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Background: Preference-weighted index scores of health-related qual-
ity of life are commonly skewed to the left and bounded at one. Beta
regression is used in various disciplines to address the specific features
of bounded outcome variables such as heteroscedasticity, but has
rarely been used in the context of health-related quality of life mea-
sures. We aimed to examine if beta regression is appropriate for ana-
lyzing the relationship between subject characteristics and SF-6D in-
dex scores. Methods: We used data from the population-based

erman KORA F4 study. Besides classical beta regression, we also fitted
xtended beta regression models by allowing a regression structure on
he precision parameter. Regression coefficients and predictive accu-
acy of the models were compared to those from a linear regression

odel with model-based and robust standard errors. Results: The beta
istribution fitted the empirical distribution of the SF-6D index better

han the normal distribution. Extended beta regression performed best O
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n terms of predictive accuracy but confidence intervals of the fit mea-
ures suggested that no model was superior to the others. Age had a
ignificant negative effect on the precision parameter indicating higher
ariation of health utilities in older age groups. The observations re-
orting perfect health had a high influence on model results.
onclusions: Beta regression, especially with precision covariates is a
ossible supplement to the methods currently used in the analysis of
ealth utility data. In particular, it accounted for the boundedness and
eteroscedasticity of the SF-6D index. A pitfall of the beta regression is

hat it does not work well in handling one-valued observations.
eywords: beta regression, dispersion covariates, health-related qual-

ty of life, heteroscedasticity, SF-6D.
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Introduction

Health-related quality of life (HRQL) is an important outcome param-
eter in health economic evaluation. For the calculation of quality-
adjusted life years, it is required that HRQL can be expressed by a
generic single index that reflects preferences or utilities chosen by
individuals or by the society for specific health states [1]. Besides the
health-utility index [2] and the EQ-5D [3], the SF-6D [4,5] is one of the

ost popular preference-based HRQL instruments.
Regression models are frequently used to model preference-

eighted index scores as a function of individual characteristics
6]. However, health utility data exhibit specific characteristics so
hat the choice of regression methods is not straightforward [7]. A
ommon feature of health utility data is that their distribution is
kewed to the left and truncated at one. As a consequence, it is
mportant to check if the distributional assumptions of the regres-
ion methods are met by the data [8].

To our knowledge, all studies that modelled SF-6D index scores
s a function of person-level characteristics relied on linear re-
ression using ordinary least-squares estimation (OLS) [9–11].
owever, linear regression assumes that error terms are ho-
oscedastic, and this assumption is unlikely to be met for

ounded variables where the variability of scores declines as the
ean approaches the bounds [7,8]. Also, the additional assump-

ion that the error terms are normally distributed may not hold. To

* Address correspondence to: Matthias Hunger, Helmholtz Zentrum
tute of Health Economics and Health Care Management, Ingolstäd

Email: matthias.hunger@helmholtz-muenchen.de.
1098-3015/$36.00 – see front matter Copyright © 2011, Internation

Published by Elsevier Inc.
ccount for heteroscedasticity in the linear model, the calculation
f robust standard errors has been advocated [8,12].

Alternative regression methods that have been used in litera-
ure to address the idiosyncrasies of HRQL data are censored least
bsolute deviation models [6,13,14], Tobit models [6,13,14], latent
lass models [13], two-part models (TPM) [12,13] and median re-

gression [6,12]. Censored least absolute deviation models and To-
bit approaches model an underlying latent variable censored at
one. However, models that allow for censoring are not appropriate
for preference-weighted index data because preferences are mea-
sured on a scale where values by definition cannot exceed perfect
health [8]. Latent class models and TPM address the non-normal-
ity of the data by assuming a mixed distribution for the health
utility scores. They have shown advantages in handling pronounced
ceiling effects like that of the EQ-5D index [12,13], but may be less
relevant for modelling SF-6D data where the percentage of one-val-
ued observations was low [12,15,16]. Median regression provides a
robust alternative to OLS regression for non-normal data and has
shown good properties in predicting index scores for multiattribute
health state classifiers [17]. However, if preference-weighted index
scores are regressed on individual covariates to estimate quality-
adjusted life years in an economic evaluation, regression must focus
on the mean, not on the median [8,18].

