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Spectral Theory of Stationary X-Valued Processes 

G. KALLIANPUR 

Department of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455 

AND 

V. MANDREKAR* 

Department of Statistics and Probability, Michigan State University 
East Lansing, Michigan 48823 

For weakly stationary stochastic processes taking values in a Hilbert space, 
spectral representation and Cram& decomposition are studied. Using these 
ideas and the moving average representation for such processes established 
earlier by the authors, some necessary and sufficient spectral conditions for 
such stochastic processes to be purely nondeterministic are given in both 
discrete and continuous parameter cases. 

1. INTRODUCTION 

This note is devoted to the study of the spectral theory of weakly stationary 
stochastic processes taking values in an infinite-dimensional, separable Hilbert- 
space X (#-valued processes). The attempt to extend to infinite-dimensional 
processes the theory for finite vector-valued processes developed by Wiener and 
Masani [25] has given rise to several papers in recent years [9, 18, 5, 71. The main 
effort in these papers has been to extend the factorability criterion of [25] to 
certain spectral density operators. However, as has been shown by P. Lax [16], 
in the infinite-dimensional processes of interest, i.e., in the “genuinely” infinite- 
dimensional case, the conditions of Wiener and Masani are not extendable. 
(see also [9, p. 9091). It is this case that is considered here. 

In two earlier papers we gave a time domain analysis of infinite-dimensional 
processes in which the central role was played by the notion of multiplicity, 
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first introduced by H. Cramer [2] and T. Hida [l I] and discussed by the former 
in a series of papers [3,4]. In the present paper we continue in the same spirit 
and show that the multiplicity of an s-valued process equals the rank of the 
spectral density operator of its purely nondeterministic part. Our definition 
of the rank follows Zasuhin [26] and uses the Wold decomposition given in [14] 

to show that it coincides with the rank of the purely nondeterministic part. All 
this is done in Section 2. Section 3 contains the Bochner theorem and the Cramer 
decomposition of the spectral distribution operator. 

Our main results are given in Section 5. Theorem 5.1, which is the extension 
of Rozanov’s Theorem 11 of [23] to the infinite-dimensional case, gives necessary 
and sufficient conditions (in terms of the spectral distribution operator) for an 
s-valued process (X,} to be a purely nondeterministic process of rank M. The 

factorability criterion for the spectral density operator is given in Theorem 5.1. 
Using a theorem of Payen [20], we give a necessary and sufficient analytic 
condition for an Z-valued process to be purely nondeterministic of rank M. 
In Section 6 we give, without proof, analogous results for continuous-parameter 
Z-valued processes. 

-Most of the results of this paper were announced in [ 131. 
In the following section, we give some preliminaries which will be used 

throughout the paper. 

2. PRELIMINARIES 

Let (Q, 5, P) be a probability space and Z be a separable Hilbert space with 
inner-product ( , ) and norm // /I. We say that a random variable X on Q to % 
is .%-valued if for each w E Sz, X(u) E #, and E 11 X II2 = so 11 X II2 dP is finite. 

DEFINITION 2.1. A sequence {X,; n = 0, 31, *2,...} of Z-valued random 

variables is called an &‘-valued stationary stochastic process (SSP) if for each 
h,,h,E%,andn <m, 

E(& , h&L, h2) = y((m - n); h, , h,) = Wm - n)h, , &), 

where r(m - n) is the gramian of X, , X, (see Gangolli [9]), Since for each n, 
E 11 X, /I2 < 00, we get for h E Z, (X, , h) EL~(Q, P), the space of complex- 
valued square integrable functions on (Q, 5, P), we can associate with {X,} 
the following (closed) subspaces of L,(Q, P). 

(a) The subspace L,(X) of L,(sZ, P) g enerated by the family of random 

variables {(X, , h) for n = 0, -&l, f2 ,... and h E 3?}. 
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(b) The subspace L,(X : n) of L,(Q, P) generated by {(X, , h), m < n, 
hEz?}. 

