[d(P)] such that r(xj) =j for all j. Define a map g: RsK[d(P)] + 
zilst-‘(Ps, K) so that g(n,,,x,) is the basis element of z(‘s’-l(Ps, K) 
corresponding to the chain (xl, < x,~ < . . . < x!,). Extending g linearly, it is 
clear that g is an isomorphism of K-vector spaces. In a similar manner, we 
define an isomorphism h: @,ES~s,,,,K[d(P)] + z(“‘-*(Ps, K). 
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We claim that the following diagram commutes, 

4WP)I L P’-l(Ps, K) 

T 0 a,,,,,KL4~)1 T 6 (*I A P'-*(P,, K), iCS 
where 6 is the coboundary map and 0 denotes the direct sum 
@,ES (- 1 )n(j) S,, the symbol 0, being used to denote multiplication by the 
element 0, of K]d(P)] and n(j) denoting the number of elements of S that 
precede j. To show commutativity, let nksS,,,i xk be a monomial of 
&“,,,,,K[d(P)]. Then h(nkzixk) is the chain (x,, < ..a < xl,_, < 
Xl,,, < *** < xl,), where I, = j. The image of this chain under 6 is the sum 
C, (-l)i-‘(x,, < ..- ( x,,_~ <x <x,,+, ( .-- <x,,), where x varies over the 
open interval (x ,,_,, x,,,,) of P,. It is easy to see that g-i applied to the above 
sum is precisely (- l)‘- ‘0, nk+i xk. Thus commutativity of (*) follows. 

We now observe that Rls’-‘(P,, K) = Coker(G), while Coker(B) = 
ZSK[d(P)]/(B). Thus the theorem follows. i 

We now combine this result with Proposition 3.1 to give the desired 
topological characterization of the Cohen-Macaulay property. 

COROLLARY 5.2. Let P be a poset of rank r. Then K[A(P)] is 
Cohen-Macaulay if and only iffor every subset S G [r], 

(--l)‘s’-‘~(P,) = l;,,,-#‘,, K). 

ProoJ: By Theorem 5.1, the multivariate Hilbert series of the quotient 
K[A(P)]/(B) is given by 

fWkV)II@% t 1,-v&)= c ii,,,d’,,K)tS, 
SEId 

where tS = n ,ss t,. By Proposition 3.3, 

H(K[A(P)]; cl,..., t,) = 2 (-l)‘S’-lp(Ps)tS i (1 -t,)-‘. 
srir1 i=l 

By Corollary 2.4, K[A(P)] is CM if and only if 

c ~lsl-,&,K)tS = ,;,, (-l)‘s’-‘~(P,)~. 1 
Sclrl 

This characterization of the CM property has many nice features. For 
example, it is easy to show that if K[A(P)] is CM, then P is ranked; Suppose 
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that P was not ranked. Then for some pair of adjacent ranks, S = {n, n + 1 ), 
we have P, is of rank 2 but possesses a one-element maximal chain. Thus P, 
is not connected, and so &(P,) # 0. Now P, is a nonempty poset of rank 2 
so p(Ps) = &(P,) - ri,(P,), but by Corollary 5.2, p(Ps) = -li,(P,). We thus 
have a contradiction. It follows that if K[A(P)] is CM, then P is ranked. 

Another immediate consequence of Corollary 5.2 is the 

RANK-SELECTION THEOREM 5.3. Zf K[A(P)] is CM of rank r, then for 
any S S [r], K[A(P,)] is also CM. 

We now prove a version of Theorem 5.1 valid for simplicial complexes. 
The result is much less powerful than Theorem 5.1 because a rank-selected 
subposet of A is not necessarily a simplicial complex. It does, however, allow 
us to give a direct and natural interpretation of the highest cohomology 
l?‘(A, K) in terms of ring-theoretical concepts defined by K[A]. 

THEOREM 5.4. Let A be a simplicial complex of rank r. Let N be (‘:‘). 
Then there is an isomorphism ZNK[A]/(a) g Z?-‘(A, K). 