For bounded outcomes, the mean must be a nonlinear function
f the covariates and the variance must be heteroscedastic [7].

nchen, German Research Center for Environmental Health, Insti-
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Beta regression, introduced by Ferrari and Cribari-Neto [19], fulfils
both requirements and has been used in various disciplines to
model variables observed on the standard unit interval. By varia-
tion of mean and precision parameter, the beta distribution pro-
vides a variety of shapes. Whereas in the classical beta regression
model only the mean parameter is modelled as a function of ex-
planatory variables, an extended beta regression model as for-
mally introduced by Simas et al. [20] allows a regression structure
on both mean and precision parameter. In that way, extended beta
regression allows to naturally model skewness and differences in
dispersion related to covariates [21].

Two recent studies used a (classical) beta regression model to
analyze EQ-5D index data and visual analogue scale data, respec-
tively [22,23]. Pullenayegum et al. [8] moreover argued that beta
egression was an appealing regression method for health utility
ata because of the boundary at one, but pointed out that the

ower boundary at zero may restrict its applicability to populations
here negative utilities are not observed. There is first evidence

hat in some situations, beta regression may be superior to tradi-
ional OLS methods when regressing HRQL measures on covari-
tes [24]; however, the comparison of the beta regression model
ith competing models has not been sufficiently examined. Beta

egression with dispersion covariates has been used by Cheung et
l. [25] to model the scores of SF-36 domains.

The purpose of this study was to examine the applicability of
lassical and extended beta regression to analyze the relationship
etween the SF-6D index score and subject characteristics, and to
ompare estimated effects and predictive accuracy of these methods
o the traditionally used linear regression model. We used data from
he population-based German KORA-F4 study for the analysis.

Methods

Data sources

The data used for analysis were taken from the German popula-
tion-based KORA F4 study (2006–2008), which is a follow-up study
of the KORA S4 survey conducted in 1999–2001. The study region
comprises the city of Augsburg and its two surrounding counties
in southern Germany. A detailed description of the study design,
sampling method, data collection, and response rate can be found
elsewhere [26–28]. In brief, 6640 individuals aged 25 to 74 years
were randomly selected from population registries for the base-
line survey (S4) in 1999–2001, of which 4261 participated. In 2006–
2008 these subjects were reinvited for follow-up examination of
whom 3080 (72%) were investigated. Subjects who died during fol-
low-up, moved too far outside the study area, or were lost to fol-
low-up were excluded from follow-up.

The SF-6D is a multidimensional health state classification de-
rived from responses to the SF-12 health survey. It comprises six
dimensions (physical functioning, role limitations, social func-
tioning, pain, mental health, and vitality), each of which consists
of three up to five levels, yielding a total of 7500 different health
states. These health states can be combined into a single index
score using an algorithm that is based on valuations of a represen-
tative UK general population sample [5]. The SF-6D index scores
range from 0.345 to 1. It should be noted that there also exists a
version of the SF-6D derived from 11 items of the SF-36 [4], which
differs from SF-6D that we used. Participants self-administered
the SF-12 questionnaire at the study center, and completeness of
the questionnaire was checked by the study personnel.

Covariates in the analyses were age, sex, body mass index
(BMI), marital status (single or living with partner), education (pri-
mary/secondary education and tertiary education), smoking sta-
tus (current smoker, ex-smoker, or never smoker) as well as his-
tory of diabetes, cancer, a cardiovascular event (myocardial

infarction or angina pectoris), or stroke (Table 1). For our descrip-
ive analyses, participants were classified into BMI categories ac-
ording to the World Health Organization guidelines [29], and age
as categorized into five 10-year groups.

Descriptive analyses

In our descriptive analyses, we examined how mean, variance,
and shape of the SF-6D index differ across various subgroups de-
fined by the covariates. We calculated sample means in the differ-
ent subgroups and compared them using the Kruskall-Wallis test.
To examine heteroscedasticity, we investigated how the disper-
sion of the SF-6D index differs between the covariate subgroups by
calculating sample variances and using Levene’s test for equality
of variances.

We further show histograms of the SF-6D index score by age
groups. This helps to examine how the shape of the conditional
distribution (and not only its first central moments) changes with
increasing age. We added two curves to each histogram, repre-
senting the density functions of the beta and the normal distribu-
tion that were fitted to the data.

