

Available online at www.sciencedirect.com

Journal of Combinatorial Theory Series A

Journal of Combinatorial Theory, Series A 107 (2004) 69–86

http://www.elsevier.com/locate/jcta

A variant of Kemnitz Conjecture

W.D. Gao^a and R. Thangadurai^{b,*}

^a Department of Computer Science and Technology, University of Petroleum, Shuiku Road, Changping, Beijing 102200, China ^b School of Mathematics, Harish-Chandra Research Institute, Chhatnag Road, Jhusi,

Allahabad 211 019, India

Received 18July 2003

Abstract

For any integer $n\geqslant3$, by $g(\mathbb{Z}_n\oplus\mathbb{Z}_n)$ we denote the smallest positive integer t such that every subset of cardinality t of the group $\mathbb{Z}_n \oplus \mathbb{Z}_n$ contains a subset of cardinality n whose sum is zero. Kemnitz (Extremalprobleme für Gitterpunkte, Ph.D. Thesis, Technische Universität Braunschweig, 1982) proved that $g(\mathbb{Z}_p \oplus \mathbb{Z}_p) = 2p - 1$ for $p = 3, 5, 7$. In this paper, as our main result, we prove that $g(\mathbb{Z}_p \oplus \mathbb{Z}_p) = 2p - 1$ for all primes $p \ge 67$. \odot 2004 Elsevier Inc. All rights reserved.

MSC: primary 11B75; secondary 20K99

Keywords: Zero-sum; Subset-sum; Finite abelian groups

1. Introduction

Let G be a finite abelian group (additively written). From the structure theorem of finite abelian groups, we know that $G \cong \mathbb{Z}_{n_1} \oplus \mathbb{Z}_{n_2} \oplus \cdots \oplus \mathbb{Z}_{n_d}$ with $1 \lt n_1 |n_2| \cdots |n_d$, where $n_d = \exp(G) := n$ is the exponent of G and d is the rank of G. When $n_1 =$ $n_2 = \dots = n_d = n$, we write \mathbb{Z}_n^d instead of $\underline{\mathbb{Z}}_n \oplus \mathbb{Z}_n \oplus \dots \oplus \mathbb{Z}_n$
d times :

^{*}Corresponding author. Fax: $+91-532-266-7576$.

E-mail address: thanga@mri.ernet.in (R. Thangadurai).

 $0097-3165/\$ - see front matter \odot 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jcta.2004.03.009

Definition 1. By $q(G)$ we denote the smallest positive integer t such that every subset S of G of cardinality $|S| \geq t$ contains a subset S' of cardinality $|S'| = \exp(G)$ whose sum is the identity element of G.

This constant $g(G)$ was first introduced by Harborth [\[18\]](#page-17-0) for the group $G = \mathbb{Z}_n^d$. Kemnitz [\[20\]](#page-17-0) proved that

$$
(n-1)2^{d-1} + 1 \le g(\mathbb{Z}_n^d) \le (n-1)n^{d-1} + 1 \quad \text{for all } n \ge 3
$$

and $g(\mathbb{Z}_n^d) \ge n2^{d-1} + 1$ for even integers *n*. Therefore, it follows that $g(\mathbb{Z}_n) = n$ for all odd integer *n*. Kemnitz [\[20\]](#page-17-0) studied this constant when $d = 2$ and computed for small values of $p = 3, 5, 7$ and indeed, he proved that for these primes $g(\mathbb{Z}_p^2) = 2p - 1.$

Also, it is known that $g(\mathbb{Z}_3^3) = 10$ and $g(\mathbb{Z}_3^4) = 21$ (see [\[4–5,12,18–20\]](#page-17-0)). Further, it is known in [\[9\]](#page-17-0) that $g(\mathbb{Z}_3^5) = 45$ and also in [\[3\],](#page-17-0) it is known that $112 \le g(\mathbb{Z}_3^6) \le 114$. More generally, it known from the work of Meshulam [\[21\]](#page-17-0) that $g(\mathbb{Z}_3^d) \leq (1 + o(1)) \frac{3^d}{d}$. We shall conjecture the following.

Conjecture 1. For all integers $n \geq 3$, we have

 $g(\mathbb{Z}_n^2) = \begin{cases} 2n-1 & \text{if } n \text{ is odd,} \\ 2n+1 & \text{if } n \text{ is even.} \end{cases}$ $2n + 1$ if n is even. ϵ

From the following examples, one can see that Conjecture 1 is sharp.

For *n* is odd, let $A = \{(0,0), (0,1), \ldots, (0,n-2), (1,1), (1,2), \ldots, (1,n-1)\}$ be a subset of \mathbb{Z}_n^2 . Then $|A| = 2n - 2$ and A contains no zero-sum subset of cardinality n. Hence, $g(\mathbb{Z}_n^2) \ge |A| + 1 = 2n - 1$; for *n* is even, let $A = \{(0,0), (0,1), ..., (0, n - 1)\}$ 1), $(1, 0), (1, 2), ..., (1, n - 1)$. Then $|A| = 2n$ and A contains no zero-sum subset of cardinality *n*. Hence, $g(\mathbb{Z}_n^2) \ge |A| + 1 = 2n + 1$.

In this article, we shall prove the following theorem.

Theorem 1. Conjecture 1 is true for all primes $p \ge 67$. That is, for every prime $p \ge 67$; we have $g(\mathbb{Z}_p^2) = 2p - 1$.

In the last section, we shall prove that Conjecture 1 is true for $n = 4$ and we shall provide an equivalent criterion as well.

Before we discuss further, we shall introduce notations once for all. A sequence in G is a multi-set in G and throughout we use multiplicative notation. Let $S = \prod_{i=1}^{\ell} g_i$ be a sequence in G. For every $g \in G$, let $v_q(S)$ (a non-negative integer) denote the multiplicity of g in S. We call $|S| = \ell$ the length of S. The length is the cardinality of S as a multi-set whence

$$
|S| = \sum_{g \in G} v_g(S).
$$

Let $\sigma(S) = \sum_{i=1}^{\ell} g_i$. We say T is a subsequence of S if T is a subset of the multi-set S. We denote any subsequence T of S by $T \mid S$. Also, if T is a subsequence of S, then the deleted sequence ST^{-1} , we mean the sequence after removing the elements of T from S. We say that the sequence $S = \prod_{i=1}^{\ell} g_i$ in G is

- a zero-sum sequence, if $\sigma(S) = 0$ in G,
- a square-free sequence, if $v_q(S) = 0$ or 1. In other words, S is a subset of G,
- a zero-sum free sequence, if none of its subsequence is a zero-sum sequence,
- a *minimal zero-sum sequence*, if it is a zero-sum sequence and its proper subsequences are all zero-sum free sequences.

For every $1 \leq k \leq \ell$, define

$$
\sum_{k} (S) = \{g_{i_1} + g_{i_2} + \dots + g_{i_k} \mid 1 \leq i_1 < i_2 < \dots < i_k \leq \ell\}
$$

and define

$$
\sum (S) = \{g_{i_1} + g_{i_2} + \cdots + g_{i_l} \mid 1 \leq i_1 < i_2 < \cdots < i_l \leq \ell, 1 \leq l \leq \ell\}.
$$

Clearly, $\sum(S) = \bigcup_{k=1}^{\ell} \sum_{k} (S)$.

If $S = \prod_{i=1}^{2p-1} (a_i, b_i)$ is a sequence in \mathbb{Z}_p^2 , then $T = \prod_{i=1}^{2p-1} a_i$ is the sequence in \mathbb{Z}_p where the elements a_i are simply the first co-ordinates of S. (We call T as the first coordinate sequence.) One can write T in the following form:

$$
T = x_1^{m_1} x_2^{m_2} \cdots x_r^{m_r} y_1^2 y_2^2 \cdots y_u^2 z_1 z_2 \cdots z_v,
$$

where $x_1, \ldots, x_r, y_1, \ldots, y_u, z_1, \ldots, z_v$ are pairwise distinct elements in \mathbb{Z}_p , r, u, $v \ge 0$, $m_1, m_2, \ldots, m_r \geq 3$ are integers and $m_1 + m_2 + \cdots + m_r + 2u + v = 2p - 1$. Throughout this article, we shall freely use these constants r, u, v without mentioning.

We shall define the invariant $h(.)$ for the given sequence S as follows:

$$
h = h(S) := \max\{v_g(S) : g \in G\}
$$

the maximum of the multiplicities of elements occurring in the sequence S .