Proof Let P be the poset P(A). Since Z?‘(A, K) E E7’-‘(A(P), K), we 
have, by Theorem 5.1, an isomorphism @-‘(A, K) z~~~K[A(P)]/(B). Thus 
we wish to find an isomorphism 2$K[A]/(a) r+,K[A(P)]/(B). 

We first define a mapf: XNK[A] ++K[A(P)] on a monomial w  to be 
v(w) if v(w) is in &K[A(P)] and to be zero otherwise, where v(w) is the 
standard factorization of w  as given by Lemma 4.1. Thusf(w) = 0 unless the 
multidegree of v(w) is [r]. Clearly f is surjective. 

Now let w  be a monomial in ZN-jK[A], where jE [r]. We wish to 
compute the component of w(ajw) in qrIKIA(P)]. This component will be 
zero unless v(w) has r - 1 or r factors, since w(ajw) has either the same 
number of factors or one more. Therefore we may assume that w  has the 
form x”’ . . . X”; where 6, 5 ... E ur in A and we allow ui to be empty 
but a,#~ We then compute w(czjw) = w(JJ,.,=~XX”’ .a. X”) = 
VE;~ =~~~“~~~~~f”‘t~s7 Te2;l =jxuItix01tip72 “’ x~ru* “” :;“,I 

have multidegree [r] IS 
]uiurnui+,l=i for all i such that O<i<r, where u,,=0 and ur+,= V. 
These conditions immediately imply that ]u,l < i and lui+ 1 ] > i for all i such 
that 0 < i < r. Equivalently, i = 1 < lui] < i for i E [r]. Let S be 
{iE[r]Ilu,l=i-l}.Thendeg(w)=C,Iu,l=N-ISI.HenceISI=j.Since 
j # 0, S must be nonempty. Thus for a monomial w  in ZN-jK[A], w(ajw) 
can have a nonzero component in qrIKIA(P)] only if there is a nonempty 
subset S 5 [r] and chain u, c e.. G u,. in A such that 

Ju,] = i if i&S 
=i-1 if iE S, 

ISl=j, w=x”‘-..x”r. 



COMBINATORIAL DECOMPOSITIONS 177 

Now assume that w  = x”* .e. fi is of the form described above. If i E S, 
then IutJ=i- 1. Hence lo,Urna,+,l can be i if and only if T contains 
precisely one element of cl+ i\cr,. On the other hand, since I SI = j and 
I rI = j, these represent all the elements of r. Define T to be 
{iESIi+l&Ss). If iES\T, then Io,+,\u,l=l so that in this case t 
contains a,+,\~, and u,U rn u,+i = ul+i. If i E T, then there are two 
possibilities. When i # r, we have lo,, ,\u,l = 2, say ul+ i\u, = {vi, Q}. Then 
r contains exactly one of v, or v2 and u,U tn u,+i = u,U {zJ,}, where u, E r. 
When i = r, we have I u,+ i\u, I = I VI - (T - 1). In this case we note that we 
have the added condition u,U r E A so that r contains precisely one vertex 
of link,@,); and if this vertex is u, then u, U r = u, U {v}. The last case to 
consider is i 6?! S. Here u[ U z n ui+ 1 coincides with ui. If i + 1 E S also, 
then u,Urnu,+, coincides with both ui and ui+ i. We can summarize the 
above discussion in this table: 

iES,i+lES iES,i+l&S 

~iu~n~f+, =u1+1 0,u~n0,+, =U~U (0) 
u1+ l\Ui s 7 v E Qit I\% 

iSCS,i+lES i&S,i+l&S 

From this table, we first notice that for every i E [r], X0, is a factor of every 
monomial in the component of &x,w) in q&A(P)]. The other factors are 
all due to the second case in the table above. Let # be the monomial 
I-I o~oo(w) X,. Then the component of w(a,w) in &K[A(P)] is (nieT f?,)u. 
This follows from the fact that no two elements of T are adjacent and from 
the table above. In other words, f(a,w) is either zero or has the form 
(ni, T 0,) u for some monomial u and some nonempty subset T c [r]. Hence 

fVV[Al n (6 ,..., 4) s 0% ,... 9 0,). 