We now consider PL,(x:,-Ij(X, , h), projection of (X, , h) onto&(X : n - 1). 
By Lemma 7.1 of [14] we have 

p,.,(x:n-1,(X 9 h) = O’n,n-1 9 h) for each h E SF, (2.1) 

where Yn,n-l is an z-valued random variable. Clearly, 2, = X, - YTL,n-l 
is %-valued. This is the innovation in X, . Because of stationary, we get, for 
h, h’ E Z, 

J-W,, JzXZ, , h’) = K&, hX.&, , 6. (2-21 

Since Z,, is an &‘-valued random variable, we get (see [ 131) 

W-o, h)(Z, = (Sh, h’), (2.3) 

where SE T(#, x), the class of self-adjoint nonnegative definite, compact 
operators of finite trace. 

DEFINITION 2.3. (a) The operator S will be called the Prediction Error 
Operator of the process {X, , n = 0, +I ,... }, and the dimension of the closure 
of the range of S is called the rank of the process X:, . 

(b) An &‘-valued process {X, , 0, &l, f2,...} is said to be of nearly full 
rank if m(S) the null space of S is trivial (i.e., (0)). 

As in [13], we call an x-valued stationary process purely nondeterministic if 

fi L,(X : n) = {O}, 
n=--a) 

where 0 is the zero of L,(X) (2.4) 

and deterministic if 

L,(X : n) = L,(X) for some (and hence for all) n. (2.5) 

We now recall the following Wold-decomposition [14, Proposition 7.11: 

LEMMA 2.1. Let (X, , n = 0, & I,...) be an A“-valued stationary process; then 

x R = x(1) + 32) 
n n , n = 0, fl,..., 

where {Xt’} and {XA2’} are &‘-valued stationary processes such that {X2’} is 
purely nondeterministic, {Xf”} is deterministic, and L,(X’l)) J- L2(Xt2)). 
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From the above proposition it follows that Z, = Zz’, and hence 

{Sh, h’) = E (Z;l), h)(Z:), h’j = (S’l’h, h’). G-6) 

Thus we observe that the rank of the process is equal to the rank of its purely 

nondeterministic part. 

LEMMA 2.2. Let {X, , n = 0, &I, 12 ,...I b e a ure nondeterministic process, p b 

then the subspace R’ of L,(X) generated by (Z,, , h), h E 2, is isomorphic to the 
closure of the range W( S112) of W2, where S1jz denotes the square root of the operator 

S [22, p. 2651. 

Proof. In view of (2.3), the operator T, given by 

T(Z, , h) = W2h for hE2, 

extends to an isometry on RI onto W(S1j2). 

It can be easily observed that [22, p. 2631 q(S) = 7(9/s). Hence we get the 
following theorem from (2.6), Lemma 2.2, and [14, Theorem 4.1(i)]. 

THEOREM 2.1. The rank of an z-valued stationary stochastic process is equal 
to the multiplicity of its purely nondeterministic part. 

This shows that our definition of rank is a natural generalization of the one in 

the finite-dimensional case. 

3. BOCHNER THEOREM AND CRAMER DECOMPOSITION 

This section establishes the Bochner theorem for an x-valued stationary 
process. This allows us to define the operator-valued spectral measure of the 

stationary process. 
Let {X;, , n = 0, il,...} b e an x-valued stationary process, then we can 

introduce on L,(X) the shift-operator U as 

U(X, , h) = (X,+, , h) for each h and n. (3.1) 

We get from the stationarity of {X,} that U is a unitary operator. Hence by 
Stone’s Theorem [22, p. 2811, 

U = I,, 2 , e@E(dA), (3.2) 
> 77 

where E is a projection-valued measure on the Bore1 subsets 9 of (0,27r). 
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Consider now E(d)(X,, , h). It equals by [14, Proposition 7.11 (X(d), h), where 
for each d, X(d) is an x-valued random variable. Let us define the operator-F(d) 
as 

We now have the following Bochner Theorem. 