We shall define a function $s(G)$ which is analogues to $q(G)$ as follows.

Definition 2. By $s(G)$, we denote the smallest positive integer t such that every sequence S in G of length $|S| \ge t$ contains a zero-sum subsequence S' of length $|S'| = \exp(G).$

This constant was studied by many authors. In 1961, Erdős, et al. [\[10\]](#page-17-0) proved that $s(\mathbb{Z}_n) = 2n - 1$. In 1983, the following conjecture was made by Kemnitz [\[19,20\].](#page-17-0)

Conjecture 2 (Kemnitz [\[20\]\)](#page-17-0). For all $n \ge 2$, $s(\mathbb{Z}_n \oplus \mathbb{Z}_n) = 4n - 3$.

Conjecture 2 is sharp in the following way; Let $S = (0,0)^{n-1} (0,1)^{n-1} (1,0)^{n-1}$ $(1, 1)^{n-1}$ be a sequence in \mathbb{Z}_n^2 . Then $|S| = 4n - 4$ and S contains no zero-sum subsequence of length *n*. Hence, $s(\mathbb{Z}_n^2) \ge |S| + 1 = 4n - 3$.

Kemnitz proved this conjecture for primes $p = 3, 5, 7$ by proving $q(\mathbb{Z}_p \oplus \mathbb{Z}_p) =$ $2p - 1$ for these primes. But for a general prime p, if one knows the value of $g(\mathbb{Z}_p \oplus \mathbb{Z}_p)$ for all primes, then it is not yet known that $s(\mathbb{Z}_p \oplus \mathbb{Z}_p) = 2g(\mathbb{Z}_p \oplus \mathbb{Z}_p) - 1$. The best known result related to Conjecture 2 (in one direction) is (due to Gao [\[14\]](#page-17-0)) $s(\mathbb{Z}_n \oplus \mathbb{Z}_n) \le 4n - 2$ for every $n = p^k$ for any prime power. It should be mentioned that Ronayi [\[24\]](#page-17-0) first proved the same result when $k = 1$. In another direction, the best result known (due to Gao [\[15\]](#page-17-0) (more general) and Thangadurai [\[26\]](#page-17-0) (for this particular case)) is as follows. If S is a sequence in $\mathbb{Z}_n \oplus \mathbb{Z}_n$ of length $4n-3$ and $h(S) \ge n/2$, then there exists a zero-sum subsequence of S of length n.

Now we shall state a corollary to Theorem 1 related to $s(\mathbb{Z}_p^2)$ as follows.

Corollary 1. Let $p \ge 67$ be any prime number. Let S be any sequence in $\mathbb{Z}_p \oplus \mathbb{Z}_p$ of length $4p - 3$. If $h(S) \leq 2$, then there exists a zero-sum subsequence of length p.

2. Preliminaries

In this section, we shall work-out some preliminaries for our main result.

Theorem 2.1 (Dias De Silva [\[8\],](#page-17-0) Alon et al. [\[1–2\]](#page-17-0)). If A is a non-empty subset of \mathbb{Z}_p and if $1 \leq k \leq |A|$, then

$$
\left|\sum_{k}(A)\right|\geqslant\min\{p,k(|A|-k)+1\}.
$$

Theorem 2.2 (Gao [\[13\]](#page-17-0)). Let $n \ge 5$ and let W be a zero-sum free sequence in \mathbb{Z}_n .

(1) If $|W| = n - 1$, then $W = a^{n-1}$ for some $a \in \mathbb{Z}_n$ with $(a, n) = 1$. (2) If $|W|=n-2$, then $W=a^{n-2}$ or $W=a^{n-3}(2a)$ for some $a\in\mathbb{Z}_n$ with $(a,n)=1$.

Theorem 2.3 (Dias De Silva [\[8\]](#page-17-0)). Let $p>3$ be a prime. Set $k = \lfloor \sqrt{4p-7} \rfloor + 1$
and set $\ell = \lfloor k/2 \rfloor$. Let S be a square-free sequence in \mathbb{Z} of length k. Then \sum_{ℓ} $(S) = \mathbb{Z}_p$. and set $\ell = [k/2]$. Let S be a square-free sequence in \mathbb{Z}_p of length k. Then

Theorem 2.4 (Cauchy–Davenport Inequality [6–7]). If A_1, A_2, \ldots, A_ℓ are non-empty subsets of \mathbb{Z}_p , then

$$
|A_1 + A_2 + \cdots + A_\ell| \geqslant \min\Biggl\{p, \sum_{i=1}^\ell |A_i| - \ell + 1\Biggr\}.
$$

The following technical lemma is very crucial for our main result and also it generalizes a Lemma 4.7 in [\[25\]](#page-17-0).

Lemma 2.5. Let $S = \prod_{i=1}^{2p-1} (a_i, b_i)$ be a square-free sequence of length $2p - 1$ in \mathbb{Z}_p^2 . Write

$$
S = \prod_{i=1}^{\ell} \prod_{j=1}^{n_i} (x_i, b_j^{(i)}),
$$

where $n_1, n_2, ..., n_\ell \geq 1$, $\ell \geq 1$, $x_1, x_2, ..., x_\ell$ are pairwise distinct elements of \mathbb{Z}_p , and $n_1 + n_2 + \cdots + n_\ell = 2p - 1$. Let $W = \prod_{i=1}^\ell x_i^{l_i}$ be a zero-sum subsequence of the first co-ordinate sequence T such that $|W| = p$, where $0 \leq l_i \leq n_i$ and $l_1 + l_2 + \cdots + l_\ell = p$. Suppose that $1 + \sum_{i=1}^{\ell} l_i(n_i - l_i) \geq p$. Then S contains a zero-sum subsequence of length p:

Proof. Since S is a square-free sequence in \mathbb{Z}_p^2 , for every $i \in \{1, 2, ..., \ell\}$, we have $b_1^{(i)}, b_2^{(i)}, \ldots, b_{n_i}^{(i)}$ are pairwise distinct in \mathbb{Z}_p . Set $B_i = \{b_1^{(i)}, b_2^{(i)}, \ldots, b_{n_i}^{(i)}\}$ for every $i =$ $1, 2, \ldots, \ell$. Then it suffices to prove that

$$
0 \in \sum_{l_1} (B_1) + \sum_{l_2} (B_2) + \cdots + \sum_{l_\ell} (B_\ell).
$$

By Theorem 2.1, we see that for each i , we have

$$
\left|\sum_{l_i} (B_i)\right| \geqslant l_i(n_i - l_i) + 1. \tag{1}
$$

Therefore, by Theorem 2.4, we have

$$
\left|\sum_{l_1} (B_1) + \cdots + \sum_{l_\ell} (B_\ell)\right| \geqslant \min\left\{p, \left|\sum_{l_1} (B_1)\right| + \cdots + \left|\sum_{l_\ell} (B_\ell)\right| - \ell + 1\right\}.
$$

Therefore, by Eq. (1), LHS of the above inequality is at least

$$
\geqslant \min\{p, (l_1(n_1 - l_1) + 1) + \dots + (l_{\ell}(n_{\ell} - l_{\ell}) + 1) - \ell + 1\}
$$

=
$$
\min\{p, l_1(n_1 - l_1) + \dots + l_{\ell}(n_{\ell} - l_{\ell}) + 1\}
$$

= p.

Therefore, we have

$$
\sum_{l_1} (B_1) + \sum_{l_2} (B_2) + \dots + \sum_{l_\ell} (B_\ell) = \mathbb{Z}_p
$$

$$
\Rightarrow 0 \in \sum_{l_1} (B_1) + \sum_{l_2} (B_2) + \dots + \sum_{l_\ell} (B_\ell).
$$

Thus the lemma follows. \Box

Lemma 2.6. Let p be any prime number, and let T be a sequence in $\mathbb{Z}_p\setminus\{0\}$ of length p. Set $h = h(T)$. Then $\sum_{\leq h}(T) = \mathbb{Z}_p$, where $\sum_{\leq h}(T) = \bigcup_{r=1}^{h} \sum_{r}(T)$.

Proof. Note that one can distribute the elements of T into h nonempty subsets A_1, A_2, \ldots, A_h . By Cauchy–Davenport inequality (Theorem 2.4), we have

$$
\left|\sum_{\leq h}(T)\right|\geq \min\{p, |A_1\cup\{0\}|+\cdots+|A_h\cup\{0\}|-h+1\}=p.
$$

Therefore, $\sum_{\leq h}(T) = \mathbb{Z}_p$. \Box

Theorem 2.7. Let p be any prime number and $2 \leq k \leq p-1$. Let S be a sequence in \mathbb{Z}_p of length $2p - k$. Suppose that $0 \notin \sum_p(S)$. Then $h(S) \geq p - k + 1$.