Statistical models

Beta regression
Beta regression is a fully parametric approach, assuming that the
dependent variable follows a beta distribution with density function

f(y; �, �) �
�(�)

�(��)�((1 � �)�)
y���1(1 � y)(1��)��1, 0 � y � 1, (1)

where �(.) denotes the gamma function [30]. The parameter � de-
notes the expected value of Y; that is, E(Y) � �. The parameter �

fulfils the definition of a precision parameter because for fixed �

the greater the value of �, the smaller the variance of the depen-
dent variable. More specifically,

Var(Y) �
V(�)

1 � �
, (2)

where V(�) � � (1��).
In the classical beta regression model, as in the generalized

Table 1 – Sociodemographic and clinical characteristics
of the study population.

Variable Mean � SD or %

Age (y) 55.90 � 13.21
BMI 27.57 � 4.75
Sex

Man 48.7%
Woman 51.3%

Marital status
Single 24.4%
With partner 75.6%

Smoking status
Never smoker 44.2%
Ex-smoker 37.9%
Current smoker 17.9%

Education
Primary/secondary 44.0%
Tertiary 56.0%

Diabetes mellitus 6.8%
Stroke 1.9%
Cancer 7.9%
Cardiovascular event 7.0%

BMI, Body mass index; SD, standard deviation.
linear model framework, only the mean parameter � of the beta
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distribution is expressed as a function of covariates, whereas the
precision parameter � is treated as nuisance. To map the linear
predictor into the space of observed values on the unit interval, the
logit link has been proposed as the link of choice [21]:

log
�i

1 � �i

� xi
T�, (3)

here xi
T denotes the vector of covariates, and � refers to the vector

of regression coefficients.
The extended beta regression model relates both parameters to

covariates through distinct linear predictors [20,21]. With the pre-
cision parameter � being an inverse measure of dispersion, this
approach is similar to a generalized linear model with dispersion
covariates [31]. It reflects the idea that the � is of interest on its

wn and that in many situations covariates have an effect on the
ariation of the dependent variable, thus involving heteroscedas-
icity [21,32]. Extended beta regression comprises two submodels,
ne for the mean and one for the precision parameter. The sub-
odel for the mean is identical to that given by equation (3),
hereas the precision submodel uses a log link to guarantee that �

is always positive:

log(�i) � wi
T	, (4)

here wi
T denotes the vector of precision covariates and 	 refers to

he vector of the respective regression coefficients.
The beta distribution has a nonzero support only on the open

nit interval. If ones and zeros occur in the data, it has been sug-
ested to minimally compress the range of observed values, ap-
lying the transformation

* � [Y(N � 1) � 0.5] ⁄ N (5)

here Y* is the transformed and Y is the untransformed depen-
ent variable [21]. This transformation has already been used in
everal studies [21,23,32], but may bias results if the number of
oundary values is large. Therefore, it has been proposed to ex-
eriment with different endpoint handling schemes and to ex-
mine if this has an effect on the parameter estimates [21].
ollowing (5), the one-valued observations in our sample were
ransformed to Y* � 0.99983.

Linear regression
The linear regression model is given by

Yi � xi
T� � 
i,

here Yi denotes the health utility for individual i, and the �i are
ncorrelated random variables with E��i� � 0 and Var��i� � �2 for

any i. In particular, error terms are homoscedastic because their
variance is constant irrespective of i.

If the assumptions on �i hold, then the OLS estimator �̂ is the
est linear unbiased estimator according to Gauss-Markov theo-
em. If one additionally assumes normality of the error terms,
hen Yi given xi is also normal, and maximum likelihood estima-

tion of �̂ coincides with OLS. It also follows that �̂ is normal, allow-
ing confidence intervals and P values to be calculated.

If the assumption of homoscedasticity is violated, then �̂ re-
ains unbiased and consistent, but standard errors are biased so

hat hypothesis tests are no longer valid. Linear regression with
obust standard errors is based on the calculation of a heterosce-
asticity-corrected covariance matrix (HCCM) of the OLS estimate,
lso known as sandwich matrix. There exist several versions of
CCMs of which we used version HC3 in our analysis [8,33].