THEOREM 3.1. Let {X,)-t: be an z-valued stationary stochastic process; 
then for each n, the gramian 

T(n) = 11” e&ltAIF(d/\), 

where (i) F(d) for each A E g belongs to T(x, x); 

(ii) F is a measure in the sense that if A, are disjoint members in S?‘, then 
7{F((JL, Ai) - Cf F(AJ) + 0 as k -+ CO, where 7 denotes the tracel; 

(iii) r(n) = j: e-inAIF(dh) = s: e-i”AIG(dX) impZiesF(A) = G(A). 

DEFINITION 3.1. We say that F is absolutely continuous if the (possibly 
complex) measure (F(.)h, h’) is absolutely continuous with respect to (Q), the 
Lebesgue measure I on (0,2x], and F is called singular if for each h, h’ E S, 
(F( .)h, h’) is singular with respect to 1. 

We denote HZ,, = {x 1 x E L,(X), (E(A)%, x) Q Z} and mS = {x / x E L,(X), 
(E(A)x, x) is singular to Z}. It is known [lo, p. 1041051 that tixac and M.. are 
mutually orthogonal subspaces of L,(X) and L,(X) = m,, @ en, . Clearly, M,, 
and @zS are U-invariant. Also by Lemma 7.1 of [13], 

Pm,,<&, 3 h) = <-V, h) and R&T, > h) = GY , h), 

where X:’ and X,,S are S-valued random variables. We thus have 

THEOREM 3.2 (Cramer decomposition). Let {X, , n = 0, fl,...} be a stu- 
tionary z-valued process. Then 

x n = J+) + x(S) n n n = 0, Al,..., 

where the processes (Xf’)> and {Xf)} are mutually orthogonal S-valued stationary 
processes with shift-operator U, as for {X,}, the spectral distribution operator of 
Xtac) is absolutely continuous, and that of XA” is singular. n 

1 For a T(P, #)-valued measure, this condition is precisely equivalent to the fact 
that (F(d)h, h’) is countably additive for each h, h’ E A“. 
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COROLLARY 3.1 (Cramer decomposition). Let F be the spectral distribution 
operator of a stationary Z-valued process, then 

where FaC and Fs are T(Z, AY)- valued measures on 9’ such that F,, < 1 and Fs 
is singular with respect to 1. 

Applying Theorem 3.2 to the deterministic part in Theorem 2.1, we get 

COROLLARY 3.2. Every stationary Z-valued process X, can be decomposed 
into threepairwise orthogonal stationary &‘-valuedprocesses in the following manner: 

x 
n 

= $1’ + x(z) + x’s’ 
n n n 9 

where {XF’} is a purely nondeterministic stationary H-valued process, {XL”} is a 
determintztic Z-valued stationary process with absolutely continuous spectral 
distribution operator, and {XA”} is a deterministic stationary Z-valued process with 
singular spectral distribution operator. 

For an example of the Z-valued process, where the second part of the 
above decomposition is present, see M. Nadkarni [19]. 

We now obtain a Radon-Nikodym theorem for the operator-valued measure 
F,, . Let us recall that a T(#, X)-valued measure G is said to be absolutely 
continuous if for each h, h’ E Z, the (possibly complex-valued) measure 
(G(.)h, h’) is absolutely continuous with respect to 1. 

Let {e,} be a CONS in 2; we then define by g,,(h) = (d/dZ) < G(h) ei , ej) 
the Radon-Nikodym derivative of (G(d) ei , ej). Let us define by g = ( gij(.)> 
the infinite-dimensional matrix. Then g can be considered as a spectral density 
of G. It should be noticed that the spectral density operator is defined uniquely 
only as a matrix, i.e., when the CONS is fixed. In the infinite-dimensional case, 
this point has been emphasized by Gangolli [9, p. 9031. This is also the case in 
the finite-dimensional case although Rozanov [23] seems to have overlooked this 
fact. 