Proof. Without loss of generality, we may assume that $S = 0^hT$ with $|T|$ $2p - k - h$. Assume to the contrary that $h \leq p - k$. Therefore, $|T| \geq p$ and T is a sequence in $\mathbb{Z}_p \setminus \{0\}$. By Lemma 2.6, $\sum_{\leq h} (T) = \mathbb{Z}_p$. Especially, $\sigma(T) \in \sum_{\leq h} (T)$. That is, there is a subsequence Q of T such that $\sigma(Q) = \sigma(T)$ and $1 \leq |Q| \leq h$. Set $T_1 =$ TQ^{-1} . Then $\sigma(T_1) = 0$ and $p - h \le |T| - h \le |T_1| \le |T| - 1$. If $|T_1| \le p$, then $T_1 0^{p-|T_1|}$ is a zero-sum subsequence of S of length p which is a contradiction. Therefore, $|T_1|\geqslant p$. Apply Lemma 2.6 to T_1 , one can find a subsequence Q_1 of T_1 such that $\sigma(Q_1) = 0$ and $1 \leq |Q_1| \leq h$, set $T_2 = T_1 Q_1^{-1}$. Then $\sigma(T_2) = 0$ and $p - h \leq |T_1|$ $h \leq |T_2| \leq |T_1| - 1$. Continuing the same procedure we finally get a zero-sum subsequence of S of length p which is again a contradiction. Thus the theorem is proved. \square

3. Proof of Theorem 1

Throughout this section, let p be an odd prime, $S = \prod_{i=1}^{2p-1} (a_i, b_i)$ a sequence in \mathbb{Z}_p^2 ,

$$
T = x_1^{m_1} \cdots x_r^{m_r} y_1^2 \cdots y_u^2 z_1 \cdots z_v
$$

be the first co-ordinate sequence with $r, u, v \in \mathbb{N}_0$, $m_1, \ldots, m_r \in \mathbb{N}_{\geq 3}$, x_1, \ldots, x_r $y_1, \ldots, y_u, z_1, \ldots, z_v \in \mathbb{Z}_p$ pairwise distinct, and let $h = h(T)$. In a series of propositions, we shall prove, under various additional assumptions, that S has a zero-sum subsequence of length p . Putting everything together we shall obtain a proof of Theorem 1.

Proposition 3.1. If $h \in \{2, p\}$, then S has a zero-sum subsequence of length p.

Proof. Let $h(T) = p$. Without loss of generality we can assume that $a_1 = a_2 = \cdots = a_n$ $a_p = 0$. Since S is square-free sequence in \mathbb{Z}_p^2 , the sequence b_1, b_2, \ldots, b_p runs through

every residue classes of modulo p. Hence, $b_1 + b_2 + \cdots + b_p = 0$ in \mathbb{Z}_p . Thus $\prod_{i=1}^{p} (0, b_i)$ is a zero-sum subsequence of length p in S.

Let $h(T) = 2$. Then every residue classes modulo p can be appearing at most 2 times. Since $|S| = 2p - 1$ and we have p distinct residue classes modulo p, we see, by Pigeon hole principle, that $p - 1$ distinct residue classes modulo p has to appear exactly 2 times and only one residue class (we can assume it to be 0) has to appear exactly once. Thus we are in the following situation:

$$
S = (0, z) \prod_{i=1}^{p-1} (i, x_i) \prod_{i=1}^{p-1} (i, y_i),
$$

where $x_i \neq y_i \pmod{p}$ for all $i = 1, 2, ..., p - 1$. We have $W = 0 \prod_{i=1}^{p-1} i$ is a zero-sum subsequence of T of length p . Since

$$
1(1-1) + \underbrace{1(2-1) + 1(2-1) + \cdots + 1(2-1)}_{p-1 \text{ times}} + 1 = p,
$$

by Lemma 2.5, S has a zero-sum subsequence of length p . \Box

Proposition 3.2. If $\left(\prod_{i=1}^r x_i^2 \prod_{i=1}^u y_i\right)^{-1}$ T has a zero-sum subsequence of length p and $r + u + v \leq \frac{p+3}{2}$, then S has a zero-sum subsequence of length p.

Proof. By Proposition 3.1, we can assume that $3 \le h \le p - 1$. By assumption, we have $R = c_1^{\ell_1} c_2^{\ell_2} \cdots c_t^{\ell_t}$ the zero-sum subsequence of length p of $\left(\prod_{i=1}^r x_i^2 \prod_{i=1}^u y_i\right)^{-1}$ T where $c_1, c_2, ..., c_s$ are pairwise distinct elements of \mathbb{Z}_p , $t \geq 1$ and $2 \le \ell_i \le m_{j_i} - 2$ for all $i = 1, 2, ..., t$. Note that $p = |R| = \ell_1 + \ell_2 + \cdots + \ell_t + s$ t. Without loss of generality, we may assume that $m_i = m_i$ (by renaming the indices, if necessary). We have to prove that S has a zero-sum subsequence of length p . If we can prove $1 + \sum_{i=1}^{t} \ell_i(m_i - \ell_i) \geq p$, then by Lemma 2.5, it follows that S does have a zero-sum subsequence of length p . Now, consider

$$
1 + \sum_{i=1}^{t} \ell_i (m_i - \ell_i) \ge 1 + \sum_{i=1}^{t} 2(m_i - 2) = 1 + 2(m_1 + m_2 + \dots + m_t) - 4t
$$

\n
$$
\ge 1 + 2(\ell_1 + 2 + \dots + \ell_t + 2) - 4t \ge 1 + 2(\ell_1 + \dots + \ell_t)
$$

\n
$$
= 1 + 2(p - s + t) = 1 + 2p - 2(s - t) \ge 1 + 2p - 2(p + 1)/2
$$

\n
$$
= p. \qquad \Box
$$

Proposition 3.3. If, for some $x \in \mathbb{Z}_p$,

$$
T = 0^{p-1} \cdot 1^{p-1} \cdot x \quad or \quad T = 0^{p-1} \cdot 1^{p-2} \cdot 2 \cdot (p-1),
$$

then S has a zero-sum subsequence of length p .

Proof. Suppose $T = 0^{p-1}1^{p-1}x$. Then $W = 0^{x-1}1^{p-x}x$ is a zero-sum subsequence of T of length p, whenever $x\neq 0, 1$. Note that $(x-1)(p-x)+(p-x)x+1=(p-x)$ $x(2x-1)+1 \geq p$. Hence, by Lemma 2.5, there exists a zero-sum subsequence of length p:

If $x = 0$ or 1, it follows from Proposition 3.1 that S contains a zero-sum subsequence of length p .

Suppose $T = 0^{p-1} 1^{p-2} (2)(p-1)$. Then set $W = 0^{p-2} 1(p-1)$ which is obviously a zero-sum subsequence of length p and we have $p - 2 + p - 3 + 1 \geq p$. Thus by Lemma 2.5, we have a zero-sum subsequence of S of length p . \Box

Proposition 3.4. If $p \ge 11$ and $h \ge \frac{p+5}{2}$, then S has a zero-sum subsequence of length p.

Proof. Without loss of generality, we may assume that $a_{2p-h} = a_{2p+1-h} = \cdots$ $a_{2p-1} = a$. Therefore, the first co-ordinate sequence $T = a^h \prod_{i=1}^{2p-1-h} a_i$.

Claim 1. There is a subset $I \subset \{1, 2, ..., 2p - 1 - h\}$ such that $(p - |I|)a + \sum_{i \in I} a_i =$ 0 in \mathbb{Z}_p and such that $p - h + 2 \leq |I| \leq p - 2$.

To prove the Claim 1, we may assume that $a = 0$. Then it suffices to prove that there is a subset $I \subseteq \{1, 2, ..., 2p - 1 - h\}$ such that $\sum_{i \in I} a_i = 0$ and such that p $h + 2 \leq |I| \leq p - 2.$

By Proposition 3.1, we may assume that $h \leq p - 1$. Let I be the maximal subset of $\{1, 2, ..., 2p - 1 - h\}$ such that $\sum_{i \in I} a_i = 0$ and $|I| \leq p$. By Lemma 2.6, one can get $p - h \le |I| \le p$. Set $J = \{1, 2, ..., 2p - 1 - h\} \setminus I$. If *I* satisfies $p - h + 2 \le |I| \le p - 2$, then nothing to prove. Now, we distinguish cases.