Therefore f induces a homomorphism: 

Since f is surjective, so is Ji. 
It remains to show that f is injective. Choose a monomial basis {q,} of 

K[A(P)]/(B). The Q’S will necessarily be square-free by Theorem 5.1. As in 
the proof of (2) * (3) in Proposition 2.3, every element of K[A(P)] may be 
written in the form C q,p,(8, ,..., S,) for suitable polynomials p,, although 
this representation may not be unique. By Theorem 4.3, it follows that 
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IP( spans WI/( a as a vector space over K. Since the qj’s are square- 1 
free monomials, the only p(vj)‘s having degree iV = (‘: ‘) are those for which 
qj has multidegree [r]. Therefore dim,ZNK[A]/(a) & dim,qrlKIA(P)]/(B), 
and the result follows. 1 

Although rank-selection applied to a simplicial complex A does not in 
general produce another simplicial complex, there is one obvious case in 
which it does. Namely, if A has rank r and if i E [r], define Ai to be the 
subcomplex {u E A 1 ]ul < i} of A as in Proposition 3.1. Topologists refer to 
A, as the (i - 1)-skeleton of A. Theorem 5.4 immediately implies that 
@-‘(A,, K) is isomorphic to G?‘(;.; l)KIAi]/(a). We now show the analog of 
the Rank-Selection Theorem for simplicial complexes. 

THEOREM 5.5. Let A be a simplicial complex of rank r. If A is CM, then 
one can choose a basic set of monomial separators Iv,,..., qN] for the frame 
(a l,..., a,) of K[A] in such a way that for all i E [r], {qj 1 lJ(qj) E Ai} is a 
basic set of monomial separators for the frame (a,,..., ai) of K[A,]. In 
particular, Ai is then CA4 for all i E [r]. 

ProoJ Let A’ be the subcomplex A,-, , and let J= A\d’ be the set of 
simplices of A of rank r. We will show that (1) a monomial basis of 
K[A’]/(a) can be extended to a monomial basis of K[A]/(a) using 
monomials whose support is in J, and that (2) if K[A] is CM then so is 
K[A’]. Clearly the theorem follows from (1) and (2) by induction on i. We 
will, in fact, show a stronger result which relates K[A]/(a) to K[A’]/(a) in a 
precise manner and for any simplicial complex A. 

We begin by recalling (from Section 3) that there is a natural projection 71: 
K[A] + K[A’] which gives K[A’] the structure of a K[A]-algebra. The kernel 
of 7~ is easily identified as being the direct sum @,,uxx”K[o], where K[o] 
denotes the Stanley-Reisner ring of the simplicial complex of all subsets of 
u. Thus we have the following short exact sequence of K[A]-modules: 

This short exact sequence immediately gives rise to an exact sequence: 

@ TK[u]/(a, ,..., a,+,) + K[A]/(a, ,..., (x,-h + K(A’]/(a) + 0. (*) 
l7E x 

Now let (g(u)p ] u E&) E @,,,lF’K[u] have the property that 
C,,~g(uM”= 2;:: athi, f or some h, E K[A]. In other words, (g(u)r) is 
a representative of an element of the kernel of the first map in (*). Fix a 
simplex t EM. Next apply the homomorphism z,: K[A] + K[z] to 
CKM kw~: 
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r-1 
= 2 ai n,(hi)9 

i=l 

where a,(r) = C,, 1 X”x(]v] = i) = n,(a,). Now in K[r], there is just one 
simplex of rank r. Thus a,(r) = F. The equation above may therefore be 
written as 

r-1 
1 ai Md = a,(r) g(r). 
i=l 

Since K[r] = K[X, ] u E r] is a free polynomial ring, it is CM. Hence by 
Proposition 2.3, a,(t) is not a zero-divisor modulo (a,(r),..., a,-,(z)). 
Therefore there exist g,(t) E K[r], iE [r- I], such that g(r) = 
C;:: al(r) g,(t). Th’ h Id f IS o s or every r E Ix: Therefore (g(u)F’ ] u E ,n) 
represents the zero element of @,,~xx”K[o]/(a,,..., a,-,). Thus the 
following sequence is exact: 