Obviously the matrix g has the following properties: 

(i) g = g*; (ii) g is nonnegative definite; (iii) xi gii(h) 
converges a.e. [l]. 

(3.11) 

From (i) and (ii) we get 

(gij)” < gii gjj a.e. I$ (3.12) 
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Let us now define, for each h E x and X E (0,2~r], the spectral density operator 

G’(A)h = C (h, ei)gij(h)ej . 
id 

(3.13) 

Then (3.11), (3.12), and (3.13) give th e o f 11 owing theorem by standard procedure; 

THEOREM 3.3. Let G < 1 be a T(&?, x)-valued measure, then (i) the spectral 
density operator G’ can be dejned uniquely for each CONS by (3.13), (ii) 
G’(X) E T(Z, 2) e.a. [I], and (iii) For each A E .9f’, G(d) = jA G’(A) dh, where 
the integral is dejned as in [12, p. 791. 

In view of the fact that the spectral density operator is defined with respect 
to a CONS, it seems natural to consider the coordinatization of X, with respect 
to {e,} from now on. That is, we can treat X, as a “column” vector (XF’) = 
((X, , ek)) where, of course, Cz=;, E 1 (X, , e&l2 < co. 

Using an extension of the ideas of [25], we call vector X,, = (XF’) (k = 
1, 2 ,...,) an L,“(X)-valued random variable, and the process {X, , n = 0, fl,... > 
of these vectors (when co-ordinatized) an L,“(X)-valued stationary process. 
If U is the shift-operator given before, we can write XF’ = sr e-i”AE(dh) Xi’). 
Let us consider the vector [(A) = (E(d) Xi”‘). Then &l) is an Lzm(X)-valued 
countably additive orthogonally scattered (c.a.0.s.) measure in the sense of 
Mandrekar and Salehi [17, Section 61 and the matrix F(d) = [&A), &l)] is a 
T(Z, , Q-valued operator measure in the sense of [17, Section 21. The stochastic 
integrals with respect to f are defined in [17, Section 61. We now quote the 
following Isomorphism Theorem [17, Section 61 which will be used in Section 5. 

THEOREM 3.4. The space L,“(X) = {SF A(h) ((dh), A EL,,~}, where L2,r 

is the space of all operator-valued functions square-integrable with respect to 
T(I, , l,)-vaZued measure F [17, (4.10)] and 

[j-?” A(h) 5(dh), 1’” A(X) f(dh)] = 1”” A(h) F(dh) A*(X) [17, (WI. 
0 0 0 

In the next section we obtain a Riesz-Fischer Theorem following Wiener and 
Masani [25, 3.9(b)], which will be used to obtain the factorization theorem. 

4. FACTORIZATION OF THE DENSITY 

Let #, % be two separable Hilbert spaces and HS(&‘, ,X) be the class of 
Hilbert-Schmidt operators on &’ into x [8, lOlO]. We denote 1 IE the Hilbert- 
Schmidt norm. Let us denote by pEp,(O, 2~r) the space of HS(.W, x)-valued 
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functions A(.) on (0, 2~1, where j~o,zol / A(h)jidZ is finite. If we identify in 
.&(O, 27~1 the functions A, B such that 1 A(.) - B(.)IE = 0 a.e. [El, then ZZ(O, 2~1 
becomes a Hilbert space with the inner product ((A, B)) = 1/2n sr ~(-4, B*} dl 
and norm /I A IIE = ((A, JY))~/~. 

The proof of the above statement is a consequence of the fact that HS(P, X) 
is a Hilbert space with norm I IE given by the inner product (A, B) = TAB* 
(e.g., Schatten C24.p.321) and the classical arguments [12, p.461. For a function A 
in Za(O, 27~1 we define the n-th Fourier coefficient 

where the integral is as in [12, p. 791. The following is a straightforward extension 
of Wiener and Masani [25, 3.9 (b) & (c)] for ga(O, 2~1. 