Case 1: $|I| = p$. Since $h \leq p - 1$, we see that $\prod_{i \in I} a_i$ cannot be a minimal zero-sum sequence. Therefore, there is a subset $A \subset I$ such that $\sum_{i \in A} a_i = 0$ and $1 \le |A| \le p - 1$. But, $a_i \neq 0$ for $i = 1, 2, ..., 2p - 1 - h$. Therefore, $2 \le |A| \le p - 2$. Now letting I be the maximal one of A and $I\setminus A$, and we see that Claim 1 is satisfied.

Case 2: $|I| = p - h$, $p - h + 1$ or $p - 1$. We distinguish sub-cases.

Sub-case 1: $h=p-1$. Since $a_i \neq 0$ for $i=1,2,..., p, |I| = 2$ or $|I| = p-1$. If $|I| = 2$, then $|J| = p - 2$ and $\prod_{j \in J} a_j$ is zero-sum free sequence in \mathbb{Z}_p . By Theorem 2.2, we see that $\prod_{j\in J} a_j = a^{p-2}$ or $\prod_{j\in J} a_j = a^{p-3}(2a)$ for some $a\neq 0$. Without loss of generality, we may assume that $a = 1$. Now, $T = 0^{p-1}1^{p-2}(x)(-x)$ or $T =$ $0^{p-1}1^{p-3}(2)(x)(-x)$ for some $x\in\mathbb{Z}_p\backslash\{0\}$. If $T=0^{p-1}1^{p-3}(2)(x)(-x)$, and if $2 \le x \le p-3$, then we have $1^{x}(-x)$ is a zero-sum subsequence of T of length $1 + x$. But, $3 \leq 1 + x \leq p - 2$. This satisfies the Claim 1. So, we may assume that $x = 1, p - 2$ or $p - 1$. If $x = p - 2 = -2$, then $T = 0^{p-1} 1^{p-3}(2)(2)(-2)$ and hence, $1^{p-4}(2)(2)$ is a zero-sum subsequence of length $p - 2$. Now it remains to check the case when $x =$ 1, p – 1. Now we have $T = 0^{p-1} 1^{p-2}(2)(-1)$. Also, if $T = 0^{p-1} 1^{p-2}(x)(-x)$, one can reduce it to the case $T = 0^{p-1} 1^{p-1}(-1)$. But by Proposition 3.3, it follows that S does have a zero-sum subsequence of length p . So, we do not need to consider these cases at all.

If $|I| = p - 1$, we derive that $\prod_{i \in I} a_i$ is a minimal zero-sum sequence. By Theorem 2.2, we infer that $\prod_{i\in I} a_i = a^{p-2}(2a)$. Without loss of generality, we may assume that $a = 1$. Now, $T = 0^{p-1} 1^{p-2}(2)(x)$. Similarly to above, it reduces to $T =$ $0^{p-1}1^{p-2}(2)(-1)$ or $T = 0^{p-1}1^{p-1}(2)$, then by Proposition 3.3, S does have a zerosum subsequence of length p .

Sub-case 2: $h = p - 2$. We may assume that $|I| = 2, 3$ or $p - 1$. Assume to the contrary that Claim 1 is not true.

If $|I| = 2$, then $|J| = p - 1$ and $\prod_{j \in J} a_j$ is zero-sum free sequence in \mathbb{Z}_p . By Theorem 2.2, we have $\prod_{j \in J} a_j = a^{p-1}$ which is a contradiction to the assumption that $h = p - 2$.

If $|I| = 3$, then $|J| = p - 2$ and $\prod_{j \in J} a_j$ is zero-sum free sequence in \mathbb{Z}_p . By Theorem 2.2, we have $\prod_{j \in J} a_j = a^{p-3}(2a)$ or $\prod_{j \in J} a_j = a^{p-2}$ for some $a \neq 0 \in \mathbb{Z}_p$. We may assume that $a = 1$. Now, $T = 0^{p-2} 1^{p-3} (2)(x)(y)(-x-y)$ or $T =$ $0^{p-2}1^{p-2}(x)(y)(-x-y)$. If $T = 0^{p-2}1^{p-3}(2)(x)(y)(-x-y)$, one can easily derive that $x, y, -x - y \in \{1, p - 2, p - 1\}$. Since $x + y + (-x - y) = 0$, we infer that $\{x, y, -x - y\} = \{1, 1, -2\}, \{-1, -1, 2\}, \{-1, -2, 3\}$ or $\{-2, -2, 4\}.$ Since $h = p -$ 2, we have $\{x, y, -x - y\} = \{-1, -1, 2\}, \{-1, -2, 3\}$ or $\{-2, -2, 4\}.$ But, $1 + 1 +$ $(-1) + (-1) = 0$, $-1 + (-2) + 1 + 1 + 1 = 0$ and $-2 + (-2) + 1 + 1 + 1 = 0$, which is a contradiction on the assumption that Claim 1 is not true.

If $T = 0^{p-2}1^{p-2}(x)(y)(-x-y)$, since Claim 1 is not true and $h = p - 2$, one can derive that $x, y, -x - y \in \{2, p - 2, p - 1\}$. Note that $x + y + (-x - y) = 0$, we have $\{x, y, -x - y\} = \{2, 2, -4\}, \{-2, -2, 4\}, \{-1, -1, 2\}$ or $\{-1, -2, 3\}$ and similarly to above, one can derive a contradiction.

If $|I| = p - 1$, then $\prod_{i \in I} a_i$ is a minimal zero-sum sequence. By Theorem 2.2, we see that $\prod_{i\in I}^I a_i = a^{p-2}(2a)$ for some $a\neq 0$ in \mathbb{Z}_p . We may assume that $a = 1$. Now, $T = 0^{p-2}1^{p-2}(2)(x)(y)$. Since Claim 1 is not true, $x, y \in \{1, p-2, p-1\}$. Since $h =$ $p-2, x, y \in \{p-2, p-1\}.$ Then $\{x, y\} = \{-1, -1\}, \{-2, -2\}$ or $\{-1, -2\}.$ But $-1+(-1)+1+1=0, -2+(-2)+1+1+1+1=0, -1+(-2)+1+1+1=0,$ a contradiction to the assumption that Claim 1 is not true.

Sub-case 3: $\frac{p+5}{2} \le h \le p-3$. If $|I| = p - h$, then $|J| = p - 1$ and $\prod_{j \in J} a_j$ is zero-sum free sequence in \mathbb{Z}_p . By Theorem 2.2, we have $\prod_{j\in J} a_j = a^{p-1}$ which is a contradiction on the assumption that $h \leq p - 3$. If $|I| = p - 1$; then $\prod_{j\in J} a_j$ is a minimal zero-sum sequence in \mathbb{Z}_p and by Theorem 2.2, we see, $\prod_{j\in J} a_j = a^{p-2}(2a)$ which is again a contradiction on $h \leq p-3$. If $|I| = p - h + 1$, then $|J| = p - 2$ and $\prod_{j \in J} a_j$ is zero-sum free sequence in \mathbb{Z}_p . By Theorem 2.2, we have $\prod_{j\in J} a_j = a^{p-2}$ or $\prod_{j\in J} a_j = a^{p-3}(2a)$ for some $a\neq 0$ in \mathbb{Z}_p . But $h \leq p-3$, we have $\prod_{j\in J} a_j = a^{p-3}(2a)$ and $h = p-3$. We may assume that $a = 1$. Now, $T = 0^{p-3}1^{p-3}(2)(x)(y)(z)(w)$. Assume to the contrary that Claim 1 is not true, then $x, y, z, w \in \{1, p - 3, p - 2, p - 1\}$. Note that $h = p - 3$, we have $x, y, z, w \in \{p-3, p-2, p-1\}$. It easy to check that there is a zero-sum subsequence of T of length between 5 and 8. (Here, we need to assume $p \ge 11$.). Thus Claim 1 is established.