0 + 0 X”K[o]/(a, ,..., a,-,) + K[d]/(a, ,..., a,- 1) --) K@‘]/(a) --* 0. 
OE / 

We now go one step further in the above exact sequence and mod out by 
a, as well. By the Ker-Coker lemma, we have an exact sequence 

0 -+ AnnKIbyto ,,..., a,-lj(ar) -, WI/W 
(**I 

m @ X”K[u]/(a) + K[d]/(a) + K[d’]/(a) + 0. 
oeX 

We have used above that a, annihilates all of K[d’]/(a) and that K[u] is 
CM, so that a, is not a zero-divisor of K[u]/(ar,..., a,-,). The exact 
sequence (**) is the basic exact sequence which relates J@]/(a) to 
W’ I/W. 

We now show how the theorem follows from (**). Property (1) follows 
immediately from the exact sequence (**). To show property (2), we note 
that if K[d] is CM, then a, is not a zero-divisor of K[d]/(a, ,..., a,- 1). Hence 
(**) becomes the exact sequence 0 --) K[d’]/(a) + @,,,X”K[u]/(a) + 
K[d]/(a) -t K[d’]/(a) -+ 0, which is the following relationship among the 
Hilbert series of these algebras: 

(1 - t’) H(K[d’]/(a); t) = H(K[fl]/(a); I) - 1 t’H(K[u]/(a); t). 
oeJ 

We know that K[d] and all the K[u]‘s are CM and that H(K[u]; t) is 
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l/(1 - t)’ because K[a] is the free polynomial ring in r variables. We now 
divide the equation above by n;=, (1 - t’) and use Propositions 2.3 and 3.3 
to obtain 

= \‘ pl(l -t>+ - c f(l -f)’ 
ZA (IE x 

= 2: tlol(l _ t)-l”l 

ocd’ 

= H(K[A’]; t). 

By Proposition 2.3, K[A’] is CM and the theorem follows. 1 

6. LOCALIZATION 

Roughly speaking, localization is a tool for the close examination of a 
small part of a larger structure. The object of this section is to show that the 
CM property is local. We then show as a consequence that the CM property 
for a simplicial complex may be characterized by a local topological 
condition. More precisely, if A is a simplicial complex, then its local 
structure near o E A is defined by the subcomplex 

Our main result is a method for finding basic sets of separators for the rings 
K[link,(u)] from a basic set for K[A]. Namely, 

THEOREM 6.1. Let A be a simplicial complex and u E A. Suppose that 
(a * , ,..., a,, rll T..., tljq ) is a basic frame for K[A]. Then some subset of 
(vj ] Qj E link,(u)} is a basic set of separators for the frame (a, ,..., a,) of 
K[link,(u)], h w ere 1= r(link,(u)). In particular, if K[A] is CM, then so is 
K[link,(u)]. 

Proof: There is natural projection rr: K[A] + K[link,(u)], given by 

n(7) = 7 if 7 E link,(u) 
=o otherwise. 

It is easy to see that rr is a homomorphism which maps each ai in K[A] 
to the analogous element ai in K(link,(u)] if i Q 1 and to 0 if i > 1. 
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Thus II induces a surjective homomorphism K[d]/(a, ,..., a,) + 
~Ilink,(~)l/(a, ,..., a,). Thus the first part of the theorem follows 
immediately from the second part and Proposition 2.3. 

Assume that K[d] is CM. Since we have link,@ U r) = linklink,.&t) when 
u n r = 0, it is no loss of generality to assume that u consists of a single 
vertex Y. The star of Y is the subcomplex of d given by 

star,(u)= (aEd {u}UuEd}. 

Clearly, star,(o) I> link,(v) and K[link,(u)] z K[star,(u)]/(X,). Moreover, it 
is easy to see that K[link,(u)] is a subalgebra of K[star,(v)] and that 
K[star,(u)] is a subalgebra of K[d]. We propose to show that (a”, ,..., Cs,, X,) 
is a basic frame for K[starb(v)], where (2, = C, ~~(] UI = i)x(u E link,(u)). 
Since K[link,(v)] is the quotient of K[star,(o)] by X,, this will give the 
theorem. 