THEOREM 4.1. (a) If A, is the n-th Fourier coe#icinzt of A E .&.(O, 2-1, then 
cT= 1 A, 1% < co; conversely, if the A, are such that clz I A, 1; < 00, then 
there is a function A E Sz(O, 2 rr w ] h ose n-th Fourier coeficient is A, (Riesz-Fischer 

Theorem). 

(b) If A, B E &$ and have n-th Fourier coe@ients A, , B, , then the integral 

1/2rr J; A(@ B*(e) d6’ exists as a weak operator integral and equals Clz A,nB,* 

(Parseval’s Identity). 

(c) With the hypothesis of(b), the n-thFourier coeficient of AB isC?z AkB,-, 
(convoZution formula). 

As these results follow readily as in the complex-valued case2, we omit the 
proofs. We shall denote by &+ the subspace of -Epz(O, 2=] consisting of functions 
A such that A(n) = 0, n < 0. 

We now recall the following theorem as a consequence of [14, Theorem 9.21. 

THEOREM 4.2. Let X, = (XF’) be an H-valued weakly stationary, purely 
nondeterministic process, then 

~2) = C g b,(k; m) tz(m i- n), 
m<o Z=l 

where (i) M = dim R, 

(4.1) 

2 For (c) it should be noted that if B E -.Yz(O, 27r], so is B*. 
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(ii) t&(m)} (m = 0, ikl,...) are mutually orthogonal [6] stationary processes, 

(iii) f f c 1 &(A; m)j2 E 1 &(m)j” isfinite and 
k=l i=lm<O 

(iv) L,(X; 72) = 2 @L,(& ; n). 
1 

Let us denote by [n the vector (fk”>, where for K < M, [A’) = &(O) and 
.$) = 0 a.e. [P] for k > M. Also define the matrix B(m) for m < 0 as &(m) = 
b,(i; m) for i = 1,2,..., and j < M and zero otherwise. Then (4.1) can be 
rewritten as 

Let D be the diagonal matrix with entries E / .$I2 along the diagonal for z’ < M 
and other entries zero, then &D1i2 E HS(1, , Z2), since EmGO 1 B:,DW 1; < CCJ 
by (iii) of the above theorem. We, therefore, have 

From (4.2), by a simple transformation, we get 

where B,,, = 8-, . (4.3) 

Furthermore, 

rank of D = multiplicity of X, . 

The following is our factorization theorem, 

(4.4) 

THEOREM 4.3. A stationary Z-valued process {X, , n = 0, Al,...} is purely 
nondeterministic iff the spectral distribution F is absolutely continuous, and F:,(X) = 
@(A) @*(A), where @()o = C”,=, B,D112eimA cz g2+. 

Proof. We observe that the gramian 

r(n) = [X, , X0] = f Bm+p,D3m*. 
WI=0 

Since Ciz-m I B,D112 1: is finite, we get by Theorem 4.1 (a) that there exists a 
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function @ E Za , such that @(A) = Cz-, 3,DiJzeimA. But B, = 0 for m ( 0 
and hence 

Using Theorem 4.1 (b) and (c), we get 

r(n) = j; e-?D(X) CD*(h) d/i. 

By uniqueness of the spectral density we now get the required result. 
Conversely, consider a sequence of s-valued random variables <n such that 

[.$% , $,,J = OS,, and consider X, = Cz=, B,,&m . Then 

f(n) = j: e-%.D(h) @*(A) dh = T(n). 

Since Xn is obviously purely nondeterministic, so is X, [14, p. 6161. 

5. THE RANK OF THE SPECTRAL DENSITY 

In this section we obtain the main result of the paper and apply it to obtain 
analytic conditions on the spectral density in order that the process is purely 
nondeterministic of rank M. We now state the main theorem. 

THEOREM 5.1. The necessary and suficient conditions for an Z-valued 
stationary process (X, , n = 0, f  l,...} to be purely nondeterministic of rank M 

are the following: 

(i) The spectral distribution operator is absolutely continuous; 

(ii) The rank of its spectral density operator f is M a.e. [l]; 

(iii) f(A) = @(A) @*(A), where @(A) = CT=0 BkD1/2eikA is in &+(O, 27r], 
where D is a diagonal matrix. 