Now, we can rewrite S as follows;

$$
S = \prod_{i=1}^{2p-1-h} (a_i, b_i) \prod_{i=1}^h (a, c_i)
$$

with $c_1, c_2, ..., c_h$ are pairwise distinct elements in \mathbb{Z}_p . By Claim 1, we have an index set $I \subset \{1, 2, ..., 2p - 1 - h\}$ such that $p - h + 2 \le |I| \le p - 2$ and $\sum_{i \in I} a_i + (p - 1)$ $|I|$) $a \equiv 0 \pmod{p}$. Let $b = \sum_{i \in I} b_i$. Let $C = \{c_1, c_2, ..., c_h\} \subset \mathbb{Z}_p$ and $\ell = p - |I|$. Since I satisfies $p - h + 2 \le |I| \le p - 2$, it is clear that ℓ satisfying $2 \le \ell \le h - 2$. By Theorem 2.1, we see that

$$
\left|\sum_{\ell}(C)\right|\geqslant\min\{p,\ell(h-\ell+1)\}\geqslant\min\{p,2(h-2+1)\}\geqslant p.
$$

Now the theorem follows from Lemma 2.5. \Box

Proposition 3.5. If $p \ge 5$, $r + u + v \le \frac{p-1}{4}$ and $h \le \frac{p+3}{2}$, then S has a zero-sum subsequence of length p:

Proof. Let

$$
W = x_1^{m_1 - 2} x_2^{m_2 - 2} \cdots x_r^{m_r - 2} y_1 y_2 \cdots y_u z_1 z_2 \cdots z_v
$$

be a subsequence of T . Then the length of W is

$$
|W| = |T| - 2r - u = 2p - 1 - 2r - u \ge 2p - 1 - \frac{p-1}{2} = 2p - 1 - \frac{p-1}{2}
$$

and

$$
h(W) = h(T) - 2 \leqslant \frac{p-1}{2}.
$$

If W does not have a zero-sum subsequence of length p, then by Theorem 2.7, $h(W) \geqslant p - (p-1)/2 = (p+1)/2$ which is a contradiction. Therefore, W contains a zero-sum subsequence Q of length p. Hence, by Lemma 2.5 the result follows. \Box

Proposition 3.6. If $p \ge 67$ and $h \ge \lfloor \sqrt{4p-7} \rfloor + 2$, then S has a zero-sum subsequence of length p:

Proof. Let $k = \lfloor \sqrt{4p-7} \rfloor + 1$. By Proposition 3.4, we may assume that $k + \lfloor \frac{p+3}{6} \rfloor$ W, i.e., i.e., i.e., i.e. $1 \leq h \leq \frac{p+3}{2}$. We distinguish two cases.

Case 1: T contains at least k distinct elements. Without loss of generality, we may assume that $a_1, a_2, ..., a_k$ are distinct. Set $\ell = [k/2]$ and $A = \{a_1, a_2, ..., a_k\} \subset \mathbb{Z}_p$. By Theorem 2.3, we have

$$
\sum_{\ell} (A) = \mathbb{Z}_p. \tag{2}
$$

Since $h(T) \ge k + 1$, the deleted sequence TA^{-1} contains some element a (say) with $v_a(TA^{-1}) \geq h - 1 \geq k$. Without loss of generality, we may assume that $a_{k+1} = \cdots =$ $a_{k+h-1} = a$. Then the corresponding second co-ordinates $b_{k+1}, b_{k+2}, \ldots, b_{k+h-1}$ are pairwise distinct in \mathbb{Z}_p . Set $B = \{b_{k+1}, b_{k+2}, \ldots, b_{k+h-1}\}\subset \mathbb{Z}_p$. Then again by Theorem 2.3, we see that

$$
\sum_{\ell}(B) = \mathbb{Z}_p. \tag{3}
$$

Note that $2p - 1 - h - k > p - 2\ell > 0$, one can choose a subset $J \subset \{k + h, k + h +$ $1, ..., 2p - 1$ such that $|J| = p - 2\ell$ and $a_j \neq a$ holds for every $j \in J$. Set $\alpha =$ $\ell a + \sum_{j \in J} a_j$. By Eq. (2), there is a subset $I \subset \{1, 2, ..., k\}$ such that $\alpha + \sum_{i \in I} a_i = 0$ and $|I| = \ell$. Set $\beta = \sum_{i \in I} b_i + \sum_{j \in J} b_j$. Now by Eq. (3), there is a subset $L \subset \{k + I\}$ $1, k+2, ..., k+h-1$ } such that $\beta + \sum_{l \in L} b_l = 0$ and $|L| = \ell$. Therefore,

$$
\prod_{i \in I} (a_i, b_i) \prod_{l \in L} (a, b_i) \prod_{j \in J} (a_j, b_j)
$$

is a zero-sum subsequence of S of length p .

Case 2: T contains at most $k - 1$ distinct elements. Since by assumption, $p \ge 67$, we see that $k - 1 \leq \frac{p-1}{4}$. Also, by assumption, we have $h \leq (p+3)/2$. Therefore, the result follows from Proposition 3.5. \Box

Proposition 3.7. If $p \ge 47$, $r + u + v \ge \frac{p-1}{4}$ and $h \le \lfloor \sqrt{4p-7} \rfloor + 1$, then S has a zero-
sum subsequence of length n sum subsequence of length p:

Proof. First we note that it is enough to assume that $r + u + v \geq p/3$. For, suppose $\frac{p-3}{4} \le r + u + v < \frac{p}{3}$. As $h(T) \le k \le p/3$, in a similar way to the proof of Proposition 3.5 one can derive that S contains a zero-sum subsequence of length p . So, we may assume that $r + u + v \geq p/3$. Set $t = \left[\frac{p}{3}\right]$. Write

$$
T = x_1^{m_1} x_2^{m_2} \cdots x_r^{m_r} y_1^2 y_2^2 \cdots y_u^2 z_1 z_2 \cdots z_v,
$$

where $x_1, x_2, \ldots, x_r, y_1, y_2, \ldots, y_u, z_1, z_2, \ldots, z_v$ are pairwise distinct elements in \mathbb{Z}_p , and $m_1, m_2, \ldots, m_r \geq 3$, $r, u, v \geq 0$ are integers satisfying $m_1 + m_2 + \cdots + m_r + 2u + \cdots$ $v = 2p - 1$. Set

$$
A = \begin{cases} y_1 y_2 \cdots y_t & \text{if } t \le u, \\ x_{r-(t-u)+1} x_{r-(t-u)+2} \cdots x_r y_1 y_2 \cdots y_u & \text{if } u < t \le u+r, \\ x_1 x_2 \cdots x_r y_1 y_2 \cdots y_u z_{v-(t-u-r)+1} \cdots z_v & \text{if } t > u+r \end{cases}
$$

80 W.D. Gao, R. Thangadurai / Journal of Combinatorial Theory, Series A 107 (2004) 69–86

and

$$
U = \begin{cases} \prod_{i=1}^{r} x_i^{m_i - 1} \prod_{i=1}^{u} y_i \prod_{i=1}^{v} z_i & \text{if } t \leq u, \\ \prod_{i=1}^{r-(t-u)} x_i^{m_i - 1} \prod_{i=r-(t-u)+1}^{r} x_i^{m_i - 2} \prod_{i=1}^{u} y_i \prod_{i=1}^{v} z_i & \text{if } u < t \leq u+r, \\ \prod_{i=1}^{r} x_i^{m_i - 2} \prod_{i=1}^{u} y_i \prod_{i=1}^{v-(t-u-r)} z_i & \text{if } t > u+r. \end{cases}
$$

By the making of U , it is clear that

$$
|U| = \begin{cases} 2p - 1 - r - u & \text{if } t \le u, \\ 2p - 1 - r - t & \text{if } u < t \le u + r, \\ 2p - 1 - r - t & \text{if } t > u + r. \end{cases}
$$

Therefore, $|U| \geq p - 1$. Also, by Theorem 2.1, we have

$$
\left| \sum_{4} (A) \right| \ge \min\{p, 4(t - 4) + 1\} = p \Rightarrow \sum_{4} (A) = \mathbb{Z}_{p}.
$$
 (4)

We distinguish cases.