We first observe that K[star,(u)] has an N2-grading given by deg(X,) = 
(x(u # u), x(u = u)). This R\J*-grading has the property that its associated 
grading is the usual grading on K[star,(u)] as a subalgebra of K[d]. Using 
this R\J2-grading, we will show that Xv is not a zero-divisor modulo (cl ,..., o;k) 
for any k Q 1. Accordingly, let fX, E (a’, ,..., Q, where f is homogeneous with 
respect to the N2-grading, say, fX, = & g,&. We may assume that each 
gj is homogeneous since the 6, are so. Since deg(Z,) = (J 0), it follows that 
each gj is divisible by X,, and since X, is not a zero-divisor of K[starA(u)], 
we have f = C!= 1 gjZj, where gjXv = gj. Thus f E (a’, ,..., (?k) as desired, 

We now show that (E,,..., a’,,XJ is a basic frame for K[star,(u)]. We do 
this by showing that this sequence is a regular sequence. Let f be a 
homogeneous element of K[star,(u)] such that f&+ 1 E (ii, ,..., Q, say, 
f&+1 = c:=, gJ$ Since K[star,(u)] is a subalgebra of K[d], we may 
interpret this as an equation in K[d]. Now multiply by X,: fiik+lXu =’ 
J$ i g,O;,X”. Since X, annihilates every monomial whose support is not in 
star,(u), we have that a’,X, = aiX, for all i. Thus fak+ IX, = CiEl gjajXv 
holds in K[d]. By assumption K[d] is CM. Thus by Proposition 2.3, 
(a ,,..., a,) is a regular sequence. In particular, this implies that fx, E 
a, ,..., a,J, say, that fX = C:= i hJa,. Multiply once more by X,: fxT, = 

~:=lh,a,X,=C,,h,~~X”.N ow each h,X, may be regarded as an element 
of K[ star,(u)]. Hence fxt E (6i ,..., &). We already showed that XV is not a 
zero-divisor modulo (&i ,..., &J. Thus f E (a’,,..., &J. Thus for all k, &+I is 
not a zero-divisor modulo (E,,..., ZJ. Since X, is not a zero-divisor modulo 
(a’, v-m, Z,), we conclude that (cl ,..., Z,, X,) is a regular sequence and the 
theorem follows, by Proposition 2.3. m 

Our combinatorial decomposition results enable us to put together a 
reasonable proof of a fundamental result in the theory of CM complexes. 
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The original proof of this result, due to Reisner [ 171, is very difficult and 
uses quite sophisticated machinery. It may be stated as follows. 

PROPOSITION 6.2. Let A be a simplicial complex. The ring K[A] is CM if 
and on/y lffor every (I E A, link,(a) is a bouquet. 

ProoJ: We will say that A satisfies the bouquet condition if for every 
(T E A, link,(a) is a bouquet. For a poset P we will say that P satisfies the 
interval bouquet condition if for every x < y in ?j, A@, y) is a bouquet. Let A 
be a simplicial complex of rank r. Henceforth we will write P for P(A). 

Suppose that A satisfies the bouquet condition. Then P satisfies the 
interval bouquet condition, for the open intervals (x, y) of P are of two 
types: if y # 1, then (x, y) is the boundary of a simplex and hence a bouquet; 
if y = 7, then (x, y) is isomorphic to link,(x) and hence also a bouquet. We 
claim that if S G [r] satisfies ) SJ = r - 1 (say, S = [r]\{l}), then P, satisfies 
the interval bouquet condition. Now open intervals of P, are either open 
intervals of P or are obtained by deleting one rank of an open interval of P. 
Thus by the obvious induction on r, we need only show that P, is a bouquet. 
This follows by essentially the same proof as that of Proposition 3.1. We 
again have a natural projection zj : cj(A(P), K) + cj(A(P,), K), but now the 
kernel of ~j is oXpp, cj-‘(A@, x) * A(x, I), K), where P, = {x E P 1 r(x) = 1) 
and the open intervals are taken in p. Since P satisfies the interval bouquet 
condition, A(& x) and A(x, 1) are bouquets. By Proposition 3.2, A(& x) * 
A(x, 1) is a bouquet of dimension r - 2. Now, as in the proof of 
Proposition 3.1, A(P,) is also a bouquet, and hence P, satisfies the interval 
bouquet condition. 