Before we proceed to the proof of the theorem we observe that in Theorem 3.4 
one can take A(h) = A,@)[ f (A)]- 1/2, where A,(.) is HS(1, , Q-valued [17, (4.12)]. 
With this notation, we have 

jZn A(A) F(dh) A *(A) = j2* A,(h) P#?( f ‘/“(A))) A,*(X) dh, (5.0) 
0 0 

where’P,.(R( f’/“(A))) denotes the orthogonal projection onto R( f 1/2(X)). 



SPECTRAL THEORY OF STATIONARY PROCESSES 11 

The above equation will be crucial to our proof. 

Proof of the necessity. The process &,, = (P.$,‘)) ELLS by (iv) of 
Theorem 4.2, and hence by Theorem 3.4, gives us &, = ~~,,snI A(h) [(dh), where 

A E-&F - This implies that t, = ~~O,znl e-imAA(X) [(dX) since {(A) = (E(LJ)X~“‘). 
Thus, by Theorem 3.4 and (5.0), 

e-““AA(h) F(dh) A*(h) 

zzz 
s (0,2n, e-imA4N P,(R(f ‘V))) AO*(4dA. 

But [& , .$,I = 6,,D by the definition of D, and, therefore, 

(5.1) 

Hence, by Theorem 3.1 (iii) and Theorem 3.3, 

A,#) P,(W2(f(h))) A,*(h) = & a.e. [Z]. 

(5.2) 

(5.3) 

Since now & is a stationary&“([)-valued process with shift-operator U, we get, 
using Theorem 4.2 (iv) and Theorem 3.4 by similar arguments as above, that 

f(h) = z J%(h) Pr(W”“)) %*(Y a.e. [I], (5.4) 

where B(h) is given by the equation X,-, = lB(h) T(dh) and ~(4) = (E(d) .$“). 
We get that rank f r/a(A) = rank of 0112 which implies 

rank f(h) = rank D = M a.e. [Z]. (5.5) 

The other two conditions follow from Theorem 4.3. Sufficiency follows by 
using Theorem 4.3 and the necessity part of the proof. 

From the above theorem and Corollary 3.2 we get 

COROLLARY 5.1. The spectral distribution operator F can be written as the 
sum of three operators FI , F, , and F3 , where FI is absolutely continuous with 
factorizable density, F2 is absolutely continuous, and F, is singular. This decomposi- 
tion is unique. 

We now use the above theorem to give analytic conditions for an X-valued 
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stationary process to be purely nondeterministic of rank M, using Payen 
[20, Proposition 9, p. 3791. 

THEOREM 5.2. Let {X, , n = 0, *l,...} be an #‘-valued stationary process; 
then X, is purely nondeterministic of rank M iff (i) The spectral distribution operator 
is absolutely continuous; (ii) The spectral density f(X) = Cr=:=, p,(h) Q&i), where 
QJX) is a projection on a subspace of dimension one such that its range function is 
conjugate analytic [7, p. 1241, and p,(X) is a strictly positive reaE function ae. [I] 

such that s; log p,(A)dA > -co. 

Proof. Sufficiency follows from Proposition 9 of [20, p. 3791 and Theorem 5.1. 
To prove the necessity part we choose a complete orthonormal system (ei}& 
consisting of the eigenelements of D1iz. Consider then @(A) e, = g,(h). In view 
of Theorem 5.1 we get that fJh) = C$, (ei , g,(X))( g,(A), e$). Putting p,(X) = 
II g,@)/l, Q&V = Projection of g,@), we get that f(h) = C;z”=l p,(h) Q%(h) and 
Jr log &(A) > - 00 foil 0 mg Payen’s arguments [20, p. 3791. w’ 

6. CONTINUOUS PARAMETER PROCESSES 

In this section we describe a procedure for extending results concerning 
a discrete-parameter process to the continuous parameter case. The approach 
depends mainly on [14]. Let 2 be a separable Hilbert space. We say that for 
t E R, the real line, X, is a continuous parameter S-valued weakly stationary 
process if, for each t, X, is an S-valued random variable and 

U-G 9 WX, , h,) = V(l s - t I)h, , h,), 

where P(t) is the gramiun. We say that (Xt}teR is mean continuous if for each 
h~~,E~(Xt,h)-(X,,h)~2+Oass-+t. 