Case 1: $r + u + v \leq p - 4$. Then one can find a subsequence Q of U such that $x_1x_2 \cdots x_r y_1y_2 \cdots y_u|Q|U$ and such that $|Q| = p - 4$. By Eq. (4), we see that there is subsequence R of A such that $|R| = 4$ and RQ is a zero-sum subsequence of length p. Set $W = RQ$. Now $W = RQ = x_1^{l_1}x_2^{l_2} \cdots x_r^{l_r}y_1^{l_1}y_2^{l_2} \cdots y_u^{l_u}Z$ with $Z | z_1 z_2 \cdots z_v$, where $1 \leq l_i \leq m_i - 1$ for all $i = 1, 2, ..., r, 1 \leq f_1, f_2, ..., f_u \leq 2$ and $f_i = 2$ holds for at most $4(=|R|)$ of $i \in \{1, 2, ..., u\}$. If $m_1 + m_2 + \cdots + m_r - r + u + 1 - 4 \geq p$, then by Lemma 2.5, we know that S contains a zero-sum subsequence of length p . Therefore, we may assume that, $m_1 + m_2 + \cdots + m_r + u - r + 1 - 4 \leq p - 1$. But $m_1 + m_2 + \dots + m_r = 2p - 1 - 2u - v$. Therefore, $2p - 1 - u - v - r + 1 - 4 \leq p - 1$. Hence, $u + v + r \geq p - 3$, which is a contradiction to the assumption that $r + u +$ $v \leqslant p-4.$

Case 2:
$$
u + v + r = p - 3
$$
. Set $t = \left[\frac{p+12}{3}\right]$. Write

$$
T = x_1^{m_1} x_2^{m_2} \cdots x_r^{m_r} y_1^2 y_2^2 \cdots y_u^2 z_1 z_2 \cdots z_v,
$$

where $x_1, x_2, ..., x_r, y_1, y_2, ..., y_u, z_1, z_2, ..., z_v$ are pairwise distinct, $m_1, m_2, ..., m_r \geq 3$ and r, $u, v \ge 0$ are integers satisfying $m_1 + m_2 + \cdots + m_r + 2u + v = 2p - 1$. Set

$$
A = \begin{cases} y_1 y_2 \cdots y_t & \text{if } t \leq u, \\ x_{r-(t-u)+1} x_{r-(t-u)+2} \cdots x_r y_1 y_2 \cdots y_u & \text{if } u < t \leq u+r, \\ x_1 x_2 \cdots x_r y_1 y_2 \cdots y_u z_{v-(t-u-r)+1} \cdots z_v & \text{if } t > u+r \end{cases}
$$

and

$$
U = \begin{cases} x_1^{m_1 - 1} x_2^{m_2 - 1} \cdots x_r^{m_r - 1} y_1 y_2 \cdots y_u z_1 z_2 \cdots z_v & \text{if } t \le u, \\ \prod_{i=1}^{r-(t-u)} x_i^{m_i - 1} \prod_{i=r-(t-u)+1}^r x_i^{m_i - 2} \prod_{i=1}^u y_i \prod_{i=1}^v z_i & \text{if } u < t \le u + r, \\ x_1^{m_1 - 2} x_2^{m_2 - 2} \cdots x_r^{m_r - 2} y_1 y_2 \cdots y_u z_1 z_2 \cdots z_{v-(t-u-r)} & \text{if } t > u + r. \end{cases}
$$

By the making of U we get

$$
|U| = \begin{cases} 2p - 1 - r - u & \text{if } t \le u, \\ 2p - 1 - r - t & \text{if } u < t \le u + r, \\ 2p - 1 - r - t & \text{if } t > u + r. \end{cases}
$$

Note that $3r + 2u + v \le 2p - 1$ and $u + v + r \ge p - 4$, we derive that $r = \frac{1}{2}((3r + 2u + 1))$ $(v) - (u+v+r)) - u/2 \leq \frac{p+3}{2} - u/2$. Therefore, we always have $|U| \geq p-1$. By Theorem 2.1, we have $\overline{1}$

$$
\left| \sum_{3} (A) \right| \ge \min\{p, 3(t-3) + 1\} = p \Rightarrow \sum_{3} (A) = \mathbb{Z}_{p}.
$$
 (5)

Since $u + v + r = p - 3$, one can find a subsequence Q of U such that

$$
x_1x_2\cdots x_ry_1y_2\cdots y_u|Q|U
$$

and $|Q| = p - 3$. By Eq. (5), there is subsequence R of A such that $|R| = 3$ and RQ is a zero-sum subsequence of length p. Set $W = RQ$. Now $W = RQ$ $x_1^{l_1} x_2^{l_2} \cdots x_r^{l_r} y_1^{f_1} y_2^{f_2} \cdots y_n^{f_n} Z$ with $Z | z_1 z_2 \cdots z_v$, where $1 \le l_i \le m_i - 1$ for all $i = 1, 2, ..., r$, $1 \le f_1, f_2, ..., f_u \le 2$ and $f_i = 2$ holds for at most $3(= |R|)$ of $i \in \{1, 2, ..., u\}$. If $m_1 +$ $m_2 + \cdots + m_r - r + u + 1 - 3 \geq p$, by Lemma 2.5, we see that S contains a zero-sum subsequence of length p. Therefore, we may assume that, $m_1 + m_2 + \cdots + m_r - r +$ $u + 1 - 3 \leq p - 1$. But $m_1 + m_2 + \cdots + m_r = 2p - 1 - 2u - v$. Therefore, $2p - 1$ $u - v - r + 1 - 3 \leq p - 1$. Hence, $u + v + r \geq p - 2$ which is a contradiction to the assumption.

Case 3: $u + v + r = p$. Write $T = 0^{m_0} 1^{m_1} \cdots (p-1)^{m_{p-1}}$, where $m_i \ge 1$ and $m_0 +$ $\cdots + m_{p-1} = 2p - 1$. Since, $0 + 1 + \cdots + (p - 1) = 0$ and $m_0 + m_1 + \cdots + m_{p-1}$ $p + 1 = p$, by Lemma 2.5, S contains a zero-sum subsequence of length p.

Case 4: $u + v + r = p - 2$. Set $t = \frac{p+3}{2}$. Define A and U in a similar way to Case 2. Then $|A| = t$. By Theorem 2.1, we have

$$
\left| \sum_{2} (A) \right| \geq \min\{p, 2(t - 2) + 1\} = p \Rightarrow \sum_{2} (A) = \mathbb{Z}_{p}.
$$
 (6)

By the making of U , we get

$$
|U| = \begin{cases} 2p - 1 - r - u & \text{if } t \le u, \\ 2p - 1 - r - t & \text{if } u < t \le u + r, \\ 2p - 1 - r - t & \text{if } t > u + r. \end{cases}
$$

If $r \le \frac{p-1}{2}$, then $|U| \ge p - 2$. Then one can find a subsequence Q of U such that $x_1x_2\cdots x_ry_1y_2\cdots y_u|Q|U$ and $|Q|=p-2$. By Eq. (6), there is subsequence R of A such that $|R| = 2$ and RQ is a zero-sum subsequence of length p. Now RQ = $x_1^{l_1} x_2^{l_2} \cdots x_r^{l_r} y_1^{f_1} y_2^{f_2} \cdots y_n^{f_n} Z$ with $Z | z_1 z_2 \cdots z_v$, where $1 \le l_i \le m_i - 1$ for all $i = 1, 2, ..., r$, $1 \le f_1, f_2, ..., f_u \le 2$ and $f_i = 2$ holds for at most $2(= |R|)$ of $i \in \{1, ..., u\}$. If $m_1 +$ $m_2 + \cdots + m_r - r + u + 1 - 2 \geq p$, by Lemma 2.5, S contains a zero-sum subsequence of length p. Therefore, we may assume that, $m_1 + m_2 + \cdots + m_r - r + u + 1 2 \leq p - 1$. But $m_1 + m_2 + \cdots + m_r = 2p - 1 - 2u - v$. Therefore, $2p - 1 - u - v$ $r+1-2 \leq p-1$. Hence, $u+v+r \geq p-1$, which is a contradiction to the assumption.