Model estimation
We fitted classical and extended beta regression models to estimate

the effects of the covariates on the conditional mean and the condi- a
tional distribution of the SF-6D index scores. We compared the esti-
mates to those of the linear regression model with model-based and
robust standard errors in terms of significance and direction of ef-
fects. We included all available covariates in the mean (sub) models.
To avoid overcomplex models the precision submodel of the ex-
tended beta regression only comprised significant covariates.

We examined the predictive distributions of the two methods
by comparing estimated regression quantiles.

We used a cross-validation method to determine the predictive
accuracy of the competing methods. We randomly partitioned the
data into training (90% of the data) and validation set (10% of the
data). We estimated the level of fit by calculating R1 and R2 coeffi-
cients as well as logarithmic scores (LogS) [13,34]. R1 and R2 coeffi-
cients measure the proportion of absolute and square error that
was predicted by the respective regression methods, while the
LogS is a standard measure of the accuracy of probabilistic fore-
casts that assesses how well the predictive distribution corre-
sponds to the observed values in the validation set. R1, R2, and LogS
are calculated as follows:

R1 � 1 �
�i |Yi � Ŷi|

�i |Yi � Y� |

2 � 1 �
�i �Yi � Ŷi�2

�i �Yi � Y� �2

LogS �
1

n�i�1
n log f�yi
�̂i, �̂i�

here Yi denotes the observed SF-6D index score of individual i, Ŷi

is the predicted SF-6D index score of individual i, and Y� is the mean
of the observed SF-6D index scores in the validation sample.

The above cross-validation process was repeated in 1000 boot-
strap samples, and mean and 95% percentile intervals of the three
considered predictive accuracy measures were computed across
bootstrap samples.

We conducted model diagnostic analyses calculating general-
ized leverages for each observation [35]. Leverage is one of the
central components of influence diagnosis in regression models. It
measures the importance of individual observations and reflects
their influence on the model fit [36]. High leverage points are char-
acterized by a high instantaneous rate of change in their predicted
value with respect to their response value [35]. For the exact cal-
culation, see Rocha and Simas [35].

For statistical testing, the level of significance was set at � � .05.
ll calculations were carried out using the statistical software R
.10.1, including the add-on package betareg [30,37].

Results

Descriptive analyses

Excluding participants with missing data reduced the final sample
size from 3080 to 2933. The sociodemographic and clinical charac-
teristics of the final sample population are summarized in Table 1.

he mean SF-6D index in the sample was 0.793 � 0.126 and values
anged from 0.345 to 1. A number of 98 individuals (3.3%) had an
F-6D index value of 1.

The bivariate analyses between SF-6D index and the covariates
evealed that utilities were lower in older age groups and that the
ariation of SF-6D index values increased with growing age, as
hown in Table 2. Significant associations with the mean SF-6D score
ere further detected for all other covariates with the exception of

moking status. Levene’s test showed that the empirical variances of
he SF-6D index differed significantly across the covariate subgroups,
ith higher mean scores involving reduced dispersion.

Figure 1 shows that the distribution of the SF-6D index score by

ge groups and for the entire sample is skewed to the left. Also, not
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only the mean of the SF-6D index score but also the shape of its
distribution changes across age groups: As age increases, the dis-
tribution gets broader and the skewness is reduced. The estimated
curves suggest that the beta distribution (solid curve) fits the data
better than the normal distribution (dashed curve). However, the
beta distribution performed poorly in the oldest age group.

Regression models

The parameter estimates of classical and extended beta regres-
sion model are shown in Table 3. In both models, high BMI, being

woman, living alone, and all comorbidities were significantly
ssociated with lower mean SF-6D index scores. Age had a small
ositive but insignificant effect on the mean SF-6D index score in
he classical beta model, whilst in the extended beta model this
ffect was significant and negative. Significant covariates in the
recision submodel were age, smoking status, education, and
troke. The results show that the precision parameter � decreased by

a factor of exp(�0.02) � 0.98 for every additional year. According to
(2), this effect refers to the additional change in dispersion that is
beyond the change already implied by the fact that increasing age is

Table 2 – Empirical means and variances of the SF-6D inde

Covariate N Mean SF-6D score

Age (y)
31-39 380 0.824
40-49 678 0.813
50-59 672 0.784
60-69 625 0.790
70-82 578 0.763