For a mean continuous purely nondeterministic process, the authors have 
shown [14] that the idea of multiplicity coincides with that of rank given by 
Gladyshev in the finite-dimensional case. 

DEFINITION 6.1. The rank of the process {X,) is defined as the multiplicity 
of its purely nondeterministic part. 

Remark. The above definition is unambiguous in view of the Wold-decom- 
position given in [14, Proposition 7.11. It is consistent with the finite-dimensional 
case and the Zasuhin definition in the discrete parameter case in view of Theorem 
6.2 of [14]. 

Let us defineL,(X) as the (closed) subspace ofL,(SZ) generated by {(X,, h)t E A, 
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h E SF} and the shift operator U, on L,(X) as U,(X, , h) = (X,,, , h). Then U, 
is a strongly continuous group of unitary operators and hence 

u, = s +m ebitAE(dh), 
-cc 

where E(A) is a projection-valued measure on the Bore1 sets L%(R) of R. Using 
now the arguments paralleling those in discrete parameter case, we get the 
following analogs of Theorems 3.1, 3.2, and 3.3, and Corollaries 3.1, and 3.2. 

THEOREM 6.1. Let {Xt}tpR be an S-valued stationary stochastic process; then, 

for each t, 

T(t) = 111 editUF(du), 

where (i)for each A E B(R), F(A) E T(Z, ST); 

(ii) F is a measure in the sense that af Ai are disjoint members in 9?(R), then 
T{F((JT Ai) - 2,” F(Ai)} -+ 0 as h + 00 where T denotes the trace; 

(iii) T(t) = sz,” e-ftUF(du) = st: e-itU G(du) implies F(A) = G(A). 

THEOREM 6.2. Let (X, , t E R} be a mean continuous stationary Z-valued 

process; then 

x, = xt(ac’ + x(s) t t E R, 

where the processes {Xj@} and {X,‘“‘} are mean continuous &?-valued processes and 
the spectral distribution operator of {Xy’)} is absolutely continuous and that of 

{Xp)} is singular with respect to the Lebesgue measure h on R. 

COROLLARY 6.1 (Cramer decomposition). Let F be the spectral distribution 
operator of a stationary Z-valued process; then 

F =Fae i-F,, 

where F,, and F, are T(S, x)-valued measures on 9(R) such that F,, < h and F, 
is singular with respect to A. 

COROLLARY 6.2. Every mean continuous stationary S-valued process (X,},,, 
can be decomposed into three pairwise orthogonal stationary &‘-valued processes as 

follows: 

x, = xp + XQ + x’3’ t t , 
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where {X{l’}, {Xi”‘> and {Xl”‘} are mean continuous stationary &-valued processes 
such that {Xj”} is purely nondeterministic and F(l) < h, {Xj”)} is deterministic with 

Fc2) < A, and {Xia’} is deterministic with Ft3) singular with respect to X. 

THEOREM 6.3. Let G be an absolutely continuous T(&?, Z)-valued measure; 
then (i) the spectral density operator G’ can be defined uniquely for each CONS 

ins; (ii) G’(u) E T(.%,#) a.e. [h]; and (iii) for each A in ZY’, G(A) = L G’(u)h(du), 
where the integral s’s as in [12]. 