Now we assume that $r \geqslant \frac{p+1}{2}$. Since $3r + 2u + v \leqslant 2p - 1$ and $u + v + r = p - 2$, r $v = (3r + 2u + v) - 2(r + u + v) \le 2p - 1 - 2(p - 2) = 3.$ Therefore, $v \ge r - 3 \ge \frac{p+1}{2} 3 = \frac{p-5}{2}$. So,

$$
v \geqslant \frac{p-5}{2} \tag{7}
$$

Set $A_0 = \{z_1, z_2, \ldots, z_v\}$. By Theorem 2.1,

$$
\sum_{3} (A_0) = \mathbb{Z}_p. \tag{8}
$$

Note that $r + u < p - 3 < p + 1 = (m_1 - 1) + (m_2 - 1) + \cdots + (m_r - 1) + u$, one can find a subsequence Q of $x_1^{m_1-1}x_2^{m_2-1}\cdots x_r^{m_r-1}y_1y_2\cdots y_u$ such that

$$
x_1x_2\cdots x_ry_1y_2\cdots y_u|Q|x_1^{m_1-1}x_2^{m_2-1}\cdots x_r^{m_r-1}y_1y_2\cdots y_u
$$

and

$$
|Q|=p-3.
$$

By Eq. (8), there is subsequence R of A such that $|R| = 3$ and RQ is a zero-sum subsequence. Now, $RQ = x_1^{l_1} x_2^{l_2} \cdots x_r^{l_r} y_1 y_2 \cdots y_u Z$ with $Z | z_1 z_2 \cdots z_v$, where $1 \le l_i \le m_i$ 1 for all $i = 1, 2, ..., r$. Since $m_1 + m_2 + \dots + m_r - r + u + 1 = 2p - 1 - 2u - v - r +$ $u + 1 = 2p - (u + v + r) = 2p - (p - 2) > p$, by Lemma 2.5, S contains a zero-sum subsequence of length p . This completes the proof of Case 4.

Case 5: $u + v + r = p - 1$. In this case we have $r \ge 1$, and we can assume that

 ${x_1, x_2, ..., x_r, y_1, y_2, ..., y_u, z_1, z_2, ..., z_v} = \mathbb{Z}_p\backslash\{a\},\$

for some $a \in \mathbb{Z}_p$. Without loss of generality, we may assume that $a = 0$. Therefore,

$$
\{x_1, x_2, \ldots, x_r, y_1, y_2, \ldots, y_u, z_1, z_2, \ldots, z_v\} = \mathbb{Z}_p \setminus \{0\}.
$$
\n⁽⁹⁾

We distinguish sub-cases.

Sub-case 1: $r \ge 5$. Since $3r + 2u + v \le 2p - 1$ and $u + v + r = p - 1$, $r - v = (3r + 1)$ $2u + v - 2(r + u + v) \le 2p - 1 - 2(p - 1) = 1$. Therefore, $v \ge r - 1 \ge 4$. Set

$$
A = \{y_1, y_2, \ldots, y_u, z_1, z_2, \ldots, z_v\} \quad \text{and} \quad B = \{x_1, x_2, \ldots, x_r\}.
$$

Then by Cauchy—Davenport's inequality (Theorem 2.4) and Theorem 2.1, we see that

$$
\left| \sum_{u+v-1} (A) + \sum_{2} (B) \right| \ge \min\{p, (u+v) + 2r - 3 - 1\}
$$

$$
= \min\{p, p - 1 + r - 4\} = p.
$$

Therefore, there are subsequences $A_0 | A$ and $B_0 | B$ such that $|A_0| = u + v - 1, |B_0| = 2$ and $\sigma(x_1x_2\cdots x_rB_0A_0)=0$. (here σ means the sum). Set $Q = x_1x_2\cdots x_rB_0A_0$. Then $|Q| = r + 2 + u + v - 1 = p$, and

$$
Q = x_1^{l_1} x_2^{l_2} \cdots x_r^{l_r} y_1^{f_1} y_2^{f_2} \cdots y_u^{f_u} Z,
$$

where $Z|z_1z_2\cdots z_v$, $1\le l_i\le 2\le m_i-1$ and $l_i = 2$ holds for exactly 2 of i, $0 \le f_1, f_2, \ldots, f_u \le 1$ and at most one of $f_i = 0$. Since $m_1 + m_2 + \cdots + m_r - r + u + 1 1 = 2p - 1 - v - u - r = p$, by Lemma 2.5, S contains a zero-sum subsequence of length p .

Sub-case 2: $r \leq 4$ and max $\{m_i\} \geq 6$. Without loss of generality, we may assume that $m_1 \geq 6$.

Let $A = \{y_1, y_2, ..., y_u, z_1, z_2, ..., z_v\}$. By Theorem 2.1, we have $\sum_{u+v-2}(A) = \mathbb{Z}_p$. Set $Q = x_1^4 x_2 x_3 \cdots x_r$. Then there is a subsequence R of $y_1 y_2 \cdots y_u z_1 z_2 \cdots z_v$ such that $|R| = u + v - 2$ and $\sigma(QR) = 0$. Set $W = QR$. Then $W = x_1^4 x_2 x_3 \cdots x_r R$. Note that $4(m_1 - 4) + (m_2 - 1) + \cdots + (m_r - 1) + u - 2 + 1 \geq 2m_1 - 2 + m_2 - 1 + \cdots + m_r$ $1 + u - 1 = m_1 + (m_1 + m_2 + \cdots + m_r) + u - r - 2 = m_1 + (2p - 1 - 2u - v) + u$ $r - 2 = m_1 + p - 2 > p$. Now the theorem follows from Lemma 2.5.

Sub-case 3: $r \leq 4$ and max $\{m_i\} \leq 5$. Since $\mathbb{Z}_p \oplus \mathbb{Z}_p$ is the union of its $p + 1$ subgroups each of order p, there exists a subgroup H of $\mathbb{Z}_p \oplus \mathbb{Z}_p$ such that $|H| = p$ and

$$
(a_i, b_i) - (a_j, b_j) \in H
$$

holds for at least $\frac{(2p-1)(2p-2)}{2(p+1)} > 2p - 5$ pairs. Therefore, by choosing suitable automorphism to act on S , we may assume that

$$
H = \{(0, g) \mid g \in \mathbb{Z}_p\}
$$

and

$$
a_i = a_j
$$

holds for at least $2p - 4$ pair of $1 \le i < j \le 2p - 1$. But by assumption, we see that $r \le 4$ and max $\{m_i\} \leq 5$ implies that the number of the pairs of $1 \leq i < j \leq 2p - 1$ which satisfying

 $a_i = a_j$

is at most

$$
\frac{m_1(m_1-1)}{2} + \frac{m_2(m_2-1)}{2} + \dots + \frac{m_r(m_r-1)}{2} + u \le 10r + u \le 40 + u < 2p - 4,
$$

as $u < p - 1$. This contradiction shows that we can act on S with suitable automorphism and reduce it to the above cases. Thus the proof of the theorem is complete. \square

Proof of Theorem 1. Let S be a square-free sequence in $\mathbb{Z}_p \oplus \mathbb{Z}_p$ of length $2p - 1$. Let T be the first co-ordinate sequence of S. Set $k = [\sqrt{4p-7}] + 1$. If $h(T) \ge k + 1$, then the theorem follows from Proposition 3.6. If $h(T) \le k$ and $u + v + r \le \frac{p-1}{4}$, then it follows from Proposition 3.5. So, let $h(T) \le k$ and $u + v + r > \frac{p-1}{4}$ and the theorem follows from Proposition 3.7.

Proof of Corollary 1. Let S be a sequence in $\mathbb{Z}_p \oplus \mathbb{Z}_p$ of length $4p - 3$. By our assumption, $h(S) \le 2$. Hence, by Pigeon hole principle, we see that S has a squarefree subsequence R of length at least $2p - 1$. Hence, by Theorem 1, R does has a zero-sum subsequence of length p and so does S . \Box

4. Concluding remarks

In this section, we shall prove an equivalent criterion for Conjecture 1 when n is even and using that we verify Conjecture 1 for $n = 4$.

Theorem 4.1. Let $n \geq 4$ be any even integer. Then the following two conditions are equivalent:

- (1) $g(\mathbb{Z}_n \oplus \mathbb{Z}_n) = 2n + 1$.
- (2) Every square-free zero-sum sequence in $\mathbb{Z}_n \oplus \mathbb{Z}_n$ of length $2n + 1$ has a zero-sum subsequence of length n:

Proof. Clearly, (1) implies (2). Assuming (2) we want to prove (1). Let $S = \prod_{i=1}^{2n+1} a_i$ be any square-free sequence in \mathbb{Z}_n^2 of length $2n + 1$. Set $a = \sum_{i=1}^{2n+1} a_i$, and consider the shifted sequence $R = \prod_{i=1}^{2n+1} (a_i - a)$. Clearly, R is a square-free sequence of length $2n + 1$. Moreover, we see that

$$
\sigma(R) = \sum_{i=1}^{2n+1} (a_i - a) = \sum_{i=1}^{2n+1} a_i - (2n+1)a = \sum_{i=1}^{2n+1} a_i - a = 0.
$$

Therefore, by the assumption (2), R contains a zero-sum subsequence $\prod_{j=1}^{n} (a_{i_j} - a)$ of length *n*. Hence, $\prod_{j=1}^{n} a_{i_j}$ is a zero-sum subsequence of S of length *n*. This completes the proof. \square

Theorem 4.2. $q(\mathbb{Z}_4 \oplus \mathbb{Z}_4) = 9$.