We now repeat the above argument inductively to conclude that A(P,) is a 
bouquet for all subsets S G [r]. In particular, for every S c [r] we have that 
PW,)) = (-l)‘s’-‘&,-, (A(Ps), K). By Corollary 5.2, K[A(P)] is CM. By 
Theorem 4.3, K[A] is also CM. 

Conversely, suppose that K[A] is CM and that the theorem is true for 
simplicial complexes of smaller rank. By Theorem 6.1, K[link,(a)] is CM for 
all u EA. Hence by the inductive assumption, link,(a) is a bouquet for all 
c E A\(0). It remains to show that A itself is a bouquet. By Theorem 5.5, 
K[A’] is CM, where A’ = {a E A 1 ]u] < r}. By the inductive hypothesis, A’ 
satisfies the bouquet condition. By Proposition 3.1, /ii(A, K) = fi,(A’, K) for 
i < r - 2. But /i,(A’, K) = 0 for i < r - 2 since A’ is a bouquet of dimension 
r - 2. Therefore li,(A, K) =0 for if r - 1, r - 2. In particular p(A) = 
(-l)‘-l/i,-,(A, K) + (-l)‘-*/i,-,(A, K). Thus to show that A is a bouquet 
we need only prove that ,u(A) = (-l)‘-‘&-,(A, K). 

We now apply Proposition 3.3 to K[A(P)]: 

WQ(P)I; t, ,..., tJ = c t-11 ‘Tyl(P&T 
rs1r1 nr=1<1-4) * 
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By Lemma 4.1, we can use this to compute H(K[d]; t): 

H(K[A]; t) = c TGLI] (-l)“‘-l/@T)f”r” 
n;=, (l -ri) ’ 

where II TII = LET i. Now K[d] is CM, so by Proposition 2.3, 

Thus the two equations above give us 

H(K[A]/(a,,..., a,); t) = 1 (-l)‘T’-l~(PT)I”T”. 
Ts Id 

Now the only TG [r] for which ]] TII = (‘: ‘) is T = [r] so it follows that 
dim,Z,K[d]/(a, ,..., a,) = (-l)‘-‘p(P), where N = (‘:‘). By Theorem 5.4, 
the left-hand side above is &,- i(d, K). Since p(P) =,u(d), we have &l) = 
(-l)‘-‘&-,(A, K), and the result now follows. 1 

We now give a partial converse to Theorem 4.3. 

COROLLARY 6.3. Let A be a simplicial complex of rank r and let 
P = P(A). Then K[A] is CM if and only ifK[A(P)] is CM. Moreover, in this 
case K[A]/(a, ,..., a,) and K[A(P)]/(B,,..., 0,) are isomorphic as graded 
vector spaces. 

Proof. We already know by Theorem 4.3 that if K[A(P)] is CM, then 
K[A] is also. Suppose that K[A] is CM. Then by Proposition 6.2, A satisfies 
the bouquet condition. We show that A(P) also satisfies the bouquet 
condition. Let u, c u, c . .. c ok be an element of A(P). It is easy to see that 
linkiw, (ulco2c ..- cc7J is isomorphic to the join A(& a,) * 
A(u,, q) * ..- * A(u,, I), where all open intervals are computed in P. Now 
(Q Ql), (0, , %),..., (uk- i, uk) are all standard triangulations of spheres and 
hence are bouquets. The open interval (uk, ‘i) is isomorphic to link,@,), so it 
too is a bouquet. Thus by Proposition 3.2, linkAo,,(u, c u2 c . . . c u,.) is a 
bouquet, By Proposition 6.2, K[A(P)] is CM. For the rest of the Corollary, 
see the remarks following the proof of Theorem 4.3. 1 
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