BMI
�18.5 10 0.788
18.5-25 926 0.805
25-30 1227 0.798
30-35 556 0.781
35-40 154 0.747
� 40 60 0.743

Sex
Man 1429 0.811
Woman 1504 0.777

Marital status
Single 715 0.764
With partner 2218 0.803

Smoking status
Never smoker 1297 0.791
Ex-smoker 1112 0.795
Current smoker 524 0.795

Education
Primary/secondary 1290 0.778
Tertiary 1643 0.805

Diabetes mellitus
No 2735 0.797
Yes 198 0.742

Stroke
No 2876 0.795
Yes 57 0.696

Cancer
No 2701 0.796
Yes 232 0.759

Cardiovascular event
No 2728 0.799
Yes 205 0.715

BMI, Body mass index.
related with lower SF-6D scores and hence higher dispersion.
In the linear model (Table 4), significant predictors of reduced
HRQL were the same as in the mean submodel of the extended
beta regression. In particular, age had a negative effect on the
mean SF-6D index score. Differences between model-based and
robust standard errors were only small except for stroke, where
the robust standard was about 1.5 times higher.

Figure 2 compares the estimated age effect of the extended
beta regression model and the linear regression with normality
assumption. The displayed curves represent the mean as well as
the 5%, 25%, 75%, and 95% quantiles of the estimated predictive
distributions for a typical healthy individual where all covariates
with the exception of age are fixed (i.e., male sex, mean BMI, with
partner, never smoker, higher education level, and without co-
morbidities). The left plot in Figure 2 refers to the extended beta
regression model and expresses that the distribution of the SF-6D
index is skewed to the left because the 75% quantile and 95%
quantile are close together whereas the corresponding 5% and 25%
quantiles are shifted downward. The graph indicates that not only
the mean declines with advancing age but that older age is also
associated with a bigger left tail in the conditional distribution. In

ore in different covariate subpopulations.

uskal-Wallis
test)

Empirical variance of
SF-6D scores

P
(Levene’s test)

�0.001 �0.001
0.010
0.012
0.016
0.017
0.021

�0.001 �0.001
0.014
0.014
0.016
0.017
0.017
0.019

�0.001 0.004
0.015
0.016

�0.001 �0.001
0.017
0.015

0.840 0.242
0.015
0.017
0.015

�0.001 �0.001
0.018
0.014

�0.001 �0.001
0.015
0.020

�0.001 �0.001
0.015
0.030

�0.001 �0.001
0.015
0.020

�0.001 0.005
0.015
0.019
x sc

P (Kr
contrast, linear regression cannot provide such information about
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changes in both location and shape. Assuming homoscedasticity
and normality of the error terms, the linear regression model pre-
dicts a symmetric conditional distribution with the quantiles lying
on equidistant curves, as shown in the right plot of Figure 2. Fur-
thermore, beta regression model respects the restricted range of
the SF-6D index, whereas in the linear model parts of the esti-
mated distribution are lying above one.

The predictive accuracy of each model is summarized in Table
5. The classical beta regression model performed worst on all three
predictive accuracy measures. Extended beta regression per-
formed best on R1 and LogS, whereas the linear model had the

ighest R2. However, confidence intervals were overlapping across
ll models, suggesting that no model was superior to the others.

Model diagnostic analyses revealed high generalized leverages
or individuals with perfect health (results not shown). Using the
ransformation given in formula (5), these subjects had an SF-6D
ndex score of 0.99983. It is likely that their high influence is re-
ated to the proximity to the right boundary of the beta distribu-
ion range. To test this supposition, we successively transformed
he value of perfect health to slightly lower values in a range
etween 0.99 and 0.99983 and refitted the beta regression models.
he different transformations only slightly changed the coeffi-
ient estimates in the mean submodels (an exception was the age
ffect in the classical beta model that became negative for smaller
oundary values). Precision, however, was affected remarkably:
he asymptotic standard errors in both models decreased on av-
rage by a factor of about 0.87 if perfect health was assigned the
alue 0.99 instead of 0.99983, and still by a factor of about 0.9 if

Fig. 1 – Distribution of the SF-6D index score by age groups
estimated density functions of the beta (solid) and the norm
erfect health was assigned the value 0.995. In the latter case, the
igh influence of these health states was also reduced, resulting in
ower generalized leverages (results not shown).