As in Section 3, we now coordinatize the process to study the factorization. 
Let ,Ep,(R) be the space of HS(X, #)-valued, operator-valued functions A on R 

with JR j A(u X(du) finite. If we identify in Z2(R) the functions A, B such that 
1 A(.) - B(.)IE = 0 a.e. [h], then JZ(R) b ecomes a Hilbert space with inner 
product ((A, B)) = 1/2n JR Q-{/B*} dh and norm 11 A llE = ((A, A))1/2. 

For a function A E PZ2(R) we define the Fourier-Plancherel (FP) transform 
following Paley and Wiener [21], as 

A(t) = kv J‘y, e-itUA(u) X(du). 

The following theorem can be proved by using essentially classical arguments. 

THEOREM 6.4. Let A, B E Y%(R) with F-P-transform A, B. Then 

(i) JR A(u) B*(u) h(du) = JR A(t) B*(t) h(dt) (Parsevat’s Identity); 

(ii) JR A(u) B(u) eWiuth(du) = s A(s) B(t - s) ds (convolution formula). 

We denote 64,+(R) = {A 1 A E 2$(R), d(t) = 0, t < 0). Now in order to obtain 
the factorization and analog of Theorem 5.1, we recall the analog of Theorem 4.2 
[14, Theorem 9.31. 

THEOREM 6.5. Let X, = {Xi”)} be continuous parameter, weakly stationary, 
purely non-deterministic, s-valued process. Then, for each t, 

Xp’ = 5 j-” b:‘(u - t) &(du), 
1 --m 

(6.1) 

where (a) the tn’s are mutually orthogonal, and each f, is a process with stationary 
orthogonal increments; (b) L,(X, t) = Cz, @L,(t,; t) for each t where L,(X; t) 
is the subspace L,(X) generated by {(X,, h), r < t, hE Z>; (c) M is the multiplicity 
of the process; and (d) C,” CT=, J:m a, 1 bn(u)12 h(du) isfinite. Here a, > 0 denote 

the numbers such that E 1 f,&Q2 = a&l). 
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Let us now define ford &@R), &A) = ([(i)(A))~C,, where t(i)(A) = si for i < M 

and tci)(d) = 0 otherwise, and let the matrix B(u) = {&(u)), where bjk(u) = 
by’(U), k = 1, 2 ,...) j = 1, 2 ,...) M and equals zero otherwise. Let D be the 
matrix with diagonal entries di = ai for i < M, and di = 0 otherwise; then 
condition (d) of Theorem 6.5 shows that B(U) D1jz E gZ(R). Now by an argument 
similar to Theorem 4.3 and Theorem 6.4 we get 

THEOREM 6.6. The process {XjlC1}tER is purely nondeterministic iff the spectral 
distribution F is absolutely continuous and F&(u) = @(u) Q*(u), where @ E 2$+(R) 

with 6(t) = B(t) and B(u) = 8(-u). 

The analog of Theorem 5.1 can be proved by using the so-called discretized 
process. Given any continuous X-valued process, one can construct a discretized 
process {Xn , n = 0, f 1, f2,...} by choosing Xn = sr einAE(rr + 2 tan-9) 
[14, (6.1), p. 6341. Furthermore, we know that the multiplicity of & is the same 
as that of X, , and Xn is purely nondeterministic iff X-, is purely nondeterministic 
[13, Section 6, Lemma Gr]. Let F(h) be the spectral distribution of the purely 
nondeterministic process X, and G(rr + 2 tan-9) the spectral distribution of 
the corresponding discretized process; thenF’(h) = 2/( 1 + AZ) G’(T + 2 tan-lh). 
Hence we get that rankF’(X) = rank of G’(rr + 2 tan%) a.e. [A] which equals M 
a.e., by Theorem 5.1. Now, therefore, we have the following analog of Theorem 
5.1. 

THEOREM 6.7. The following is a necessary and su#icient condition for {X,} 

to be purely nondeterministic of rank M: 

(a) The spectral distribution operator is absolutely continuous with densityf(u); 

(b) The rank of j(u) = M a.e. [A]; 

(c) f(u) = Q(u) Q*(u), where Q(u) E z+(R). 
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