Proof. We know that $q(\mathbb{Z}_4 \oplus \mathbb{Z}_4) \geq 9$. So, it is enough to prove the upper bound. Let S be a square-free sequence in $\mathbb{Z}_4 \oplus \mathbb{Z}_4$ of length 9. By Theorem 4.1, it is enough to assume that S is a zero-sum sequence.

First we assume that 0, the zero element of $\mathbb{Z}_4 \oplus \mathbb{Z}_4$ does not appearing in S. Then either there exists an element x together with $-x$ appearing in S or the three distinct elements of order 2 appearing in S.

In the first case, we get a zero-sum subsequence $T = Sx^{-1}(-x)^{-1}$ of length 7. But T cannot be minimal zero-sum sequence as its length is $2n - 1 = D(\mathbb{Z}_4 \oplus \mathbb{Z}_4) = 7$ (here $D(\mathbb{Z}_n\oplus \mathbb{Z}_n)$ is the Davenport's constant for the group $\mathbb{Z}_n\oplus \mathbb{Z}_n$ which is defined as the smallest positive integer t such that any sequence in $\mathbb{Z}_n \oplus \mathbb{Z}_n$ of length at least t has a zero-sum subsequence) because any minimal zero-sum sequence of length 7 in $\mathbb{Z}_4 \oplus \mathbb{Z}_4$ contains an element which is appearing at least 3 times. (see for instance, Proposition 4.2 in [\[17\]](#page-17-0)). Hence, T has a zero-sum subsequence of length $\lt 7$. Since every element of T is non-zero, T has a zero-sum subsequence R of length at least 2. By taking R or TR^{-1} , we can as well assume that the length of R is 2 or 3 or 4. If $|R| = 3$, then $|TR^{-1}| = 4$ and we are done. Otherwise, i.e, if $|R| = 2$, then we have $Rx(-x)$ is a zero-sum subsequence of length 4 of S.

In the second case, that is, if all the three $(2,0), (0,2), (2,2)$ elements of order 2 are appearing in S, then $T = S(0,2)^{-1}(2,0)^{-1}(2,2)^{-1}$ and does not contain a zero-sum subsequence of length 2. This means for some $x \in \mathbb{Z}_4 \oplus \mathbb{Z}_4$ and $v_x(T) = 1$ implies $v_{-x}(T) = 0$. That is, all the other elements of order 4 is appearing in T without their respective inverses. So, $(3, 2)$ or $(1, 2)$ appears in S. Without loss of generality we may assume that $(3, 2)$ appears in S (otherwise, we consider $-S$ instead of S). Then we can assume that $(3,0)$ does not appear because otherwise $(2,0), (0,2), (3,2), (3,0)$ forms a zero-sum subsequence of length 4. Hence, $(1,0)$ has to appear in T as its inverse $(3,0)$ does not appear in T. But, $(3,2)+(1,0)$ $(0, 2)$ which would imply $(2, 2), (2, 0), (3, 2), (1, 0)$ is a zero-sum subsequence of length 4:

So, it remains to consider the case that 0 appears in S. Set $T = SO^{-1}$, then T is a zero-sum subsequence of length 8. Since $D(\mathbb{Z}_4 \oplus \mathbb{Z}_4) = 7$, (well-known Davenport Constant for the group $(\mathbb{Z}_4 \oplus \mathbb{Z}_4)$ T contains a proper zero-sum subsequence R. Then, TR^{-1} is also a zero-sum subsequence. Let W be the smaller (in length) one of R and TR^{-1} . Then, $|W| = 2, 3, 4$. We may assume that $|W| = 2$. Suppose $W =$ $x(-x)$. Let $y \in TW^{-1}$. Set $T_1 = Tx^{-1}y^{-1}$. Clearly, T_1 is not zero-sum. Again by using Proposition 4.2 in [\[17\]](#page-17-0), we obtain that $T_1(-\sigma(T_1))$ contains a proper zero-sum subsequence. Hence, T_1 contains a proper zero-sum subsequence W_1 . Then, $|W_1|$ = 2, 3, 4, 5. We may assume that $|W_1| = 2$, 5. If $|W_1| = 5$, then $TW_1^{-1}(0)$ is a zero-sum subsequence of S of length 4 and we are done. If $|W_1| = 2$ then WW_1 is a zero-sum subsequence of length 4. Thus the theorem follows. \Box

Remark. In the similar spirit as Theorem 4.1, when *n* is odd, we can give an equivalent condition for Conjecture 1 as follows. Every zero-sum sequence S of length 2n which has a square-free subsequence of length $2n - 1$ has a zero-sum subsequence of length n: We omit the proof of this fact.

Acknowledgments

W.D. Gao supported by NSFC with Grant No. 19971058 and 10271080. We thank the referee/s for his/her useful suggestions to improve the presentation of the paper.

References

- [1] N. Alon, M.B. Nathanson, I.Z. Ruzsa, Adding distinct congruence classes modulo a prime, Amer. Math. Monthly 102 (3) (1995) 250–255.
- [2] N. Alon, M.B. Nathanson, I.Z. Ruzsa, Polynomial methods and restricted sums of congruence classes, J. Number Theory 56 (2) (1996) 404–417.
- [3] J. Bierbrauer, Y. Edel, Bounds on affine caps, J. Combin. Des. 10 (2) (2002) 111–115.
- [4] J.L. Brenner, Problem 6298, Amer. Math. Monthly 89 (1982) 279–280.
- [5] T.C. Brown, J.P. Buhler, A density version of a geometric Ramsey theorem, J. Combin. Theory Ser. A 32 (1) (1982) 20–34.
- [6] A.L. Cauchy, Recherches sur les nombers, J. Ecole Polytech. cashier 16 9 (1813) 99–123.
- [7] H. Davenport, On the addition of residue classes, J. London Math. Soc. 10 (1935) 30–32.
- [8] J.A. Dias De Silva, Y.O. Hamidoune, Cyclic spaces for Grassmann derivatives and additive theory, Bull. London Math. Soc. 26 (2) (1994) 140–146.
- [9] Y. Edel, S. Ferret, I. Landjev, L. Storme, The classification of the largest caps in $AG(5, 3)$, J. Combin. Theory Ser. A 99 (1) (2002) 95–110.
- [10] P. Erdős, A. Ginzburg, A. Ziv, Theorem in the additive number theory, Bull. Res. Council Israel 10F (1961) 41–43.
- [12] P. Frankl, R.L. Graham, V. Rödl, On subsets of abelian groups with no three term arithmetic progression, J. Combin. Theory Ser. A 45 (1) (1987) 157–161.
- [13] W.D. Gao, An addition theorem for finite cyclic groups, Discrete Math. 163 (1–3) (1997) 257–265.
- [14] W.D. Gao, A note on a zero—sum problem, J. Combin. Theory Ser. A 95 (2) (2001) 387–389.
- [15] W.D. Gao, On zero—sum subsequences of restricted size—II, Discrete Math. 271 (1–3) (2003) 51–59.
- [17] W.D. Gao, A. Geroldinger, On zero—sum sequences in $\mathbb{Z}_n \oplus \mathbb{Z}_n$, Integers 3 (A8) (2003) 45 (electronic).
- [18] H. Harborth, Ein Extremalproblem Für Gitterpunkte, J. Reine Angew. Math. 262/263 (1973) 356–360.
- [19] A. Kemnitz, Extremalprobleme für Gitterpunkte, Ph.D. Thesis, Technische Universität Braunschweig, 1982.
- [20] A. Kemnitz, On a lattice point problem, Ars Combinatorica 16b (1983) 151–160.
- [21] R. Meshulam, On subsets of finite abelian groups with no 3-term arithmetic progression, J. Combin. Theory Ser. A 71 (1) (1995) 168–172.
- [24] L. Rónyai, On a conjecture of Kemnitz, Combinatorica 20 (4) (2000) 569–573.
- [25] B. Sury, R. Thangadurai, Gao's conjecture on zero—sum sequences, Proceedings of Indian Academic Sciences (Math. Sci.), Vol. 112, No. 3, 2002, pp. 399–414.
- [26] R. Thangadurai, On a conjecture of Kemnitz, C. R. Math. Acad. Sci. Soc. R. Can. 23 (2) (2001) 39–45.