Discussion

The distribution of preference-based health indices is commonly
non-normal, exhibiting skewness to the left and a boundary at one
[8]. This study examined the applicability of classical and ex-
tended beta regression to address these features using the exam-
ple of studying the relationship between SF-6D index score and
subject characteristics in a population-based German health
study. Our results show that the predictive accuracy of the beta
regression was similar to those of linear regression, but that ex-
tended beta regression had some advantages in estimating predic-
tive distributions. However, beta regression has been shown to
have limitations in handling one values.

For bounded response variables, mean, and variance are not
independent. In our bivariate analyses this effect was consider-
able. As one would expect, we observed reduced dispersion in
subgroups with higher mean scores, indicating potential het-
eroscedasticity related to the covariates. Examining the distribu-
tion of SF-6D index values in different age subgroups, we observed
that the beta distribution addresses the skewness of the data bet-
ter than the normal distribution.

For bounded variables like the SF-6D index, the mean must be a
nonlinear function of the covariates and the variance must be het-
eroscedastic since the variability of scores decreases as the mean

and for the entire sample (f). The curves represent the
ashed) distribution.
(a-e)
al (d
approaches the boundary points [7]. Both requirements are fulfilled



764 V A L U E I N H E A L T H 1 4 ( 2 0 1 1 ) 7 5 9 – 7 6 7
by the beta regression model. In contrast, linear regression contra-
venes these conditions because it assumes homoscedasticity and a
linear expectation function. As a consequence, the linear model may
produce biased standard errors and out-of-range predictions.

When making inference about the mean SF-6D index scores
only; however, there was no substantial difference between the
linear model and beta regression in our study: As confidence in-
tervals of the predictive accuracy measures were overlapping, no
model was superior to the others. Also, the linear model predicted
no values superior to one, and there were only slight differences
between model-based and robust standard errors.

Our analyses show that extended beta regression is a useful
supplement to currently used methods when focus is not only on
the mean but also on the predictive distribution of the utility in-
dex: It performed best in terms of the logarithmic score and re-
spected the boundary at one, whereas in the linear model a part of
the estimated distribution was lying above one. Also, by modelling
dispersion in terms of covariates, extended beta regression pro-
vided information about the shape of the distribution that is not
available in other methods. This is important when the objective is
for example to derive population-based reference values for HRQL
in form of centile curves. Such reference values are important for
decision-analytic models in cost-effectiveness analyses.

In the extended beta regression model, age, smoking status,

Table 3 – Regression coefficients of the classical and exten

Covariate Beta regression (mean c

Estimate Standard e

Mean submodel (logit link)
Intercept 1.6473 0.1169
Age (y) 0.0015 0.0013
BMI �0.0098 0.0033
Sex†

Woman �0.2426 0.0311
Marital status‡

With partner 0.1376 0.0348
Smoking status§

Ex-smoker 0.0373 0.0339
Current smoker �0.0710 0.0431

Education¶

Primary/secondary �0.0146 0.0316
Diabetes mellitus �0.1977 0.0602
Stroke �0.2556 0.1052
Cancer �0.1429 0.0551
Cardiovascular event �0.3378 0.0575

Precision submodel (log link; after
variable selection*)

Intercept 1.9488 0.0256
Age (y)
Smoking status§

Exsmoker
Current smoker

Education¶

Primary/secondary
Stroke

BMI, Body mass index.
* For beta regression with mean covariates only, the precision subm

only significant covariates were included in the precision submode
† Reference category: Man.
‡ Reference category: Single.
§ Reference category: Never smoker.
¶ Reference category: Tertiary education level.
education and stroke were related to changes in precision: The
results suggest that growing age is not only associated with a di-
minishing mean, but also with an increased variation of the SF-6D
index score. This finding might be explained by the fact that age is
considered as a proxy of comorbitity representing diseases with
various effects on HRQL [38]. A similar result is given by Li and Fu
[12] who reported that the distribution of the EQ-5D in a subpop-
ulation with several comorbidities had a bigger left tail than the
distribution of individuals with no comorbidities. Exsmokers
showed higher variability of scores than never-smokers, indicat-
ing heterogeneity that could be explained by differences in time
since smoking cessation. Increased variation for patients with a
stroke history could indicate differences in disease severity. Ex-
tended beta regression have previously been used in economic
and psychological applications [21,32,39], and we know of one
study that used a beta regression model with dispersion covariates
to analyze subscale scores of the SF-36 [25].

Because the beta distribution is only defined on the open unit
interval, we used a transformation suggested in literature to
slightly compress the range of observed values. As a consequence,
the perfect health observations were assigned the value 0.99983
instead of 1. However, our model diagnostics indicated that these
observations near the boundary led to increased asymptotic stan-
dard errors so that the parameter coefficients were estimated less
precisely. In our sample, this effect could be lessened if perfect

eta regression model.

iates only) Extended beta regression (mean and
precision covariates)

P Estimate Standard error P

�0.0001 1.9090 0.1183 �0.0001
0.2424 �0.0037 0.0014 0.0065
0.0030 �0.0085 0.0032 0.0080

�0.0001 �0.2141 0.0300 �0.0001

�0.0001 0.1566 0.0339 �0.0001

0.2718 �0.0177 0.0361 0.6246
0.0998 �0.0638 0.0427 0.1352

0.6448 �0.0283 0.0335 0.3975
0.0010 �0.1796 0.0636 0.0047
0.0151 �0.3543 0.1385 0.0105
0.0095 �0.1485 0.0568 0.0089

�0.0001 �0.3447 0.0606 �0.0001

�0.0001 3.2792 0.1211 �0.0001
�0.0204 0.0021 �0.0001

�0.1857 0.0565 0.0010
�0.0195 0.0734 0.7902

�0.1178 0.0532 0.0267
�0.4378 0.1778 0.0138

only consists of an intercept term; for the extended beta regression,

he 5% level).
ded b

ovar

rror

odel

l (at t
health was assigned a value of 0.995 rather than 0.99983, suggest-
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ing that the proposed transformation does not work well in large
samples where the difference between the transformed value and
one is extremely small. As a consequence, we recommend to try
different transformation techniques and to carefully examine
their effects on parameter estimates and standard errors. Never-
theless, any approach to handle one values is arbitrary, revealing a
major drawback of beta regression compared to other approaches.

An alternative approach to cope with the one-valued observa-
tions would be the use of a TPM that explicitly models the proba-
bility of one value through a separate logistic regression model
[8,12,13]. Such a TPM has also been presented under the name of

ne-inflated beta regression [40]. However, we decided against the
TPM for the following reason: The TPM assumes that data come
from two different data-generating processes, the first concerning

Table 4 – Regression coefficients of the linear regression m

Covariate Estimate M

Standard er

Intercept 0.8890 0.0174
Age (y) �0.0008 0.0002
BMI �0.0015 0.0005
Sex*

Woman �0.0351 0.0046
Marital status†

With partner 0.0293 0.0052
Smoking status‡

Exsmoker �0.0022 0.0050
Current smoker �0.0115 0.0064

Education§

Primary/secondary �0.0080 0.0047
Diabetes mellitus �0.0318 0.0092
Stroke �0.0779 0.0163
Cancer �0.0211 0.0084
Cardiovascular event �0.0623 0.0090

BMI, Body mass index.
* Reference category: Man.
† Reference category: Single.
‡ Reference category: Never smoker.
§ Reference category: Tertiary education level.

Fig. 2 – Age-specific reference curves for SF-6D index score (
education level, and without comorbidities) estimated from

(right plot).
individuals who tend to have lower utilities and the second con-
cerning individuals with perfect health. This assumption may be
appropriate for utility indices with pronounced ceiling effects;
however, such a distinction was difficult to justify in our data
where the percentage of one-valued observations was very small
(3.3%) and where the gap to the next lower value (0.958) was small
as well. This point of view is also supported by Li and Fu [12] who
stated that one may prefer not to use a TPM if the amount of
perfect health states comprises less than 5% of the data.

One may argue that assuming the lower bound at zero is
questionable since the smallest possible SF-6D index value is
0.345, a fact related to the well-acknowledged floor effect of the
SF-6D [5]. However, as shown in Figure 1, the beta density func-
tion on the unit interval fitted well to the observed data. More-

with model-based and robust standard errors.

-based Robust

P Standard error P

�0.0001 0.0173 �0.0001
0.0001 0.0002 0.0001
0.0032 0.0005 0.0031

�0.0001 0.0045 �0.0001

�0.0001 0.0055 �0.0001

0.6683 0.0051 0.6682
0.0733 0.0062 0.0732

0.0881 0.0048 0.0880
0.0006 0.0103 0.0006

�0.0001 0.0240 �0.0001
0.0116 0.0092 0.0115

�0.0001 0.0101 �0.0001

sex, mean BMI, with partner, never smoker, higher
xtended beta (left plot) and the linear regression model
odel

odel

ror
male
the e
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over, the lower boundary at zero also has a theoretical justifi-
cation due to its equality with death [5].

A surprising result was that age showed a positive (but insig-
nificant) effect on the mean SF-6D index score in the classical beta
regression model, and a significant negative effect in the extended
beta regression model. Possibly, this finding reflects another man-
ifestation of the high influence that values near the boundary have
on estimation. Contrary to what one would expect, there was a
relative high proportion of older individuals among the perfect
health observations, and it seems likely that these observations
influenced the estimation of the overall age effect. This is sup-
ported by the fact that the age effect became negative when other
transformations of one values were used. The age effect in the
mean submodel of the extended beta regression model was nega-
tive, indicating that the high proportion of elderly individuals
among the perfect health observations was an effect of dispersion
rather than of the mean.

In our sample a lot of individuals shared the same SF-6D
index value, making our dependent variable in some intervals
quasidiscrete. For example, the three most frequent index val-
ues— 0.863, 0.922, and 0.8 —together accounted for almost 50%
of respondents. The beta distribution was found to be generally
robust against violations of continuity assumptions [41], but
further research would be helpful to more thoroughly examine
how the shape of the outcome distributions affects the estima-
tion.

Our statistical analyses were carried out using the package be-
tareg in the software R where the extended beta regression model
is implemented. Beta regression with precision covariates can also
easily be fitted using the module betafit in STATA. In SPSS and
SAS, fitting extended beta regression models requires the log-like-
lihood function to be constructed manually within the NLR proce-
dure and PROC NLMIXED, respectively.

A limitation of our study was that we did not comprehensively
study the health status and its relationship to sociodemographic
characteristics in the target population. For example we neither
explored if our sample differed from the population of interest nor
examined interactions between the covariates. The purpose of
this study was to compare the performance of beta and linear
regression in modelling the SF-6D index as a function of com-
monly used covariates. Therefore, the KORA F4 data set only
served as an example data set.

Another limitation is that the variance function of the beta
regression model is inverse U-shaped with its maximum at 0.5,
although studies have shown that the variation of health utility
scores increases with deteriorating health. Only 40 observations in
our data set were lying below 0.5. Thus, as the inverse U-shape
implicates monotonicity between 0.5 and 1, the variance function
of the beta model does not stand in opposition to the aforemen-
tioned findings.

Conclusions

We note that beta regression, especially extended beta regression,

Table 5 – Predictive accuracy of the beta regression and the

Model R1 (95% CI)

Classical beta 0.049 (0.000–0.092)
Linear regression* 0.061 (0.008–0.108)
Extended beta 0.065 (0.018–0.111)

R1, proportion of the absolute error predicted by the model; R2, propo
mean log-density of the observations under the model; 95% CI, 95% p
* Normality assumption of error terms for the calculation of predicti
is a possible supplement to the currently used methods in the
analysis of health utility data. In particular, extended beta regres-
sion accounted for the fact that the SF-6D index is bounded at one,
and provided information about how covariates change its distri-
bution that is not available in other methods. When making infer-
ences about the mean health utility only, we observed no substan-
tial differences in the predictive accuracy between beta regression
and the linear regression model with robust standard errors. A
pitfall of the beta regression is that it does not work well in han-
dling one-valued observations, and we suggest to carefully exam-
ine their effect on model estimation. In further research, it would
be interesting to explore how the beta regression model performs
for other HRQL measures. However, application in instruments
where utilities equal or inferior to zero are possible (such as EQ-5D
index or HUI) is not straightforward.

Source of financial support: The KORA research platform
(KORA, Cooperative Research in the Region of Augsburg) was ini-
tiated and financed by the Helmholtz Zentrum München - German
Research Center for Environmental Health, which is funded by the
German Federal Ministry of Education and Research and by the
State of Bavaria.
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